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Abstract. For x e (aj_1,a)) G=1,...,p+1; ap:= —00, apy1:=00) the mapping T;: w=
X — 1/):1 Ai/(x—a;) (4; >0, a; € R) is onto R. It was shown by G. Boole in the 1850’s that
Z]”;rl [(aw/ Bx)fl]X:T;n o) = 1. We give an n-dimensional analogue of this result. The proof makes
use of the Griffiths—Harris residue theorem from algebraic geometry.
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1. Statement of the Result

Let A be a finite arrangement of hyperplanes in the n-dimensional complex affine
space C". Let N(A) be the union of hyperplanes of A in C" and M(A) be its comp-
lement in C", so that M(A) = C" — N(A). We let H,, denote the hyperplane at
infinity in the n-dimensional complex projective space CP" such that
CP" = C" U Hy. We identify any hyperplane in C" with the one which is uniquely
extended in CP”. The set A can then be regarded as an arrangement of hyperplanes
in CP". In this article it is assumed that A is real, by which we mean the defining
function of every hyperplane H € A,

Su@) =umo+ Y umyz, z=), €C, (1.1)
v=1

has real coefficients uy ¢ and ugy . A connected component of M(A) N R”" is called a
chamber.

For a point w = {w,};_, € R" and positive real numbers {1}y 4, we consider the
level function

F2)=1Re > (v —w)’ = Y Aulog|fu(?)l (1.2)

v=1 HeA

and its gradient g(z) = grad F(z). The latter is the function g(z) = (g1(2), ..., g.(2))
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such that

gu(2) =7, =, — Y LA (13)

2 fu(2)

The vector field g(z) is meromorphic in CP" and holomorphic in M(A).

We remark that according to the saddle point method of asymptotic analysis, the
function F(z) plays an important role in calculating the asymptotics in the direction
A for n-dimensional integrals of the multiplicative function

¢ 2 7
0(z) = exp[—ig(zv —w) } Il"[EAfH " (14)
where /' = {1} e denotes ' = ¢ + p) (t > 4oo)fora fixed 1 = {ZH}HeA. Indeed,
these integrals give typical examples of hypergeometric integrals of irregular
singularity. Their geometric and analytic structures are intimately related with
the configurations of M(A) and N(A) (see, for example, [1, 2, 4, 12-14, 16, 17]).

Before presenting our results, we must first establish some basic properties of the
function F(z). In fact these properties, established in Lemma 1.1 below, are more
or less known. Explicitly, in [4, Th. 4.1.1] and [17, 1.2.1], Lemma 1.1 is proved
in the case of the absence of the terms z, — w, in g,.

LEMMA 1.1. The function F is strictly convex in each component A of M(A) NR".
Furthermore, the set of the critical points for the function F(z) specified by the
set of points z satisfying the equalities

gi(e) =---=gu2) =0 (1.5)

is finite. They lie one by one in each A and in M(A) there does not exist any other point

satisfying (1.5).
Proof. For completeness we sketch a proof. The function F(x) (x € A) is strictly

convex in A because, for real numbers ¢4, ..., t, which do not vanish at the same time,
" 9F(x U vty
SR, - Zt+2} (Z»I o) g (1.6)
wv=1 8x"ax" HeA (x)

The function F(x) therefore has a unique minimum in A and, consequently, there
exists only one point, ¢ say, in A such that the 1-form

0= e dx,
y=1

vanishes. The fact that 6§ does not vanish at any complex point can be shown by
contradiction. Thus if 0 did vanish at a complex point ¢ in M(A), then 6 would also
vanish at the complex conjugate point ¢ different from c. Consider the line 1
connecting these 2 points. This can be chosen to have real coefficients. Explicitly,
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every point of 1 can be parametrized as
z=Ime-t+Rec te[-ii]

where ¢, ¢ correspond to ¢ =i, —i, respectively. The restriction of 0 to this line 1
vanishes at ¢ € M(A) N1 which is a contradiction, because the Lemma is obviously
true in the one-dimensional case. This proves the Lemma. |

We denote by ¢, ..., ¢, the critical points of the function F(z) which lie one by one
in Ay, ..., A, the components of M(.A) NR". The convexity property in Lemma 1

then gives

COROLLARY 1.2. At each point c;

da, n
det(i> -0, (1.7)
azﬂ =1 z=¢;

which is to say the corresponding Jacobian is positive.

Moreover, one can show the following identity, which is the main result of this

article.
THEOREM 1.3
K 9 n -1
3 det<ﬁ) — 1. (1.8)
Jj=1 aZ” ny=1 z=¢;

This identity can be regarded as a type of fixed point formula in CP”, similar to the
ones which were investigated, for example, in [11, 15, 18]. There only polynomial
mappings were treated, more restrictive than our rational mappings. It seems an
interesting problem to ask if (1.8) can be extended for arbitrary polynomials fy,
H being irreducible hypersurfaces.

2. An Inequality Associated with Hyperplane Arrangement

Let § be a small positive number. We consider the following subsets in C”",
V) ={zeCh |51 <o), 2.1)
Vi) =z eC lzl =67zl = 1zl =1, nG # b)), (2:2)

. k
(k=1,2,...,n), which cover the whole of C" so that C" = | J_, V; ),
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We put VO = Us_o V'?, which coincides with C”, and V® = Uy V(gk). In Vék) we
introduce the new affine coordinates (i, ..., {,) such that

zk=1/0 21 = 0/80 o zkm1 = G/ G 2kt = Gt /81 oo 20 = 0/ G (2.3)
We have

Gl <o, Gl <1, ..., (Gl <1

and vice versa for the reciprocals. In terms of the coordinates (2.3), fy(z) can be
described as

(@) = fu(0)/. (2.4)
where
B k—1 n
Ju(@Q) = umoly + umi + Y umlosi + Yty (2.5)
v=1 v=k+1

For an n dimensional vector v € C", we introduce the norm of v as

Il = 0 Il

In section 4 we shall prove the following proposition which plays a key role in the
proof of Theorem 1.3.

PROPOSITION 2.1. There exists a neighbourhood U of N(A) U {Hy} in CP", and
positive constants Cy and Cy, such that the inequalities

2> C — 2.6

llgll 0H€A|fH(Z)|2 (2.6)
1

< C — 2.7

lgv] < IHZEAUH(Z)' 2.7)

hold for z in UN VO N M(A), and

) 1 IS1&
lgl* = Co +> ). (2.8)

=k

1 1] )
< Cil —+ = 2.9
! '<IC1| HZGAMH(zn 29

hold for { in UN VP N M(A).
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Remark. The inequalities (2.6) and (2.8) do not remain true in the whole M (A), as
can be seen from the fact that the left-hand side in each case vanishes at the critical
points ¢;, while the RHS is positive.

3. An Admissible System of Neighbourhoods of N(A) U H,, in CP"

Let L be an arbitrary subspace in CP". We denote by A; the subarrangement of
hyperplanes A, ={H € A|H D L}. We fix a subspace L in CP" such that
L & H,, and we also fix a point belonging to L. The latter is denoted by z(© or
{© according to it belonging to ¥ or not. Let the integer r, 1 <r < n be such
that dim L =n —r. Then there exists a basis (e,...,e,) in C" such that
(e;41, ..., ey) forms a basis of the tangent space T(L) of L, while (ey, ..., e;) forms
a complementary basis to T(L) at z©.
Now, an arbitrary point z € C" can be represented as

n
z=Y ez, +29, Z=())_ eC". (3.1)
n=l1
The point z lies in L if and only if it can be expressed as

7= Z euz, + 0. (3.2)

u=r+1

On the other hand,

zf = Zeuz; (3.3)
n=1
gives a complementary vector to L. If H € A, then fy(z) is described as
n
fu(@) = unz;, (3.4)
v=1

where z* is the vector constructed from z according to (3.1)—(3.3) with z© € H.
DEFINITION 3.1. Let (L, z©) be a pair consisting of a (n — r)-dimensional subspace

L in CP" and a point z© € V@ N L such that L ¢ H.,. With p, §;, 55, 63 denoting
small positive numbers, we denote by U/(L; z(%) the set of points z € ' satisfying
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zl

Figure 1. Real section of the line arrangement X; (z; = 0), X2(z; = 1), X3(z2 =0), Xs(z2 = 1) and
Xs5(z1 = 22).

the following conditions.

) Nz =220 < p,

"
(i) |fu(z)| =0, forH %z,

—

2 2 2
(i) 12+ + 1P < 8,

(iv) /() >6;' forH ¢ AL, H 529,
VIZ P+ 1z
V) &< /() <o7' forH e A

VIZ P41z

As an illustration of the neighbourhoods U{/(L; (%) specified by Definition 3.1,
let A be the line arrangement consisting of the lines X (z; =0), X3(z; = 1),
X3(z=0), X4(zo =1) and Xs5(z; = z3). The real section of these lines is drawn
in Figure 1. First take z(® = (0, 0). Then dim L must be equal to 0 or 1. If dim L = 0,
then L coincides with {z”}. The corresponding neighbourhood UP/(L; ) is illus-
trated in Figure 2(A). If dim L = 1, then L coincides with X, X3 or Xs; the corre-
sponding neighbourhoods U(L; zV)) are illustrated in Figures 2(B), (C) and
(D) respectively. Similar neighbourhoods are obtained for z® = (1, 1).

If 2 = (1, 0) and dim L = 0, the neighbourhood US(L; z) is as in Figure 3(A).
If 20 = (1,0) and dim L = 1, then U”(L; z) is as in Figure 3(B), when L coincides
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(A) (B)

© ((3))

Figure 2. The neighbourhood U},O)(L; 20 with z© = (0, 0) and L specified in the text.

with X3, and as in Figure 3(C) when L coincides with X3. Similar neighbourhoods are
obtained for z® = (0, 1).

If z® e N(A) is different from (0,0), (0, 1),(1,0),(1,1), then we must have
dim L = 1. For example, if z? € X), then L coincides with X;. U(L; z©)) is then
as in Figure 3(D).

In Definition 3.1 it is required that z® e V@ N L. To consider the points at infinity
(© e y® N L, first note that in ¥® there exists a basis (21, ..., &,) in C" with respect
to the affine coordinates ({, ..., {,) such that (¢, ..., e,) forms a basis of T(L)
at {9 and (24, ..., ¢,) forms a complementary basis to T(L) at (¥. We may take
C;+1 = {;. Analogous to (3.1)—(3.3), an arbitrary point {(€ C") can be represented
as

(=) 80+ =) eC (3.5)
pu=1
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(A) \ , (B)
b X3
X1
©) (D)
@0
P

Figure 3. The neighbourhood UP(L; z) with 2 = (1, 0) and L specified in the text for (A)~(C) and with z©
different from (0, 0), (0, 1), (1, 0), (1, 1) in (D).

such that it lies in L if and only if it is expressed as

(=" &l + (", (3.6)
u=r+1
while
=80, (3.7)
n=1

gives a complementary vector to T(L). Note from (2.3) that {* = (0, (3, ..., (}). Also,
analogous to (3.4) we have the expression

k—1 n
JuQ) =unoli + Y un Gy + D unnl (3.8)
y=1 v=k+1

provided H € A;.
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DEFINITION 3.2. Let (L, () be a pair consisting of an (n — r)-dimensional sub-
space L in CP" and a point (¥ € ¥® N L such that L ¢ H,. We assume that
{© e y®. We denote by UR(L; {©) the set of points z € M(A) N V® satisfying
the following conditions:

@ 1= <o,

(i) /(1= forH 7Y,

i) (1 4+ IR < 0

—

(iv) /u©) >0;" forH ¢ AL H > (O,
P+ 1P
(V) |C1| > 52_1
P+ 1P
(vi) 93 < /) <6;' forH e A
[Nk

In the case of the arrangement of Figure 1, the neighbourhoods UM (L, () and
UD(L, (9 with (@ =(0,0) € ¥D and V@ respectively, are similar to those of
Figure 2, while with {© = (1, 1) € ¥ or V®, respectively, they are similar to those
of Figure 3(A)—(C).

The remaining situation to consider is the case {9 e LN H,, which was excluded
in Definition 3.2.

DEFINITION 3.3. Suppose that L is as in Definition 3.2 and that (V) € LN H,, in
1% We can take the same basis ¢, ..., &, as in Definition 3.2 where {; can be ident-
ified with (], ;. We denote by U(L N Hy; () the set of points { € M(A)N V®
satisfying the properties (i) and (ii) of Definition 3.2 together with the followings
properties:

i) 1P+ 10 < 8

(iv) — /u©) — > 671 forH ¢ Ap, H > (9,
IO+ 1
V) &< - /u©) - < 671 forH e Ag,
JiEr+ 410
(vi) 83 < Gl <57

2 2 =
JEr+ 410

In Definitions 3.1-3.3, p, d1,9,2,9; depend on the choices of the pairs
(L; 2O, (L; (O, (L N Hao; £9) respectively.
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For an arbitrary subspace L, we denote by C;. the finite set consisting of the critical
points in M(A) for the function

F = %Re Z(Z“ —wy)? — Z Arlog| fu(2)]. (3.9)
v=I

HeA;p

We can choose a small positive number p such that

UL 2O ne, =0, (3.10)

UOL: ("yne, =0, (3.11)
and

UPLN Hy: (YYNCL =0, (3.12)

for any L, 29, (9. The following fact is also true.

LEMMA 3.4. There exist small positive numbers 81, 62, 93 for 525§1 > 1suchthat the
intersection of M(A) and the union of the sets UP(L;z%), UMN(L; (Y and
UP(L N Hy; (Y includes a neighbourhood of the set N(A) U {Hy} in CP".

Note that the statement of Lemma 3.4 is illustrated in Figures 2 and 3, with the
angles p and P therein being such that p < P.

We fix the pair (L; z?) as above. There exist r hyperplanes, Hj, ..., H, say, such
that L = N/_, H;. From this we see that for z in UY(L; z?) the functions

VIEIP -1z 127 ) @R Y 1 fm@r
j=1

HeAp

vanish along L in the same order, so that there exists a positive constant K such that

KN <121+ + 122 < KIIZH, (3.13)

K< [ D] 1/u@PF < K|, (3.14)
HeA;

Kz <

D P <Kz (3.15)
Jj=1
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Similarly, for { in U’(}k)( L; (),

KN <IGP + -+ 1817 < KIC, (3.16)

KNl < [ Fa©r < KICI, (3.17)

HeA;

en< | Fu©l < K, (3.18)
j=1

while for ¢ in UM(LN Ha; ()

KNEN < IGP 4+ 418, < KIC, (3.19)

el < \/|41|2+ S O < KIEI. (3.20)
&,

K < J 6P + /Zl O < KIEI (3.:21)

NN < 1G] < KIE. (3.22)

We denote by S the closure of a set S in CP”. We then have

LEMMA 3.5. The union of the sets U;O)(L; zO, U;k)(L; 9y and U;k)(L N Hy; ()
contains a neighbourhood of the set N(A) U {Hy} in CP". Actually a finite number
of them cover a neighbourhood of N(A) U {H}.

Proof. In fact, only finite members of {U,, (L z0)} cover a nelghbourhood of z®
in CP”. Similarly only ﬁmte members of {U (L z0)} or {U( (LN Haso; ()} cover
a neighbourhood of (. Since N(A)U {Hoo} is compact, the Lemma follows due
to the Heine-Borel covering theorem. O

4. Proof of the Proposition 2.1

The statement of Proposition 1 consists of the four inequalities (2.6)—(2.9). Since
(2.7) and (2.9) are obvious, we have only to prove (2.6) and (2.8). First we prove
(2.6) in the neighbourhood U(L;z?"), then (2.8) in the neighbourhoods
Ul(,k)(L; ) and UI(]k)(L N Hy; )
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4.1. PROOF OF (2.6) IN U'%(L; z%)
From (1.3) and (3.4) we have

n
Y guzi==Y dg+Ti+Tr+Ts, (4.1)
u=1 HeAp

where

2 Zn—l Upg vzf
T] = Z(Z“ - Wu)Z,tv T2 = - Z j-Hv_i’»7
=1 He AL H>20 Ju(@)

n £
—1 UH V2,
T3 2 i Z\_l Vey .

H7z0 Ju@)

We note that ) ;. 4, Az > 0. In view of conditions (ii)~(v) of Definition 3.1 we can
choose p, d1, 2, 03 so small that

1 . .
T < Y m (i=1,2.3)
HG.AL

(the proportionality constant 1/6 is chosen for later convenience). Hence, after
applying the triangle inequality to (4.1), we conclude

1
25 Z AH.

HeAp

n
z : *

gllZ,,t
=1

By the Schwarz inequality, this implies
el - 12*1 > = >
. Z = =
g 3 H
HeA;

and, thus,

1 *
gl =5 > A/l

HE.AL

But from condition (v) in Definition 3.1 and (3.14), there exists a positive constant K
such that

1 K,
<
| fu@] ~ llz*l

for H € Aj.

Hence, there exists a positive constant Cy such that (2.6) holds.
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4.2. PROOF OF (2.8) IN UN(L; ()

Without loosing generality, we may assume k = 1. From (1.3) and (2.4) we have

1 2 10
0=ty = Y L 42
o oM frea Su(© (42
gy Aaup vCy
(O =20 gy, = SEHMHAEL (s 4.3)
(0 7, w 27,0 (v=2) (

(here we have abused notation by writing g,({) in place of g,(z)). Now we write
g0 = (0, . () with

Oy = Ly Aty 44

s =g—m HEZAL fu@ @
C\r iHMH VC]

Oy =22 — gy, — Y ZHEHNEL (5 gy 4.5

& e & ! HGZAL Su(©) ¢ ) 4

We first seek to prove that there exists a positive constant C, such that

1 15
18001 = ¢ ( + L ) (4.6)
o H;AfH(«:)f

in UMN(L; ¢®). Equivalently, if we define the function ¢({) as

PRIG)

1 I, 2
Tr 2 + —— 2
ar T nea g0

P(Q) = 4.7)

then we must prove ¢(() > C; in U(L; {0y,

Suppose the contrary. Then there would exist a point sequence ((/ = 1,2, ...) in
UM(L; (™), which converges to a point o = (a, ..., a,) in its closure US(L; {©)
in CP” such that

lim/ o({") = 0. (4.8)

The details of the conclusion to be drawn from (4.8) depend on the value of «; and

fu(@).

(a) The case where o # 0 and/;H(oc) # 0 for every H € Aj.

In this case « lies in USV(L; {9y, Since lim/_ 00 0({?) = (o) we have [|g@ ()] =0
and thus g (x) = 0.

This means that the point z = (1/ay, 02/a1, ..., 0, /o1) € V@ is a critical point for
the function F7(z). However we have assumed (recall (3.11)) that there exists no
such point o in USV(L; ¢®), which is a contradiction.
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(b) The case where oy # 0 and that there exists a hyperplane Hy € Ar such that
S, (@) = 0.

From condition (vi) of Definition 3.2,

fu(e)=0for H e Ay (4.9)

and hence o* = 0. By choosing a suitable subsequence of {{”}, > 1 (if necessary) we
may assume that

My

oo ——— 4.10
e Oy (410)

exists. We denote its limit by = (f, ..., f,,).- Note that ; = 0, because (CY))* =0,
and that we have also
7 (¢ n
M ) S B, A0 (€ Ay, (.11)
1ED M =
because of condition (vi) in Definition 3.2. We denote this value by (. Then, after
recalling (4.4), we see that

n Amtp 02
Zv:l |ZHEAL B |

& ’

Z o
HeA g,

limy 0o p(C?) =

which, because of (4.8) implies

. Uy
Y dmpt=0 (1<v<n).
HeAp ﬂH

But this is again a contradiction because

33 Xﬁu;’;ﬁ”: 3 i #0.

v=1 HeAr HeA;

(¢c) The case where oy =0
We may again assume that (4.10) converges and that (4.9) and (4.11) hold. Thus f,
again vanishes, while f; does not. Since «; vanishes we have

Fr@ =" ug o, +un,y. (4.12)
—

Also, by the choice of an appropriate subsequence if necessary, we may assume that

(Dy2
mj_ % =da
1)

exists or diverges to the point at infinity. The reasoning now depends on the value
of a.
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a=0
Then we have

n
limy o) = 14+ 3o #0,
y=2
which is an immediate contradiction.

a#0
Then

2

) 2
AHUH 1A n Auu
— D Hea, /1: + 2 |°‘» D Hed, H/;:‘

1+ZH€AL| |

limy— o p((”) =
Hence the assumption (4.8) gives

Arug, l_
L7, ~°

HE.A[

AHUH v _
B

HE.AL

But these equations together with (4.9) imply

.
1+ Z ol =a Y0 2 Y Lag W) _

y=2 HE.A]_ ﬁH

which is again a contradiction.

a= 00
Then
Zn 1y A L |2
lim, () = == P
2HeA 5,7
Hence
AgU
”ﬂ”“_o (1<v<n),
HGAL H

which implies

Zszo

HeAp

and thus gives another contradiction.

https://doi.org/10.1023/A:1001774431216 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001774431216

278 KAZUHIKO AOMOTO AND PETER J. FORRESTER

Considering the conclusion of cases (a),(b) and (c) together, we see that in all
situations the hypothesis (4.8) is false. Since this hypothesis is equivalent to the
assumption that the inequality (4.6) is invalid, we must have that (4.6) is in fact
true. Furthermore, the above working shows that there exists a positive constant
C; such that

CR ST
1g”1° = ¢ +— 4.13)
e i

and that this is equivalent to (4.6).
With this preliminary result established, we now proceed to prove the inequality
(2.8). |igll* can be described as

2 2 2 —
Igh? =19 —g —g21" = 121" + Ilg — g1 + 2Refg® - (g — g®)},  (4.14)
which gives
lgh? = 1g91% - 21g11g — g1l (4.15)
Now, from Definitions 3.2 (ii) and (iii) we have

141 < |C1|5

- < H¢A
Fa@ ST HEA
which, according to (4.2)-(4.5), implies for some positive constant C;
[81

lg — gl < C300 -
g8 &

Comparison with (4.13) shows that we can choose J, small enough so that
1
g = 2@l < 4121l (4.16)
Substituting (4.16) in (4.15) gives

1
gl = = 11,
2

and use of (4.6) immediately establishes (2.8).

4.3. PROOF OF (28) IN UN(LN Hy: (")

Indeed from (1.3) and (2.4)

dpug G
210G Wiy 1;4 70O

https://doi.org/10.1023/A:1001774431216 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001774431216

ON A JACOBIAN IDENTITY ASSOCIATED WITH REAL HYPERPLANE ARRANGEMENTS 279

But from Definition 3(ii)-(v), we may choose p, d1, d3, 03 so small that

dulug GGl 1
iy |+ S bl 1
e ;;|ﬁ@| 2

Hence |gi(;| > 1, which implies

1
gl = Ig1l = 5

2151
&mﬂ&Mﬁ@HmemwmmmUﬁ@ﬂﬂ@wdeMwﬂw@$mm
there for a suitable positive constant Cj.

By (1)—(3), the inequalities (2.6) and (2.8) have been proved in each of the neigh-
bourhoods U(L; z%), UM(L; ¢©) and UP(L N Hy; ¢©). But from Lemma 3.5,
the union of a finite number of their closures includes a neighbourhood of
N(A)U Hy, in CP". By taking the constant Cy as the minimal one among the Cj
in each of the regions, we see that (2.6) and (2.8) hold in a certain neighbourhood
of N(A)U Hw.

Hence we have proved Proposition 2.1.

5. Griffiths—Harris Formula

To prove Theorem 1.3, we first define a meromorphic form on CP” and then apply
the Griffiths—Harris residue formula to it in M(A).

Let &1, &; be small positive numbers. We consider the closed subset M,, ., of M(A)
defined by

lz1] <er's oozl <er's | fu(@)| =6 forall He A (5.1
Let Q(1) be the meromorphic n-form on C"

1 dzya...Adz,
Q)" g1(2)---ga(2)

Note from (1.3) that Q(1) depends on 4 = {1y} g4, and when 4 = 0, Q(4) reduces to
Cauchy kernel

Q) =

(5.2)

1 dziA...Adz,

(an-)n nczl(zv - Wv) .

Let W(4) be the (2n — 1)-form of type (n,n — 1) defined as

Q(0) = (5.3)

S (=18 (2)dgi() A - A dge-1(2) A dgui(2) - - A dga(2)
lg() 1>

¥(i) = o,

Adzy A - Adz, (5.4)
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with

(=1
- 'en™

When A =0, ¥(/) reduces to

n

S (=D)7NGE = w)dE A AdE g AdEy - AdE,

2i
Iz —wi™

Y(0) =0,
ANdzp A - Adz, (5.5)

which coincides with the Bochner—Martinelli kernel on C”".
The residue of Q(4) in M(A) at each critical point ¢; (we denote it by Res,, (1)) is
given by

g, - -1 og,\"
[ (€1, - &) 7 _ det(i)
a(z1, ey Zn) 0z, =1
at ¢; and vanishes elsewhere. The residue theorem due to Griffiths—Harris [10,11] can
be stated as follows.

—1

Z=¢;

THEOREM 5.1

XK:ResZ:CjQ(A): f P(). (5.6)
Jj=1

81,6

Since the left-hand side of (5.6) is identical to the left-hand side of (1.8), our task is
to prove that the right-hand side is equal to 1. The right-hand side of (5.6) does not
depend on either ¢; or ¢, so it is sufficient to prove that

lim,, jolim,, |0 / Y(2) =1 (5.7)

2.8

or, equivalently,

lim,, |olim,, ;o / (P(}) — ¥(0)) = 0. (5.8)

21,8

We now fix a small positive number . Let B be a subset of 4. We denote by V((SO)(B)
the subset of V(© = C" defined by the inequalities

2l <67 lzl <67 /@I <5 (HeB),  |fu()] =5 (H¢B).

Similarly we denote by V*(B) the subset of M(A) N V¥ (recall (2.2)) defined by

1G] <0, 1GI< T, 1G] < T,

| fuOI<d (HeB), 1ful=d (H¢D).

https://doi.org/10.1023/A:1001774431216 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001774431216

ON A JACOBIAN IDENTITY ASSOCIATED WITH REAL HYPERPLANE ARRANGEMENTS 281

Figure 4. Real section of the line arrangement z; =0, z, =0,z = —z; + 1 in R2. M., ., is the dotted line.
Superimposed on M, ., is FLO)((O, 0); {z1 =0,z =0}).

Then the union of V(go) (B) and the Vék)(B) cover a neighbourhood of N(A) U Hy in
CP”.
We take a point 2@ € VO N N(A) or (¥ € ¥® N N(A) N Hy. Let B be the subset

of A defined as
(5.9)

B={H e A; H > z90r (V).

We define T0(z%); Hy) or Ffjk)(é(o);Ho) for Hy € B as a piece of the boundary
OM,, ., in each neighbourhood V{"(B) or V(B) as follows: O H) is the

set of z € AM,, ,, N V(B) satisfying

0= | fu(2)| = & for H € B—{Hy},
(5.10)

| fr,(2)| = €2,
| fu@@) =ofor HgB  ||lz—z9 <p.

An example of this construction is given in Figure 4.
Fﬁ,k)(C(O); Hy) is the set of z € IM,, ,, N ng)(B) satisfying

| JO) = e2001], 6 > 161 > a1, 6> 1/u@)| = ell| for H € B— (H),
|fa@I=06 forHgB, (-0 <p. (5.11)
al V(gk)(BU {Hy}) satisfying the

1,62

Finally TW((": Hy) is the set of ze dM,
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conditions

il =e1,  ae <|fu(Q) <o for H e B,

. (5.12)
|fu@ =6 forHgB, |- <p.

We remark that ¢},¢, can be chosen so small that oM, ., for
0<e <¢,0<e <¢ is contained in the union UB{V[EO)(B) Ui Vék)(B)}. Also,
by the Heine-Borel theorem, only a finite number of the sets I'"(z(%); Hy),
FL")(C(O); Hy), FL")(C(O); H..) are needed to cover M, .,

Seeing from (1.3) that

dg, = dz,+ > dn 2 d fu(2), (5.13)

HeA  fu(2)
the (n — 1)-form

n

2 (DTEdg A Adg Adg A AdE,,

v=1

being a polynomial of degree n — 1 in 4, is represented as

n
Go+Y. > im-in,Gu..n,
p=1 Hy,--- H,CA

where the sum with respect to {H1, ..., H,} is over the set of all p tuples of members of
A such that dim ﬂj,’:l H; =n — p. Substitution into (5.4) shows ¥(4) can be rep-
resented as

Y(2) = Yo(4) + Z Z 2ay -, Yy, (A), (5.14)
p=1 Hy,--- . H,CA
where
Gy
Wo(h) = —=5, Adzi A Adzy, (5.15)
gl
Gu,,..H,
Wu,...m,(7) :WAdm A Adzy. (5.16)
g

Obviously W(0) as defined by (5.3) coincides with W (0). This is important because we
already know that due to the Cauchy formula

/a . P(0) = 1.
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In the next section we shall show the following identities:

(I) limmolimgzw /(0) lI’(/l) = 0,
rp (Z<0);H0)
(I') lim,, yolim,, o / ; ¥(0) =0,
I(=; Ho)
(II) lim,,.lwliml;zw /(k) LP(}v) = 0,
(¢ Ho)
(II/) limgwolimgzio f(k) “P(O) = 0,
1,0 Ho)
I1D)  limg, olimg, 0 /(k) (W(A) — Yo(1)) =0,
r¢©; Hy)
(IV) limgwolimgzio f(k) (LP()(/‘L) — lP()(O)) =0.
" Hy)

(D—(IV) imply that

/ P = / P0) = 1 (5.17)
oM, oM,

£1.69 81,80

which proves Theorem 1.3.

6. Proof of the Theorem

In this section C, Cy, Cy, C, ... will denote suitable positive constants. We seek to
prove (I)—(IV) and thus Theorem 1.3.

6.1. PROOF OF (I) AND (I'): ESTIMATE ON I'(z®; Hy)

We fix Hy € A and z0 € V@ = C" such that z» € H,. We denote by L(C Hy) the
subspace Ny H which, we assume, has dimension n — r (1 < r < n). In this case
B coincides with A;. We can choose the coordinates z/, ..., z, as in Definition
3.1 such that z| = fy,(2).
In T'V(z?; Hy) we can write
(=) 'dgy A---dg,y Adg, A Adg, Adzp A Adz,
=y dZH A AdZ AdZ A AdZ

(6.1)

for a suitable function y"(2), since dZ{ A dz} vanishes on I'"’(z¥); H,). Substituting
in (5.4) gives

Y(2)
gl
for y(2) = Y0, ().

Y() = dzy Ao AdZ, AdZy - A dZ (6.2)

n
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Let us denote by |V (4)|y, .o the maximum of the absolute values [/(z)|/|| 2l** on
9z Hp). We seek a bound on this quantity. Now

df g @) A Adfy(2)=0 (6.3)
if s > rand {Hy, ..., H;} C B, while

|fra(z)| =0 for H ¢ B, (6.4)

0= |fu(z)l = ¢e for H € B. (6.5)
Also from (2.6) and (2.7)

gl = Coes?, (6.6)
lg)] < Crey . (6.7)

The results (6.3)—(6.7) imply
LEMMA 6.1. p and 6 being fixed

WD)y 20 < O3 ). (6.8)

The identity (I) follows. Since (6.8) holds independent of 4, (I') follows also.

6.2. PROOF OF (II) AND (II'): ESTIMATE ON I'®(("; Hy)

For definiteness we assume k=1. Let (@ e Hy and (© e Hye A With
F;’”(C(O); Hj) defined as in (5.11), choose the local affine coordinates ({y, ..., {,) in
V(gk)(B) such that

1G] <o, 16l <1 Gl < 1.

N

We denote by L the subspace NycgH, which we take to have dimension n — r. B
coincides again with A;. Then the coordinates ({},---,{,) are related to
(1.---.¢,) as in (3.5) and (3.6). We may assume that fy,({) = ¢} and {; = gt
Furthermore, {, and f}q({) can be written as

L= gL+, (6.9)
=1
Fa@© =" vl +viro (6.10)
y=1

for suitable real constants ; , and vy ,, vy 0. Note that the ; = (¢;,),_, are tangent to
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Lforr+1<j<n Thus for He B
Fu@© =" vl (6.11)
v=1

Next we introduce the new coordinates ({, ..., ())) blowing up the coordinates
(), ..., ) along L according to

1/ C, 1 C; 1/ / .
=g U=gt G=hezizre, (6.12)
r+1 r+1
Then from (5.11) we see that F;”(C(O); Hp) is included in the set
=6 a<I{al< e < |1 <8/l @ <j <0,
. - / i (6.13)
IGI<K(r+2<v<n),
K being a suitable constant. Also, we can write
~1)""'dg, A---dg,_ Adgyg A AdE,
b (,)gl,, S S R (6.14)
=y"((")dl A - Ad(mod dEy)
so that
Wiy = LG A A A A A 6.15)

Nol2n
el

on I““)(C(0 Hy), ¥({) being defined by 3"_, 2,4 (©). In fact this follows because
dZ," A ¢/ vanishes on F“)(C(O) Hy).
As is seen from (6.1)— (6 2), ¥¥(¢) can be described as a polynomial in / of degree

n—1,
YOO =y (O + Z Yoo ) © (6.16)
] |CA Hj#Hy
such that dim Y_, H; = n — p, where lpg")(é), 1//(,‘,)1 .... () do not depend on . The

quantities lp(‘)({) and , x//(‘) HN(C) can be bounded above, as we will now show.

.....

LEMMA 6.2. Assume that Hy, ..., H, € B while Hyyy, ..., H, € Bfor0 <p <n-—1.
Assume furthermore that each of H\, ..., H, differs from Hy. Then

e o) —ntr—1 1 |
L W) OI< QL ]_[ | VZVH Nl (6.17)
for 0 < g <r—1. Similarly
max (O < 1L 6.19)

o 1)/ of
ter'(®; Hy)
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Proof. In terms of the coordinates (Y, ..., {; ({/,, = (;), we have from (6.9) the
expressions

1 =
d<z> = _ZNZ d§i+1’

r+1

Zv Ev 2! 1
d P _TdCl +T X
<C1) C,j.l - Cr+1
X [(Z é,-,‘~Z]’.’>de.'+1 (Ze]vdé ) 1 T Z &,.,dl }
J=1 u=r+1

On the right-hand side the coefficients with respect to dZ/l/, e dZ:/ are bounded, the
one with respect to dC 1 1s of order o(1/1¢! +1|2), while the ones with respect to
dCr+2, . are 0(1/|C,+1|) On the other hand, from (6.10), we have

d( & >
Su(©)

d_// ¢ r = =
:@—%KZ vH,vg,)dc,.H (Zmd@”) Y vHudc#],
v=1

fH(é/) fH(C) u=r+1

where vy, =00+ 1< pu<n)if HeB. When H ¢ B, in the right-hand side the
coefficients with respect to dZ . dC” are of order O(lC 1|) the one with
respect to d{” 1 1s bounded and the ones with respect to dC, 2 dC are of order
O(|C +1D). On the contrary when H € B, the coefficients with respect to
d, ..~dC;’ are all O(|Y/_, v, (/17> the one with respect to di/,, is of order
O(1/|fu(©D. (6.17) and (6.18) then follow in view of Definition 3.2. O

We denote by

; (Ol
|\P(A)|HO’C(0> = maX(GFEI)(C(());HO) W , (6 19)
DYEYAZNE]
|‘P0()»)|H0’§(0) = maxgeri)n@(m;Ho) W s (620)
: DIy TN (6]
Wr,...r, (D, 0 = MAX L0, ) e (6.21)

gl
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To obtain bounds on these quantities, note from (2.8) and (2.9) that

1 1 1 1
lgl® = Co( - + ) > G, (852 )
HEB,ZH;EHO | Zv:l VH,Vé/v/lz |C/l/|2 |£r+l| |€,+1|

1 1 1 1
g <C ~r——r + <C’<al+//).
: HEK;#HJZZ:] R N\l

Using the inequality mZ lx > (Z 1x/) for x; € R, we then have

gl 1 1 1 —ht
- 2n <G Z r 17 2 // 2 :
llgll Heb e, | 2wy vELCT L] |C,+1|

To make use of these inequalities, we enlarge {Ho, Hi, ..., H;} to a system of r

hyperplanes {Hy, ..., H, H;‘H, ... H* ;} such that it becomes possible to write

L= HyNNL H;NiZ ;H . Then we see that

Ya,,...n, (D, o

—r+1
7o —1 1 1 1
< GIU | ( > —+ o |C I) x (6.22)
1 r+1

HeB H#H, | Z‘,, vl

]"[|ZvH»C”|>
7 -1
< GIUL I H(—'Z‘ BRI ) x

J=1 |C;,+1|
-1

r—1

1 1 1
x . . ~ . (6.23)
_,LL |2‘,=1m;,\z‘,|2 LT

Similarly
-1
= 1 1 1

|\PO(;)|H() (@ < C3|€'+1| 1_[ r 1,2 + 1,2 + 7”2
Jj=I | Zv=1 VHJ.*,va| |§1| |Cr+1|

(6.24)

since p = ¢ = 0 in this case.

To establish (IT) and (II') we must estimate the integrals of Wy, . g,(4) and ¥o(4)
with respect to d(j, ...,d¢),d¢5, ..., d{, with (| being fixed such that [{]| = e,.
The following lemma is useful for this purpose.
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LEMMA 6.3. We denote by |dzt A dt| the positive measure on C(t € C) defined by the
2-form dz A dt. We have

1 5
/ T Ade|| —— | < md7,1 log| 1 +
e < Iel <6/ 1+ 1l

|Qr'+l‘

dt Adr
/ ldrndd 5.
& < |t] <9/1C 7+

H»l‘ |z|? Z” |

It follows from (6.23) and Lemma 6.3 that the integral of |g‘,w(”) """ H’)(C)|/||g||2” over
F(l)(C(O) Ho) N {{{; I{{| = &2} has a majorization

/ #Mzz/\---/\dZZ/\dC%/\---/\dCﬂ
OO H)n (1] 1=e2) ligll
&2\’ 6.25
< Cs21- q)/m |{ ,+1|2log<l+ﬁ>} 8 (6.25)
r+1 |Cl‘+l|

X [T Ao AdD AL A AL

The last integral is done over the region & < (), || <6, (( I <1,...,|(| < 1. Its
value is bounded by a constant which does not depend on either & or &,. Similarly,

) _ -
Boo O3z o A dE A G A - AL < COD,
1), #(0) 2n 2 n 2 n
€ H)(1=e2) 18Il

(6.26)

Recalling (6.20) and (6.21), the inequalities (6.25) and (6.26) give
[, we| =06
0 0; Ho)

which implies (II) and (I') for &k = 1.

6.3. PROOF OF (III): ESTIMATE OF THE INTEGRAL \PHu.---,H,,(z) (1<p<n-1) OVER
r(k)(z(o). Hy)
P [

We again assume k = 1. Let (Q”l, C;) be the coordinates as in Definition 3.3. We
denote by L' the subspace L' = Ny .«oH which is assumed to have dimension
n —r. Then B coincides with A;,. We put L = L' N H,

Now F(l)(C(O) H,,)is defined by (5.12). By 1ntr0ducmg new coordinates ({{, ..., )
accordmg to

,1, = CQ/CI‘H =1 CN _Z;/erl CH—I :4’;+1’~-~’C;{ = C:,w
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we see that F})”(C(O); H,,) is contained in
Il =61, K e U < Kofer (1 <j <), 1G4l < K -, 1G] < K

for a suitable positive constant K. Also, analogous to (6.14) and (6.15), ¥Yg,
can be expressed as

Vo, .. © on oo o
Yo, .. Hp(i)z%dcl Ao ANdE AdG Ao AdEA

..... 1,(4)

AL A A dC”(mod dZ’.))

where Yy, p,(0) denotes > gy,
We denote by

Yl

|\P(/L)|H (0) — maxger(l)([(O) Hso) “ ”2” 9

|l//HI ..... 1,0l
gl

and seek bounds for these quantities. First, from (2.7) and (2.9), we deduce the
inequalities

1
lgl? = Co (Zi s;2>, (6.27)

2
B v v Gl

) < L 6.28
& (émlvmm ) (6-28)

Next, we deduce the analogue of Lemma 6.2.

)

LEMMA 6.4. Assume that H,...,H, € B and that Hyy, ..., H, # B(0 <q <)
Then

-2

q r
max |y (O < CaCT I Svw a1 (6.29)

Lery (¢, Ho) j=1 =1

Proof. Since (,, = {;, we have

d<_l> = O(mod dz:‘/+l)’
G

(:) Y00l + 3 tundly L (mod a7,
1

p=r+2

On the right-hand side the coefficients with respect to dC 15 ees da/ are bounded, while

the one with respect to dZL_z, s dZZ are O(1/¢;). Moreover, if H € B, we have in view
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of (6.12)

(ffll(é)> = r+1 |:Z VH tCr+1dC//i| (mod dm)’

fH(C)

whence the coefficients w.r.t. d{/, ..., d{/ are of order at most O(| ¥_, vy.,{/|7%). On
the other hand, if H ¢ B, we have in view of (6.11)

< Cl ) = — )+1 |:Z VH, »CH_le_,,N + Z VH »dé,//:| (mOd d( )

u(©

Fa© L =i
In the right-hand side the coefficients w.r.t. dz/l/, e dZ: are of order at most O(&?),
while the ones w.r.t. dgr+2, e dCZ are of order O(e;). O

Now, from (6.27) and (6.28) we have

—11+%
lgv] 1 1 .
2 <G Z 2t .s% :

llgl HeB|Z» 1V H‘C|

Hence, due to Lemma 6.4,

7 2r 2 1 1 | 2;71 VH; vC/v/|2 -
Yoo, DN, o < Cel (r=0+2p=9)= 14+==>" . (6.30)
Leesdlp Hyo L &2

j=1 1

The final step is to use (6.30) to estimate the integral

/ S—)
P Hy)

The analogue of Lemma 6.3 is required.

LEMMA 6.5

drAdr
f g < nsflog(l + Kzéz/e‘f),
K

2
N T
o <l <Ko/ 4
‘1

/ |dT A dt| < nK%(0/e1)?
K-1ley < |1| < Kd/ey

In (6.30) we may assume that >\, vy, (), ... D1 va, . C, as well as some n — ¢
elements among ({,...,{, are linearly independent. Fixing (., such that
)", 1| = €1, the preceding Lemma can now be applied to estimate the following inte-
gral with respect to d{{, ..., d{’, dZ’l’, ey dZ:.’, and then carry it out with respect to
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d¢,y, ..., dC), dT,,, ..., dZ. We have

Wa,...u,(D — S
)/ el (Al A dE AL, A
rPem gl

< Gt Medlog(1 + K287 /&)

1! 1 1!
< 7y A A G A dE A
’

\5;/\<K.(/:r+z ..... 1)

< G (2log(1 + K257 /6.

Hence for p > 1

limg,yolinm o [ Wy () =0,
(0 He)

As a consequence,

lim{;zwlimglw /

(P(2) —W¥o(4) =0,
r¢®; Hy)

which is the identity (III).

6.4. PROOF OF (IV)

dé’;’/\dc’l’/\/\dé’;’

(6.31)

To make explicit the dependence of g, on 4, here we write g,(-|4) in place of g,. On
r E,”(C(O); H,), we can write the difference Wy(1) — Wo(0) in the form

Yo(4A) — Wo(0) = (O A - - AdG AL A - A dE,

where 7(0) = (Ig¢1A)17>" = IgC10)I7>M, """ We put

1%6(2) = Po(O)ll 0y, = Max,_o 17O

Since
, Artp (i
W14 —g(-10) = — —,
& (1) — &,(:10) %fy(o
we have
11
llg:14) — g(-10)|I < C. = + 141
g(12) = g(10) 4(Z<0>XE:H|J(H(§)| 1)

1
= Cye E = +1].
- (H 7@ )
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On the other hand, from (2.8),
1

lgC10I* > Co——.
91

1
lgCIDN* = Co—.
1|

Therefore

1
IWo(2) — Wo(O)ll o < Cser | Y ——+1].
) C“”eHlfH(g)l

Hence

/ (Wo(h) — %(0))] < Csé?
(" H)

because, {; being fixed such that |{;| = ¢;, the function ZG%H m + 1 is summable
with respect to the positive measure on 1";1)(((0); Ho) N{{;;1&1] = €1} attached to the
form d{, A---Ad{, Ad{ A - AdE,. The identity (IV) follows.

Since each of the identities (I)-(IV) have now been established, (5.17) follows and
Theorem 1.3 is thus now proved.

7. Application

We fix a chamber A; in M(A) N R". Given an arbitrary point w = (wy, ..., w,) € R”,
there exists the unique x = (x1, ..., x,) € A; such that gi(x) = - - - = g,(x) = 0, which
is to say the mapping

;“Hqu
Ti:wy=x, — — I<v<n (7.1)
’ 1;4 Su(x)

from A; onto R” is a diffeomorphism. Theorem 1.3 can be used prove a integration
formula for this change of variables.

PROPOSITION 7.1. Assume that f(x) is a summable function on R" and that
gw) :f(Tj‘l(w)) does not depend on j. Then

R”f(x)dxj A ndx, = / gw)dw; A <o Adwy,. (7.2)

Proof. According to (1.8) we have

-1

K an n
Z[det( 8x#) ] =1. (7.3)

j=1 wv=1 x:T/.’l(w)
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Hence
/ Fx)dxy A - Adx, = Z/ F()dxy A - Adxy,
R" j=1 A
T Lo
/ a{( (+) dwi A - Adw,
" det(ar = 1 xX= T L(w)
= / gw)dw; A -+ Adwy,
as required. O

In the case n = 1, setting f(x) = A(T(x)) in (7.2) gives

/Ooh x—i 4 dx—/ h(w)ydw (4; > 0,a; € R).

o =x

This formula was first obtained by G. Boole [5] in the nineteenth century, and has
also been considered in more recent times [9]. For general n some special cases
of (7.2) have been conjectured in [6], and some explicit examples given assuming
the validity of the conjecture.

As an example of an explicit integration formula which follows from (7.2), let A be
the central hyperplane arrangement attached to the A4 type root system. A is
invariant under the permutation group of nth degree, and « is equal to n!. We assume
that Ay are all equal to the same /o (29 > 0). The mapping 7} is given by

RN 1
w, =X, — Ao
b=t Y T M
We take as
gw) = (Wi + - +wy) (7.4)

for a one variable function ¢. Since

n n n
2 _ 2 2

E W, = E X, + A E

v=1 v=1

—n(n — 1A
v=pu=1,v£u (xV - x#

)2

we have from (7.2)

n n 1
/”go(fo—i-iﬁ Z 7X)2—n(n—l)/lo>dx1/\~-~/\dxn
v=1 n

v (v =

:/ PWi 4+ w)dwy A -+ A dw,. (7.5)
Rll

https://doi.org/10.1023/A:1001774431216 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001774431216

294 KAZUHIKO AOMOTO AND PETER J. FORRESTER

In particular,

/exp(—ix‘z,—)% i: 1)dxl/\n-/\dx,,
" v=1

2
v=p=1,v£u vy = )
— efn(r171))~nnn/2_ (76)

This was first obtained by G. Gallavotti and C. Marchioro [8] using the
semi-classical limit formula for the Schrodinger equation corresponding to the
Calogero-Sutherland model and also by Francoise [7] using geometric argument
on integrable Hamiltonian flows of the same model. The latter author has also
extended the formula (7.6) to the B type root system, which is also a special case
of (7.3). Indeed with the mapping 7; given by

. 1 1 1 Al
Wy = Xy — A9 Z + - —
b \ Xy = X Xy + xy Xy

(%0, 21 > 0) we have

2

n n b
D owi= Z(xf + ;;) — 2N — 24N(N — 1)+
y=1 1 v

v=

n 1 1
+ 22 + ,
’ Z ((xv - xu)z (x + x,u)2>

v=p=1,v#u

and so from (7.3) with g given by (7.4) we obtain

n /12 n 1 1
2 1 2
X, +—=|+4 + -
/" ¢ (;( x‘2> 0 Z ((xv — xﬂ)2 (x, + xﬂ)2>

v=u=1,v#u

—2;u1N—2/10N(N— 1)>dX1 A Adxy,

:/an)(w%—}—~--+wﬁ)dw1/\--~/\dw,,.

In the special case ¢(x) = e~ this reduces to the formula presented in [7].
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