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Abstract. For x 2 �ajÿ1; aj� �j � 1; . . . ; p� 1; a0 :� ÿ1; ap�1 :� 1� the mapping Tj : w �
xÿPp

l�1 ll=�xÿ al� �ll > 0; al 2 R� is onto R. It was shown by G. Boole in the 1850's thatPp�1
j�1 ��@w=@x�ÿ1�x�Tÿ1j �w� � 1:We give an n-dimensional analogue of this result.The proof makes

use of the Grif¢ths^Harris residue theorem from algebraic geometry.
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1. Statement of the Result

Let A be a ¢nite arrangement of hyperplanes in the n-dimensional complex af¢ne
space Cn. Let N�A� be the union of hyperplanes of A in Cn and M�A� be its comp-
lement in Cn, so that M�A� � Cn ÿN�A�: We let H1 denote the hyperplane at
in¢nity in the n-dimensional complex projective space CPn such that
CPn � Cn [H1: We identify any hyperplane in Cn with the one which is uniquely
extended in CPn. The set A can then be regarded as an arrangement of hyperplanes
in CPn. In this article it is assumed that A is real, by which we mean the de¢ning
function of every hyperplane H 2 A,

fH �z� � uH;0 �
Xn
n�1

uH;nzn; z � �zn�nn�1 2 Cn; �1:1�

has real coef¢cients uH;0 and uH;n. A connected component of M�A� \ Rn is called a
chamber.

For a point w � fwngnn�1 2 Rn and positive real numbers flHgH2A, we consider the
level function

F �z� � 1
2Re

Xn
n�1
�zn ÿ wn�2 ÿ

X
H2A

lH log j fH �z�j �1:2�

and its gradient g�z� � gradF �z�. The latter is the function g�z� � �g1�z�; :::; gn�z��
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such that

gn�z� � zn ÿ wn ÿ
X
H2A

lHuH;n
fH �z� : �1:3�

The vector ¢eld g�z� is meromorphic in CPn and holomorphic in M�A�.
We remark that according to the saddle point method of asymptotic analysis, the

function F �z� plays an important role in calculating the asymptotics in the direction
l for n-dimensional integrals of the multiplicative function

F�z� � exp ÿ 1
2

Xn
n�1
�zn ÿ wn�2

" # Y
H2A

fHl
0
H �1:4�

where l0 � fl0HgH2A denotes l0 � tl� ~l �t! �1� for a ¢xed ~l � f~lHgH2A. Indeed,
these integrals give typical examples of hypergeometric integrals of irregular
singularity. Their geometric and analytic structures are intimately related with
the con¢gurations of M�A� and N�A� (see, for example, [1, 2, 4, 12^14, 16, 17]).

Before presenting our results, we must ¢rst establish some basic properties of the
function F �z�. In fact these properties, established in Lemma 1.1 below, are more
or less known. Explicitly, in [4, Th. 4.1.1] and [17, 1.2.1], Lemma 1.1 is proved
in the case of the absence of the terms zn ÿ wn in gn.

LEMMA 1.1. The function F is strictly convex in each component 4 of M�A� \ Rn.
Furthermore, the set of the critical points for the function F�z� speci¢ed by the
set of points z satisfying the equalities

g1�z� � � � � � gn�z� � 0 �1:5�

is ¢nite. They lie one by one in each4 and inM�A� there does not exist any other point
satisfying (1.5).

Proof. For completeness we sketch a proof. The function F �x� �x 2 4� is strictly
convex in4 because, for real numbers t1; :::; tn which do not vanish at the same time,

Xn
m;n�1

@2F �x�
@xm@xn

tmtn �
Xn
n�1

t2n �
X
H2A

lH
�Pn

n�1 uH;ntn�2
fH�x�2

> 0: �1:6�

The function F �x� therefore has a unique minimum in 4 and, consequently, there
exists only one point, c say, in 4 such that the 1-form

y �
Xn
n�1

gn�x� dxn

vanishes. The fact that y does not vanish at any complex point can be shown by
contradiction. Thus if y did vanish at a complex point c in M�A�, then y would also
vanish at the complex conjugate point �c different from c. Consider the line l
connecting these 2 points. This can be chosen to have real coef¢cients. Explicitly,
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every point of l can be parametrized as

z � Im c � t�Re c t 2 �ÿi; i�
where c; �c correspond to t � i;ÿi, respectively. The restriction of y to this line l
vanishes at c 2M�A� \ l which is a contradiction, because the Lemma is obviously
true in the one-dimensional case. This proves the Lemma. &

We denote by c1; :::; ck the critical points of the function F �z� which lie one by one
in 41; :::;4k, the components of M�A� \ Rn. The convexity property in Lemma 1
then gives

COROLLARY 1.2. At each point cj

det
@gn
@zm

� �n

m;n�1

" #
z�cj

> 0; �1:7�

which is to say the corresponding Jacobian is positive.

Moreover, one can show the following identity, which is the main result of this
article.

THEOREM 1.3

Xk
j�1

det
@gn
@zm

� �n

m;n�1

" #ÿ1
z�cj
� 1: �1:8�

This identity can be regarded as a type of ¢xed point formula in CPn, similar to the
ones which were investigated, for example, in [11, 15, 18]. There only polynomial
mappings were treated, more restrictive than our rational mappings. It seems an
interesting problem to ask if (1.8) can be extended for arbitrary polynomials fH ,
H being irreducible hypersurfaces.

2. An Inequality Associated with Hyperplane Arrangement

Let d be a small positive number. We consider the following subsets in Cn,

V �0�d � fz 2 Cn; jzjjW dÿ1g; �2:1�

V �k�d � fz 2 Cn; jzkjX dÿ1; jzkjX jzjj� j � 1; . . . ; n�j 6� k��g; �2:2�

�k � 1; 2; :::; n�, which cover the whole of Cn so that Cn � Sn
k�0 V

�k�
d .
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We put V �0� � [d>0V �0�d , which coincides with Cn, and V �k� � [d>0V �k�d . In V �k�d we
introduce the new af¢ne coordinates �z1; :::; zn� such that

zk � 1=z1; z1 � z2=z1; :::; zkÿ1 � zk=z1; zk�1 � zk�1=z1; :::; zn � zn=z1: �2:3�
We have

jz1jW d; jz2jW 1; . . . ; jznjW 1

and vice versa for the reciprocals. In terms of the coordinates (2.3), fH �z� can be
described as

fH �z� � ~fH �z�=z1: �2:4�
where

~fH �z� � uH;0z1 � uH;k �
Xkÿ1
n�1

uH;nzn�1 �
Xn

n�k�1
uH;nzn: �2:5�

For an n dimensional vector v 2 Cn, we introduce the norm of v as

kvk �
�����������������������������������
jv1j2 � � � � � jvnj2

q
:

In section 4 we shall prove the following proposition which plays a key role in the
proof of Theorem 1.3.

PROPOSITION 2.1. There exists a neighbourhood U of N�A� [ fH1g in CPn, and
positive constants C0 and C1, such that the inequalities

kgk2 XC0

X
H2A

1
j fH �z�j2

; �2:6�

jgnjWC1

X
H2A

1
j fH �z�j �2:7�

hold for z in U \ V �0� \M�A�, and

kgk2 XC0

�
1
jz1j2
�
X
H2A

jz1j2

j ~fH �z�j2
�
; �2:8�

jgnjWC1

�
1
jz1j
�
X
H2A

jz1j
j ~fH �z�j

�
�2:9�

hold for z in U \ V �k� \M�A�.
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Remark. The inequalities (2.6) and (2.8) do not remain true in the wholeM�A�, as
can be seen from the fact that the left-hand side in each case vanishes at the critical
points cj , while the RHS is positive.

3. An Admissible System of Neighbourhoods of N�AA� [H1 in CPn

Let L be an arbitrary subspace in CPn. We denote by AL the subarrangement of
hyperplanes AL � fH 2 AjH � Lg: We ¢x a subspace L in CPn such that
L 62 H1 and we also ¢x a point belonging to L. The latter is denoted by z�0� or
z�0� according to it belonging to V �0� or not. Let the integer r, 1W rW n be such
that dim L � nÿ r. Then there exists a basis �e1; :::; en� in Cn such that
�er�1; :::; en� forms a basis of the tangent space T�L� of L, while �e1; :::; er� forms
a complementary basis to T�L� at z�0�.

Now, an arbitrary point z 2 Cn can be represented as

z �
Xn
m�1

emz0m � z�0�; z0 � �z0m�nm�1 2 Cn: �3:1�

The point z lies in L if and only if it can be expressed as

z �
Xn
m�r�1

emz0m � z�0�: �3:2�

On the other hand,

z� �
Xr
m�1

emz0m �3:3�

gives a complementary vector to L. If H 2 AL then fH �z� is described as

fH �z� �
Xn
n�1

uH;nz�n ; �3:4�

where z� is the vector constructed from z according to (3.1)^(3.3) with z�0� 2 H.

DEFINITION 3.1. Let �L; z�0�� be a pair consisting of a �nÿ r�-dimensional subspace
L in CPn and a point z�0� 2 V �0� \ L such that L 6� H1. With r; d1; d2; d3 denoting
small positive numbers, we denote by U �0�r �L; z�0�� the set of points z 2 V �0� satisfying
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the following conditions.

�i� kzÿ z�0�kW r;

�ii� jfH �z�jX d1 forH 63 z�0�;

�iii� jz01j2 � � � � � jz0rj2 W d22;

�iv� j fH�z�j�����������������������������������
jz01j2 � � � � � jz0rj2

q X dÿ12 forH 62 AL;H 3 z�0�;

�v� d3 W
j fH �z�j�����������������������������������

jz01j2 � � � � � jz0rj2
q W dÿ13 forH 2 AL:

As an illustration of the neighbourhoods U �0�r �L; z�0�� speci¢ed by De¢nition 3.1,
let A be the line arrangement consisting of the lines X1 �z1 � 0�, X2 �z1 � 1�,
X3 �z2 � 0�, X4 �z2 � 1� and X5 �z1 � z2�. The real section of these lines is drawn
in Figure 1. First take z�0� � �0; 0�. Then dimLmust be equal to 0 or 1. If dimL � 0,
then L coincides with fz�0�g. The corresponding neighbourhood U �0�r �L; z�0�� is illus-
trated in Figure 2(A). If dimL � 1, then L coincides with X1, X3 or X5; the corre-
sponding neighbourhoods U �0�r �L; z�0�� are illustrated in Figures 2(B), (C) and
(D) respectively. Similar neighbourhoods are obtained for z�0� � �1; 1�.

If z�0� � �1; 0� and dimL � 0, the neighbourhood U �0�r �L; z�0�� is as in Figure 3(A).
If z�0� � �1; 0� and dimL � 1, then U �0�r �L; z�0�� is as in Figure 3(B), when L coincides

Figure 1. Real section of the line arrangement X1 �z1 � 0�, X2 �z1 � 1�, X3 �z2 � 0�, X4 �z2 � 1� and
X5 �z1 � z2�.
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with X2, and as in Figure 3(C) when L coincides with X3. Similar neighbourhoods are
obtained for z�0� � �0; 1�.

If z�0� 2 N�A� is different from �0; 0�; �0; 1�; �1; 0�; �1; 1�, then we must have
dimL � 1. For example, if z�0� 2 X1; then L coincides with X1. U �0�r �L; z�0�� is then
as in Figure 3(D).

In De¢nition 3.1 it is required that z�0� 2 V �0� \ L. To consider the points at in¢nity
z�0� 2 V �k� \ L, ¢rst note that in V �k� there exists a basis �~e1; :::; ~en� in Cn with respect
to the af¢ne coordinates �z1; :::; zn� such that �~er�1; :::; ~en� forms a basis of T�L�
at z�0� and �~e1; :::; ~er� forms a complementary basis to T�L� at z�0�. We may take
z0r�1 � z1. Analogous to (3.1)^(3.3), an arbitrary point z�2 Cn� can be represented
as

z �
Xn
m�1

~emz0m � z�0�; z0 � �z0m�nm�1 2 Cn �3:5�

Figure 2. The neighbourhood U �0�r �L; z�0�� with z�0� � �0; 0� and L speci¢ed in the text.
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such that it lies in L if and only if it is expressed as

z �
Xn
m�r�1

~emz0m � z�0�; �3:6�

while

z� �
Xr
m�1

~emz0m �3:7�

gives a complementary vector to T�L�. Note from (2.3) that z� � �0; z�2; . . . ; z�n�. Also,
analogous to (3.4) we have the expression

~fH �z� � uH;0z�1 �
Xkÿ1
n�1

uH;nz�n�1 �
Xn

n�k�1
uH;nz�n �3:8�

provided H 2 AL.

Figure 3.The neighbourhoodU �0�r �L; z�0��with z�0� � �1; 0� and L speci¢ed in the text for (A)^(C) andwith z�0�

di¡erent from �0; 0�; �0; 1�; �1; 0�; �1; 1� in (D).
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DEFINITION 3.2. Let �L; z�0�� be a pair consisting of an �nÿ r�-dimensional sub-
space L in CPn and a point z�0� 2 V �k� \ L such that L 6� H1. We assume that
z�0� 2 V �k�. We denote by U �k�r �L; z�0�� the set of points z 2M�A� \ V �k� satisfying
the following conditions:

�i� kzÿ z�0�kW r;

�ii� j ~fH �z�jX d1 forH 63 z�0�;

�iii� jz01j2 � � � � � jz0rj2 W d22;

�iv� j ~fH�z�j�����������������������������������
jz01j2 � � � � � jz0rj2

q X dÿ12 forH 62 AL;H 3 z�0�;

�v� jz1j�����������������������������������
jz01j2 � � � � � jz0rj2

q X dÿ12 ;

�vi� d3 W
j ~fH �z�j�����������������������������������

jz01j2 � � � � � jz0rj2
q W dÿ13 forH 2 AL:

In the case of the arrangement of Figure 1, the neighbourhoods U �1��L; z�0�� and
U �2��L; z�0�� with z�0� � �0; 0� 2 V �1� and V �2� respectively, are similar to those of
Figure 2, while with z�0� � �1; 1� 2 V �1� or V �2�, respectively, they are similar to those
of Figure 3(A)^(C).

The remaining situation to consider is the case z�0� 2 L \H1, which was excluded
in De¢nition 3.2.

DEFINITION 3.3. Suppose that L is as in De¢nition 3.2 and that z�0� 2 L \H1 in
V �k�. We can take the same basis ~e1; :::; ~en as in De¢nition 3.2 where z1 can be ident-
i¢ed with z0r�1. We denote by U �k�r �L \H1; z�0�� the set of points z 2M�A� \ V �k�
satisfying the properties (i) and (ii) of De¢nition 3.2 together with the followings
properties:

�iii� jz01j2 � � � � � jz0r�1j2 W d22;

�iv� j ~fH �z�j���������������������������������������
jz01j2 � � � � � jz0r�1j2

q X dÿ12 forH 62 AL;H 3 z�0�;

�v� d3 W
j ~fH �z�j���������������������������������������

jz01j2 � � � � � jz0r�1j2
q W dÿ13 for H 2 AL;

�vi� d3 W
jz1j���������������������������������������

jz01j2 � � � � � jz0r�1j2
q W dÿ13 :

In De¢nitions 3.1^3.3, r; d1; d2; d3 depend on the choices of the pairs
�L; z�0��; �L; z�0��; �L \H1; z�0�� respectively.
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For an arbitrary subspace L, we denote by CL the ¢nite set consisting of the critical
points in M�A� for the function

FL � 1
2

Re
Xn
n�1
�zn ÿ wn�2 ÿ

X
H2AL

lH logj fH �z�j: �3:9�

We can choose a small positive number r such that

U �0�r �L; z�0�� \ CL � ;; �3:10�

U �k�r �L; z�0�� \ CL � ;; �3:11�

and

U �k�r �L \H1; z�0�� \ CL � ;; �3:12�

for any L; z�0�; z�0�. The following fact is also true.

LEMMA 3.4. There exist small positive numbers d1; d2; d3 for d2dÿ13 � 1 such that the
intersection of M�A� and the union of the sets U �0�r �L; z�0��;U �k�r �L; z�0�� and
U �0�r �L \H1; z�0�� includes a neighbourhood of the set N�A� [ fH1g in CPn.

Note that the statement of Lemma 3.4 is illustrated in Figures 2 and 3, with the
angles p and P therein being such that p < P.

We ¢x the pair �L; z�0�� as above. There exist r hyperplanes, H1; :::;Hr say, such
that L � \rj�1Hj. From this we see that for z in U �0�r �L; z�0�� the functions

�����������������������������������
jz01j2 � � � � � jz0rj2

q
; kz�k;

X
H2AL

j fH �z�j2;
Xr
j�1
j fHj �z�j2

vanish along L in the same order, so that there exists a positive constant K such that

Kÿ1kz�kW
�����������������������������������
jz01j2 � � � � � jz0rj2

q
WKkz�k; �3:13�

Kÿ1kz�kW
���������������������������X
H2AL

j fH �z�j2
s

WKkz�k; �3:14�

Kÿ1kz�kW
�������������������������Xr
j�1
j fHj �z�j2

vuut WKkz�k: �3:15�
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Similarly, for z in U �k�r �L; z�0��,

Kÿ1kz�kW
�����������������������������������
jz01j2 � � � � � jz0rj2

q
WKkz�k; �3:16�

Kÿ1kz�kW
��������������������������X
H2AL

j~fH �z�j2
s

WKkz�k; �3:17�

Kÿ1kz�kW
������������������������Xr
j�1
j~fHj �z�j

2

vuut WKkz�k; �3:18�

while for z in U �k�r �L \H1; z�0��

Kÿ1kz�kW
���������������������������������������
jz01j2 � � � � � jz0r�1j2

q
WKkz�k; �3:19�

Kÿ1kz�kW
����������������������������������������
jz1j2 �

X
H2AL

j~fH �z�j2
s

WKkz�k; �3:20�

Kÿ1kz�kW
��������������������������������������
jz1j2 �

Xr
j�1
j~fHj �z�j

2

vuut WKkz�k; �3:21�

Kÿ1kz�kW jz1jWKkz�k: �3:22�

We denote by �S the closure of a set S in CPn. We then have

LEMMA 3.5. The union of the sets U
�0�
r �L; z�0��;U �k�r �L; z�0�� and U

�k�
r �L \H1; z�0��

contains a neighbourhood of the set N�A� [ fH1g in CPn. Actually a ¢nite number
of them cover a neighbourhood of N�A� [ fH1g.

Proof. In fact, only ¢nite members of fU �0�r �L; z�0��g cover a neighbourhood of z�0�

in CPn. Similarly only ¢nite members of fU �0�r �L; z�0��g or fU �0�r �L \H1; z�0��g cover
a neighbourhood of z�0�. Since N�A� [ fH1g is compact, the Lemma follows due
to the Heine-Borel covering theorem. &

4. Proof of the Proposition 2.1

The statement of Proposition 1 consists of the four inequalities (2.6)^(2.9). Since
(2.7) and (2.9) are obvious, we have only to prove (2.6) and (2.8). First we prove
(2.6) in the neighbourhood U �0�r �L; z�0��, then (2.8) in the neighbourhoods
U �k�r �L; z�0�� and U �k�r �L \H1; z�0��
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4.1. PROOF OF (2.6) IN U �0�r �L; z�0��

From (1.3) and (3.4) we have

Xn
m�1

gmz�m � ÿ
X
H2AL

lH � T1 � T2 � T3; �4:1�

where

T1 �
Xn
m�1
�zm ÿ wm�z�m; T2 � ÿ

X
H 62AL;H3z�0�

lH

Pn
n�1 uH;nz

�
n

fH �z� ;

T3 � ÿ
X
H 63z�0�

lH

Pn
n�1 uH;nz

�
n

fH �z� :

We note that
P

H2AL
lH > 0. In view of conditions (ii)^(v) of De¢nition 3.1 we can

choose r; d1; d2; d3 so small that

jTij < 1
6

X
H2AL

lH �i � 1; 2; 3�

(the proportionality constant 1=6 is chosen for later convenience). Hence, after
applying the triangle inequality to (4.1), we conclude

Xn
m�1

gmz�m

�����
�����X 1

2

X
H2AL

lH :

By the Schwarz inequality, this implies

kgk � kz�kX 1
2

X
H2AL

lH

and, thus,

kgkX 1
2

X
H2AL

lH=kz�k:

But from condition (v) in De¢nition 3.1 and (3.14), there exists a positive constant K1

such that

1
j fH �z�j W

K1

kz�k for H 2 AL:

Hence, there exists a positive constant C0 such that (2.6) holds.
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4.2. PROOF OF (2.8) IN U �k�r �L; z�0��

Without loosing generality, we may assume k � 1. From (1.3) and (2.4) we have

g1�z� � 1
z1
ÿ w1 ÿ

X
H2A

lHuH;1z1
~fH �z�

; �4:2�

gn�z� � zn
z1
ÿ wn ÿ

X
H2A

lHuH;nz1
~fH �z�

�nX 2� �4:3�

(here we have abused notation by writing gn�z� in place of gn�z�). Now we write
g�0��z� � �g�0�1 �z�; :::; g�0�n �z�� with

g�0�1 �z� �
1
z1
ÿ w1 ÿ

X
H2AL

lHuH;1z1
~fH �z�

; �4:4�

g�0�n �z� �
zn
z1
ÿ wn ÿ

X
H2AL

lHuH;nz1
~fH �z�

�nX 2�: �4:5�

We ¢rst seek to prove that there exists a positive constant C2 such that

kg�0��z�k2 XC2
1
jz1j2
�
X
H2AL

jz1j2

j ~fH �z�j2
 !

�4:6�

in U �1�r �L; z�0��. Equivalently, if we de¢ne the function j�z� as

j�z� � kg�0��z�k2
1
jz1j2 �

P
H2AL

jz1j2
j ~fH �z�j2

�4:7�

then we must prove j�z�XC2 in U �1�r �L; z�0��.
Suppose the contrary. Then there would exist a point sequence z�l��l � 1; 2; :::� in

U �1�r �L; z�0��, which converges to a point a � �a1; :::; an� in its closure U �1�r �L; z�0��
in CPn such that

liml!1j�z�l�� � 0: �4:8�
The details of the conclusion to be drawn from (4.8) depend on the value of a1 and
~fH �a�.

(a) The case where a1 6� 0 and ~fH �a� 6� 0 for every H 2 AL.
In this case a lies in U �1�r �L; z�0��. Since liml!1j�z�l�� � j�a� we have kg�0��a�k � 0

and thus g�0��a� � 0.
This means that the point z � �1=a1; a2=a1; :::; an=a1� 2 V �0� is a critical point for

the function FL�z�. However we have assumed (recall (3.11)) that there exists no
such point a in U �1�r �L; z�0��, which is a contradiction.
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(b) The case where a1 6� 0 and that there exists a hyperplane H0 2 AL such that
~fH0 �a� � 0.
From condition (vi) of De¢nition 3.2,

~fH �a� � 0 for H 2 AL �4:9�
and hence a� � 0. By choosing a suitable subsequence of fz�l�glX 1 (if necessary) we
may assume that

liml!1
�z�l���
k�z�l���k �4:10�

exists. We denote its limit by b � �b1; :::; bn�. Note that b1 � 0, because �z�l�1 �� � 0,
and that we have also

liml!1
~fH �z�l��
k�z�l���k �

Xn
n�2

uH;nbn 6� 0 �H 2 AL�; �4:11�

because of condition (vi) in De¢nition 3.2. We denote this value by bH . Then, after
recalling (4.4), we see that

liml!1j�z�l�� �
Pn

n�1 j
P

H2AL

lHuH;na1
bH
j2P

H2AL

ja1j2
jbH j2

;

which, because of (4.8) impliesX
H2AL

lH
uH;n
bH
� 0 �1W nW n�:

But this is again a contradiction becauseXn
n�1

X
H2AL

lH
uH;nbn
bH

�
X
H2AL

lH 6� 0:

(c) The case where a1 � 0
We may again assume that (4.10) converges and that (4.9) and (4.11) hold. Thus b1

again vanishes, while bH does not. Since a1 vanishes we have

~fH �a� �
Xn
n�2

uH;nan � uH;1: �4:12�

Also, by the choice of an appropriate subsequence if necessary, we may assume that

liml!1
�z�l�1 �2
k�z�l���k � a

exists or diverges to the point at in¢nity. The reasoning now depends on the value
of a.
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a � 0
Then we have

liml!1j�z�l�� � 1�
Xn
n�2
janj2 6� 0;

which is an immediate contradiction.

a 6� 0
Then

liml!1j�z�l�� �
j1ÿPH2AL

lHuH;1a
bH
j2 �Pn

n�2 jan ÿ
P

H2AL

lHuH;na
bH
j2

1�PH2AL

jaj2
jbH j2

:

Hence the assumption (4.8) gives

1ÿ a
X
H2AL

lHuH;1
bH

� 0;

an ÿ a
X
H2AL

lHuH;n
bH

� 0:

But these equations together with (4.9) imply

1�
Xn
n�2
janj2 � a

X
H2AL

lH �uH;1 �
Pn

n�2 uH;n �an�
bH

� 0;

which is again a contradiction.

a � 1
Then

liml!1j�z�l�� �
Pn

n�1 j
P

H2AL

lHuH;n
bH
j2P

H2AL

1
jbH j2

:

HenceX
H2AL

lHuH;n
bH

� 0 �1W nW n�;

which impliesX
H2AL

lH � 0

and thus gives another contradiction.
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Considering the conclusion of cases (a),(b) and (c) together, we see that in all
situations the hypothesis (4.8) is false. Since this hypothesis is equivalent to the
assumption that the inequality (4.6) is invalid, we must have that (4.6) is in fact
true. Furthermore, the above working shows that there exists a positive constant
C02 such that

kg�0�k2 XC02
jz1j2
kz�k2

� 1
jz1j2

 !
; �4:13�

and that this is equivalent to (4.6).
With this preliminary result established, we now proceed to prove the inequality

(2.8). kgk2 can be described as

kgk2 � kg�0� ÿ gÿ g�0�k2 � kg�0�k2 � kgÿ g�0�k2 � 2Refg�0� � �gÿ g�0��g; �4:14�
which gives

kgk2 X kg�0�k2 ÿ 2kg�0�kkgÿ g�0�k: �4:15�

Now, from De¢nitions 3.2 (ii) and (iii) we have

jz1j
~fH �z�

W
jz1j
kz�k d2 H 62 AL

which, according to (4.2)^(4.5), implies for some positive constant C3

kgÿ g�0�kWC3d2
jz1j
kz�k :

Comparison with (4.13) shows that we can choose d2 small enough so that

kgÿ g�0�kW 1
4
kg�0�k: �4:16�

Substituting (4.16) in (4.15) gives

kgkX 1
2
kg�0�k;

and use of (4.6) immediately establishes (2.8).

4.3. PROOF OF (2.8) IN U �k�r �L \H1; z�0��

Indeed from (1.3) and (2.4)

g1�z�z1 � 1ÿ w1z1 ÿ
X
H2A

lHuH;1z21
~fH�z�

:
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But from De¢nition 3(ii)^(v), we may choose r; d1; d2; d3 so small that

jw1z1j �
X
H2A

lH juH;1z21j
j ~fH �z�j

W
1
2
:

Hence jg1z1jX 1
2 , which implies

kgkX jg1jX 1
2jz1j

:

Since jz1j=j ~fH �z�j is always bounded in U �k�r �L \H1; z�0��, the inequality (2.8) holds
there for a suitable positive constant C0.

By (1)^(3), the inequalities (2.6) and (2.8) have been proved in each of the neigh-
bourhoods U �0�r �L; z�0��, U �k�r �L; z�0�� and U �k�r �L \H1; z�0��. But from Lemma 3.5,
the union of a ¢nite number of their closures includes a neighbourhood of
N�A� [H1 in CPn. By taking the constant C0 as the minimal one among the C0

in each of the regions, we see that (2.6) and (2.8) hold in a certain neighbourhood
of N�A� [H1.

Hence we have proved Proposition 2.1.

5. Gri¤ths^Harris Formula

To prove Theorem 1.3, we ¢rst de¢ne a meromorphic form on CPn and then apply
the Grif¢ths^Harris residue formula to it in M�A�.

Let e1; e2 be small positive numbers. We consider the closed subsetMe1;e2 of M�A�
de¢ned by

jz1jW eÿ11 ; :::; jznjW eÿ11 ; j fH �z�jX e2 for all H 2 A: �5:1�

Let O�l� be the meromorphic n-form on Cn

O�l� � 1
�2pi�n

dz1 ^ ::: ^ dzn
g1�z� � � � gn�z� : �5:2�

Note from (1.3) that O�l� depends on l � flHgH2A, and when l � 0, O�l� reduces to
Cauchy kernel

O�0� � 1
�2pi�n

dz1 ^ ::: ^ dznQn
n�1�zn ÿ wn� : �5:3�

Let C�l� be the �2nÿ 1�-form of type �n; nÿ 1� de¢ned as

C�l� � sn

Pn
n�1�ÿ1�nÿ1 �gn�z�d�g1�z� ^ � � � ^ d �gnÿ1�z� ^ d�gn�1�z� � � � ^ d�gn�z�

kg�z�k2n
^dz1 ^ � � � ^ dzn �5:4�
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with

sn � �nÿ 1�!
�2i�n�2p�2n :

When l � 0, C�l� reduces to

C�0� � sn

Pn
n�1�ÿ1�nÿ1��zn ÿ �wn�d�z1 ^ � � � ^ d�znÿ1 ^ d�zn�1 � � � ^ d�zn

kzÿ wk2n
^dz1 ^ � � � ^ dzn �5:5�

which coincides with the Bochner^Martinelli kernel on Cn.
The residue of O�l� in M�A� at each critical point cj (we denote it by RescjO�l�� is

given by

n @�g1; :::; gn�
@�z1; :::; zn�

oÿ1
� det

@gn
@zm

� �n

m;n�1

" #ÿ1
z�cj

at cj and vanishes elsewhere. The residue theorem due to Grif¢ths^Harris [10,11] can
be stated as follows.

THEOREM 5.1Xk
j�1

Resz�cjO�l� �
Z
@Me1;e2

C�l�: �5:6�

Since the left-hand side of (5.6) is identical to the left-hand side of (1.8), our task is
to prove that the right-hand side is equal to 1. The right-hand side of (5.6) does not
depend on either e1 or e2, so it is suf¢cient to prove that

lime1#0lime2#0
Z
@Me1;e2

C�l� � 1 �5:7�

or, equivalently,

lime1#0lime2#0
Z
@Me1;e2

�C�l� ÿC�0�� � 0: �5:8�

We now ¢x a small positive number d. Let B be a subset ofA. We denote byV �0�d �B�
the subset of V �0� � Cn de¢ned by the inequalities

jz1jW dÿ1; :::; jznjW dÿ1; j fH �z�jW d �H 2 B�; j fH �z�jX d �H 62 B�:
Similarly we denote by V �k�d �B� the subset of M�A� \ V �k�d (recall (2.2)) de¢ned by

jz1jW d; jz2jW 1; :::; jznjW 1;

j ~fH �z�jW d �H 2 B�; j ~fH �z�jX d �H 62 B�:
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Then the union of V �0�d �B� and the V �k�d �B� cover a neighbourhood of N�A� [H1 in
CPn.

We take a point z�0� 2 V �0� \N�A� or z�0� 2 V �k� \N�A� \H1. Let B be the subset
of A de¢ned as

B � fH 2 A;H 3 z�0��or z�0��g: �5:9�

We de¢ne G�0�r �z�0�;H0� or G�k�r �z�0�;H0� for H0 2 B as a piece of the boundary
@Me1;e2 in each neighbourhood V �0�d �B� or V �k�d �B� as follows: G�0�r �z�0�;H0� is the
set of z 2 @Me1;e2 \ V �0�d �B� satisfying

j fH0 �z�j � e2; dX j fH �z�jX e2 for H 2 B ÿ fH0g;
j fH �z�jX d for H 62 B kzÿ z�0�kW r:

�5:10�

An example of this construction is given in Figure 4.

G�k�r �z�0�;H0� is the set of z 2 @Me1;e2 \ V �k�d �B� satisfying

j ~fH0 �z�j � e2jz1j; dX jz1jX e1; dX j ~fH�z�jX e2jz1j for H 2 B ÿ fH0g;
j ~fH �z�jX d for H 62 B; kzÿ z�0�kW r: �5:11�

Finally G�k�r �z�0�;H1� is the set of z 2 @Me1;e2 \ V �k�d �B [ fH1g� satisfying the

Figure 4. Real section of the line arrangement z1 � 0, z2 � 0, z2 � ÿz1 � 1 in R2. @Me1;e2 is the dotted line.
Superimposed on @Me1;e2 is G�0�r ��0; 0�; fz1 � 0; z2 � 0g�.
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conditions

jz1j � e1; e1e2 W j ~fH �z�jW d for H 2 B;
j ~fH �z�jX d for H 62 B; kzÿ z�0�kW r:

�5:12�

We remark that e01; e
0
2 can be chosen so small that @Me1;e2 , for

0 < e1 W e01; 0 < e2 W e02 is contained in the union [BfV �0�d �B� [nk�1 V �k�d �B�g: Also,
by the Heine^Borel theorem, only a ¢nite number of the sets G�0�r �z�0�;H0�,
G�k�r �z�0�;H0�, G�k�r �z�0�;H1� are needed to cover @Me1;e2

Seeing from (1.3) that

d�gn � d�zn �
X
H2A

lH
uH;n

fH �z�2
d fH �z�; �5:13�

the �nÿ 1�-form
Xn
n�1
�ÿ1�nÿ1 �gnd�g1 ^ � � � ^ d�gnÿ1 ^ d�gn�1 ^ � � � ^ d�gn;

being a polynomial of degree nÿ 1 in l, is represented as

G0 �
Xn
p�1

X
H1;���;Hp�A

lH1 � � � lHpGH1;:::;Hp ;

where the sum with respect to fH1; :::;Hpg is over the set of all p tuples of members of
A such that dim \pj�1 Hj � nÿ p: Substitution into (5.4) shows C�l� can be rep-
resented as

C�l� � C0�l� �
Xn
p�1

X
H1;���;Hp�A

lH1 � � � lHpCH1;:::;Hp �l�; �5:14�

where

C0�l� � G0

kgk2n ^ dz1 ^ � � � ^ dzn; �5:15�

CH1;:::;Hp �l� �
GH1;:::;Hp

kgk2n ^ dz1 ^ � � � ^ dzn: �5:16�

ObviouslyC�0� as de¢ned by (5.3) coincides withC0�0�. This is important because we
already know that due to the Cauchy formulaZ

@Me1;e2

C�0� � 1:
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In the next section we shall show the following identities:

�I� lime1#0lime2#0

Z
G�0�r �z�0�;H0�

C�l� � 0;

�I0� lime1#0lime2#0
Z
G�0�r �z�0�;H0�

C�0� � 0;

�II� lime1#0lime2#0
Z
G�k�r �z�0�;H0�

C�l� � 0;

�II0� lime1#0lime2#0
Z
G�k�r �z�0�;H0�

C�0� � 0;

�III� lime1#0lime2#0
Z
G�k�r �z�0�;H1�

�C�l� ÿC0�l�� � 0;

�IV� lime1#0lime2#0
Z
G�k�r �z�0�;H1�

�C0�l� ÿC0�0�� � 0:

(I)^(IV) imply thatZ
@Me1;e2

C�l� �
Z
@Me1;e2

C�0� � 1 �5:17�

which proves Theorem 1.3.

6. Proof of the Theorem

In this section C;C0;C1;C2; ::: will denote suitable positive constants. We seek to
prove (I)^(IV) and thus Theorem 1.3.

6.1. PROOF OF (I) AND (I0): ESTIMATE ON G�0�r �z�0�;H0�

We ¢x H0 2 A and z�0� 2 V �0� � Cn such that z�0� 2 H0. We denote by L�� H0� the
subspace \H3z�0�H which, we assume, has dimension nÿ r �1W rW n�. In this case
B coincides with AL. We can choose the coordinates z01; :::; z

0
n as in De¢nition

3.1 such that z01 � fH0 �z�.
In G�0�r �z�0�;H0� we can write

�ÿ1�nÿ1d�g1 ^ � � � d�gnÿ1 ^ d�gn�1 ^ � � � ^ d�gn ^ dz1 ^ � � � ^ dzn

� c�n��z�d�z02 ^ � � � ^ d�z0n ^ dz01 ^ � � � ^ dz0n
�6:1�

for a suitable function c�n��z�, since d�z01 ^ dz01 vanishes on G�0�r �z�0�;H0�. Substituting
in (5.4) gives

C�l� � c�z�
kgk2n d�z02 ^ � � � ^ d�z0n ^ dz01 � � � ^ dz0n �6:2�

for c�z� �Pn
n�1 �gnc

�n��z�.
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Let us denote by jC�l�jH0;z�0� the maximum of the absolute values jc�z�j=kgk2n on
G�0�r �z�0�;H0�. We seek a bound on this quantity. Now

d �f H1
�z� ^ � � � ^ d �f Hs

�z� � 0 �6:3�

if s > r and fH1; :::;Hsg � B; while

j fH �z�jX d for H 62 B; �6:4�
dX j fH �z�jX e2 for H 2 B: �6:5�

Also from (2.6) and (2.7)

kgk2 XC0eÿ22 ; �6:6�
jgnjWC1eÿ12 : �6:7�

The results (6.3)^(6.7) imply

LEMMA 6.1. r and d being ¢xed

jC�l�jH0;z�0� WO�e2nÿ2r�12 �: �6:8�

The identity (I) follows. Since (6.8) holds independent of l, (I0) follows also.

6.2. PROOF OF (II) AND (II0): ESTIMATE ON G�k�r �z�0�;H0�

For de¢niteness we assume k � 1. Let z�0� 2 H1 and z�0� 2 H0 2 A: With
G�k�r �z�0�;H0� de¢ned as in (5.11), choose the local af¢ne coordinates �z1; :::; zn� in
V �k�d �B� such that

jz1jW d; jz2jW 1; � � � ; jznjW 1:

We denote by L the subspace \H2BH, which we take to have dimension nÿ r. B
coincides again with AL. Then the coordinates �z01; � � � ; z0n� are related to
�z1; � � � ; zn� as in (3.5) and (3.6). We may assume that ~fH0 �z� � z01 and z1 � z0r�1.
Furthermore, zn and ~fH �z� can be written as

zn �
Xn
j�1

~ej;nz0j � z�0�n ; �6:9�

~fH �z� �
Xn
n�1

vH;nz0n � vH;0 �6:10�

for suitable real constants ~ej;n and vH;n; vH;0. Note that the ~ej � �~ej;n�nn�1 are tangent to
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L for r� 1W jW n: Thus for H 2 B

~fH �z� �
Xr
n�1

vH;nz0n: �6:11�

Next we introduce the new coordinates �z001; :::; z00n� blowing up the coordinates
�z01; :::; z0n� along L according to

z001 �
z01
z0r�1

; � � � ; z00r �
z0r
z0r�1

; z00j � z0j �nX jX r� 1�: �6:12�

Then from (5.11) we see that G�1�r �z�0�;H0� is included in the set

jz001j � e2; e1 W jz00r�1jW d; e2 W jz00j jW d=jz00r�1j �2W jW r�;
jz00j jWK �r� 2W nW n�; �6:13�

K being a suitable constant. Also, we can write

�ÿ1�nÿ1d�g1 ^ � � � d�gnÿ1 ^ d�gn�1 ^ � � � ^ d�gn

� c�n��z00�d�z
00
2 ^ � � � ^ d�z

00
n�mod d�z

00
1�

�6:14�

so that

C�l� � c�z�
kgk2n d�z

00
2 ^ � � � ^ d�z

00
n ^ dz001 ^ � � � ^ dz00n �6:15�

on G�1�r �z�0�;H0�, c�z� being de¢ned by
Pn

n�1 �gnc�n��z�: In fact this follows because
d�z1
00 ^ dz001 vanishes on G�1�r �z�0�;H0�.
As is seen from (6.1)^(6.2), c�n��z� can be described as a polynomial in l of degree

nÿ 1,

c�n��z� � c�n�0 �z� �
Xnÿ1
p�1

X
fHjgpj�1�A;Hj 6�H0

lH1 � � � lHpc
�n�
H1;:::;Hp

�z� �6:16�

such that dim \pj�1 Hj � nÿ p, where c�n�0 �z�;c�n�H1;:::;Hp
�z� do not depend on l. The

quantities c�n�0 �z� and ;c�n�H1;:::;Hp
�z� can be bounded above, as we will now show.

LEMMA 6.2. Assume that H1; :::;Hq 2 B while Hq�1; :::;Hp 62 B for 0W pW nÿ 1.
Assume furthermore that each of H1; :::;Hq differs from H0. Then

max
z2G�1�r �z�0�;H0�

jc�n�H1;:::;Hp
�z�jWCjz00r�1jÿn�rÿ1

Yq
j�1

���Xr
n�1

vHj ;nz
00
n

���ÿ2 �6:17�

for 0W qW rÿ 1. Similarly

max
z2G�1�r �z�0�;H0�

jc�n�0 �z�jWCjz00r�1jÿn�rÿ1: �6:18�
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Proof. In terms of the coordinates z001; :::; z
00
n �z00r�1 � z1�; we have from (6.9) the

expressions

d
1
�z1

� �
� ÿ 1

�z
002
r�1

d�z
00
r�1;

d
�zn
�z1

 !
� ÿ

�zn
�z
002
r�1

d�z
00
r�1 �

1
�z
00
r�1
�

�
" Xr

j�1
~ej;n �z

00
j

 !
d�z
00
r�1 �

Xr
j�1

~ej;nd�z
00
j

 !
�z
00
r�1 �

Xn
m�r�1

~em;nd�z
00
m

#
:

On the right-hand side the coef¢cients with respect to d�z
00
1; :::; d

�z
00
r are bounded, the

one with respect to d�z00r�1 is of order O�1=jz00r�1j2�; while the ones with respect to
d�z
00
r�2; :::; d�z

00
n are O�1=jz00r�1j�: On the other hand, from (6.10), we have

d
�z1

~fH �z�

 !

� d�z
00
r�1

~fH �z�
ÿ

�z
00
r�1

~fH �z�
2

Xr
n�1

vH;n �z
00
n

 !
d�z
00
r�1 �

Xr
n�1

vH;ndz00n

 !
�z
00
r�1 �

Xn
m�r�1

vH;md�z
00
m

" #
;

where vH;m � 0 �r� 1W mW n� if H 2 B: When H 62 B, in the right-hand side the
coef¢cients with respect to d�z001; :::; d�z00r are of order O�jz00r�1j2�, the one with
respect to d�z00r�1 is bounded and the ones with respect to d�z

00
r�2; :::; d�z

00
n are of order

O�jz00r�1j�: On the contrary when H 2 B, the coef¢cients with respect to
d�z001; :::; d�z00r are all O�jPr

n�1 vH;nz
00
n jÿ2� the one with respect to d�z00r�1 is of order

O�1=j ~fH �z�j�: (6.17) and (6.18) then follow in view of De¢nition 3.2. &

We denote by

jC�l�jH0;z
�0� � maxz2G�1�r �z�0�;H0�

jc�z�j
kgk2n ; �6:19�

jC0�l�jH0;z
�0� � maxz2G�1�r �z�0�;H0�

jPn
n�1 �gnc

�n�
0 �z�j

kgk2n ; �6:20�

jCH1;:::;Hp�l�jH0;z
�0� � maxz2G�1�r �z�0�;H0�

jPn
n�1 �gnc

�n�
H1;:::;Hp

�z�j
kgk2n : �6:21�
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To obtain bounds on these quantities, note from (2.8) and (2.9) that

kgk2 XC0

X
H2B;H 6�H0

1

jPr
n�1 vH;nz

00
n j2
� 1

jz001j2
� 1

jz00r�1j2
 !

XC00 eÿ22 �
1

jz00r�1j2
 !

;

jgnjWC1

X
H2B;H 6�H0

1
jPr

n�1 vH;nz
00
n j
� 1
jz001j
� 1
jz00r�1j

 !
WC 01 eÿ12 �

1
jz00r�1j

� �
:

Using the inequality m
Pm

j�1 x
2
j X �

Pm
j�1 xj�2 for xj 2 R, we then have

jgnj
kgk2n WC2

� X
H2B;H 6�H0

1

jPr
n�1 vH;nz

00
n j2
� 1

jz001j2
� 1

jz00r�1j2
�ÿn�1

2

:

To make use of these inequalities, we enlarge fH0;H1; :::;Hqg to a system of r
hyperplanes fH0; :::;Hq;H�q�1; :::;H

�
rÿ1g such that it becomes possible to write

L � H0 \ \qj�1Hj \rÿ1j�q�1 H
�
j . Then we see that

jCH1;:::;Hp�l�jH0;z
�0�

WC3jz00r�1jÿ1
X

H2B;H 6�H0

1

jPr
n�1 vH;nz

00
n j2
� 1

jz001j2
� 1

jz00r�1j2
 !ÿr�1

� �6:22�

�
Yq
j�1
j
Xr
n�1

vHj ;nz
00
n j

 !ÿ2

WC3jz00r�1jÿ1
Yq
j�1

jPr
n�1 vHj ;nz

00
n j2

jz00r�1j2
� 1

 !ÿ1
�

�
Yrÿ1

j�q�1

1

jPr
n�1 vH�j ;nz

00
n j2
� 1

jz001j2
� 1

jz00r�1j2

0@ 1Aÿ1: �6:23�

Similarly

jC0�l�jH0;z
�0� WC3jz00r�1jÿ1

Yrÿ1
j�1

1

jPr
n�1 vH�j ;nz

00
n j2
� 1

jz001j2
� 1

jz00r�1j2

0@ 1Aÿ1 �6:24�

since p � q � 0 in this case.
To establish (II) and (II0) we must estimate the integrals of CH1;:::;Hp �l� and C0�l�

with respect to dz002; :::; dz
00
r ; d

�z002; :::; d�z00r , with z001 being ¢xed such that jz001j � e2.
The following lemma is useful for this purpose.
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LEMMA 6.3. We denote by jd �t ^ dtj the positive measure on C�t 2 C� de¢ned by the
2-form d �t ^ dt. We have

Z
e2 W jtjW d=jz00r�1j

jd�t ^ dtj 1

1� jtj2
jz00r�1j2

0B@
1CAW pjz00r�1j2 log 1� d2

jz00r�1j4
 !

;

Z
e2 W jtjW d=jz00r�1j

jd�t ^ dtj
1
jtj2 � 1

jz00r�1j2
W pd2:

It follows from (6.23) and Lemma 6.3 that the integral of j�gnc�n�H1;:::;Hp
�z�j=kgk2n over

G�1�r �z�0�;H0� \ fz001; jz001j � e2g has a majorization

Z
G�1�r �z�0�;H0�\fjz001 j�e2g

j�gnc�n�H1;:::;Hp
�z�j

kgk2n jd�z
00
2 ^ � � � ^ d�z

00
n ^ dz002 ^ � � � ^ dz00nj

WCd2�rÿ1ÿq�
Z

1
jz00r�1j

jz00r�1j2 log 1� d2

jz00r�1j4
 !( )q

�

� jd�z
00
r�1 ^ � � � ^ d�z

00
n ^ dz00r�1 ^ � � � ^ dz00nj:

�6:25�

The last integral is done over the region e1 W jz00r�1jW d; jz00r�2jW 1; :::; jz00njW 1: Its
value is bounded by a constant which does not depend on either e1 or e2. Similarly,Z

G�1�r �z�0�;H0�\fjz001 j�e2g

j�gnc�n�0 �z�j
kgk2n jd�z

00
2 ^ � � � ^ d�z

00
n ^ dz002 ^ � � � ^ dz00njWCd2�rÿ1�:

�6:26�

Recalling (6.20) and (6.21), the inequalities (6.25) and (6.26) give��� Z
G�1�r �z�0�;H0�

C�l�
��� � O�e2�

which implies (II) and (II0) for k � 1.

6.3. PROOF OF (III): ESTIMATE OF THE INTEGRAL CH1;:::;Hp �l� �1W pW nÿ 1� OVER
G�k�r �z�0�;H1�

We again assume k � 1. Let �z01; :::; z0n� be the coordinates as in De¢nition 3.3. We
denote by L0 the subspace L0 � \H3z�0�H which is assumed to have dimension
nÿ r. Then B coincides with AL0 . We put L � L0 \H1.

Now G�1�r �z�0�;H1� is de¢ned by (5.12). By introducing new coordinates �z001; . . . ; z00n�
according to

z001 � z01=z
0
r�1 � z1; :::; z

00
r � z0r=z

0
r�1; z

00
r�1 � z0r�1; . . . ; z00n � z0n;
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we see that G�1�r �z�0�;H1� is contained in

jz00r�1j � e1;Kÿ1e2 W jz00j jWKd=e1 �1W jW r�; jz00r�2jWK; � � � ; jz00njWK

for a suitable positive constant K . Also, analogous to (6.14) and (6.15), CH1;:::;Hp �l�
can be expressed as

CH1;:::;Hp �l� �
cH1;:::;Hp

�z�
kgk2n d�z

00
1 ^ � � � ^ d�z

00
r ^ d�z

00
r�2 ^ � � � ^ d�z

00
n^

^ dz001 ^ � � � ^ dz00n�mod d�z00r�1�
where cH1;:::;Hp

�z� denotes Pn
n�1 �gnc

�n�
H1;:::;Hp

�z� as in (6.15).
We denote by

jC�l�jH1;z�0� � maxz2G�1�r �z�0�;H1�
jc�z�j
kgk2n ;

jCH1;:::;Hp�l�jH1;z�0� � maxz2G�1�r �z�0�;H1�
jcH1;:::;Hp

�z�j
kgk2n ;

and seek bounds for these quantities. First, from (2.7) and (2.9), we deduce the
inequalities

kgk2 XC0

X
H2B

1

jPr
n�1 vH;nz

00
n j2
� eÿ21

 !
; �6:27�

jgnjWC1

X
H2B

1
jPr

n�1 vH;nz
00
n j
� eÿ11

 !
: �6:28�

Next, we deduce the analogue of Lemma 6.2.

LEMMA 6.4. Assume that H1; :::;Hq 2 B and that Hq�1; :::;Hp 62 B �0W qW r�.
Then

max
z2G�1�r �z�0�;H0�

jc�n�H1;:::;Hp
�z�jWCe2�pÿq�ÿn�r�11

Yq
j�1
j
Xr
n�1

vHj ;nz
00
n j
ÿ2
: �6:29�

Proof. Since z00r�1 � z1, we have

d
1
�z1

� �
� 0�mod d�z

00
r�1�;

d
�zn
�z1

 !
�
Xr
j�1

~ej;nd�z
00
j �

Xn
m�r�2

~em;nd�z
00
m=

�z
00
r�1�mod d�z

00
r�1�:

On the right-hand side the coef¢cients with respect to d�z
00
1; :::; d

�z
00
r are bounded, while

the one with respect to d�z
00
r�2; :::; d�z

00
n are O�1=e1�. Moreover, ifH 2 B, we have in view
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of (6.12)

d
z1

~fH �z�

 !
� ÿ z

00
r�1

~fH �z�
2

Xr
n�1

vH;nz00r�1dz
00
n

" #
�mod dz00r�1�;

whence the coef¢cients w.r.t. dz001; :::; dz
00
r are of order at most O�jPr

n�1 vH;nz
00
n jÿ2�:On

the other hand, if H 62 B; we have in view of (6.11)

d
z1

~fH �z�

 !
� ÿ z

00
r�1

~fH �z�
2

Xr
n�1

vH;nz00r�1dz
00
n �

Xn
n�r�2

vH;ndz00n

" #
�mod dz00r�1�:

In the right-hand side the coef¢cients w.r.t. d�z
00
1; :::; d

�z
00
r are of order at most O�e21�,

while the ones w.r.t. dz00r�2; :::; dz
00
n are of order O�e1�. &

Now, from (6.27) and (6.28) we have

jgnj
kgk2n WC2

X
H2B

1

jPr
n�1 vH;nz

00
n j2
� 1
e21

 !ÿn�1
2

:

Hence, due to Lemma 6.4,

jCH1;:::;Hp�l�jH1;z�0� WC2e12�rÿq��2�pÿq�ÿ1
Yq
j�1

1� j
Pr

n�1 vHj ;nz
00
n j2

e21

 !ÿ1
: �6:30�

The ¢nal step is to use (6.30) to estimate the integralZ
G�1�r �z�0�;H1�

CH1;:::;Hp �l�:

The analogue of Lemma 6.3 is required.

LEMMA 6.5Z
Kÿ1e2 W jtjWKd=e1

jdt ^ d�tj
jtj2
e21
� 1

W pe21log�1� K2d2=e41�;Z
Kÿ1e2 W jtjWKd=e1

jd�t ^ dtjW pK2�d=e1�2

In (6.30) we may assume that
Pr

n�1 vH1;nz
0
n; :::;

Pr
n�1 vHq;nz

0
n as well as some nÿ q

elements among z001; :::; z
00
n are linearly independent. Fixing z00r�1 such that

jz00r�1j � e1, the preceding Lemma can now be applied to estimate the following inte-
gral with respect to dz001; :::; dz

00
r ; d

�z001; :::; d�z00r ; and then carry it out with respect to
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dz00r�1; :::; dz
00
n; d

�z00r�2; :::; d�z00n: We have��� Z
G�1�r �z�0�;H1�

jcH1;:::;Hp
�l�j

kgk2n jdz001 ^ � � � dz00r ^ dz00r�2 ^ � � � dz00n ^ dz001 ^ � � � ^ dz00n
���

WC2e
2�pÿq�ÿ1
1 fe21log�1� K2d2=e41�gq�

�
Z

jz00
r�1 j�e1 ;

jz00
j
jWK; � j�r�2;...;n�

���dz00r�2 ^ � � � ^ dz00n ^ dz00r�1 ^ � � � ^ dz00n
���

WC3e
2�pÿq�
1 fe21log�1� K2d2=e41�gq: �6:31�

Hence for pX 1

lime2#0lime1#0
Z
G�1�r �z�0�;H1�

CH1;:::;Hp �l� � 0:

As a consequence,

lime2#0lime1#0
Z
G�1�r �z�0�;H1�

�C�l� ÿC0�l�� � 0;

which is the identity (III).

6.4. PROOF OF (IV)

To make explicit the dependence of gn on l, here we write gn��jl� in place of gn. On
G�1�r �z�0�;H1�, we can write the difference C0�l� ÿC0�0� in the form

C0�l� ÿC0�0� � w�z�dz2 ^ � � � ^ dzn ^ dz1 ^ � � � ^ dzn;

where w�z� � �kg��jl�kÿ2n ÿ kg��j0�kÿ2n��zÿn1 zÿnÿ11 : We put

kC0�l� ÿC0�0�kz�0�;H1 �Maxz2G�1�r �z�0�;H1�jw�z�j:

Since

gn��jl� ÿ gn��j0� � ÿ
X
H2A

lHuH;nz1
~fH �z�

;

we have

kg��jl� ÿ g��j0�kWC4

X
z�0�2H

jz1j
j ~fH �z�j

� jz1j
0@ 1A

� C4e1
X
z�0�2H

1

j ~fH �z�j
� 1

0@ 1A:
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On the other hand, from (2.8),

kg��jl�k2 XC0
1
jz1j2

; kg��j0�k2 XC0
1
jz1j2

:

Therefore

kC0�l� ÿC0�0�kH1;z�0� WC5e1
X
z�0�2H

1

j ~fH �z�j
� 1

0@ 1A:
Hence���� Z

G�1�r �z�0�;H1�
�C0�l� ÿC0�0��

����WC5e21

because, z1 being ¢xed such that jz1j � e1; the function
P

z�0�2H
1

j ~fH �z�j � 1 is summable
with respect to the positive measure on G�1�r �z�0�;H1� \ fz1; jz1j � e1g attached to the
form dz2 ^ � � � ^ dzn ^ dz2 ^ � � � ^ dzn. The identity (IV) follows.

Since each of the identities (I)^(IV) have now been established, (5.17) follows and
Theorem 1.3 is thus now proved.

7. Application

We ¢x a chamber 4j in M�A� \ Rn. Given an arbitrary point w � �w1; :::;wn� 2 Rn,
there exists the unique x � �x1; :::; xn� 2 4j such that g1�x� � � � � � gn�x� � 0; which
is to say the mapping

Tj : wn � xn ÿ
X
H2A

lHuH;n
fH �x� 1W nW n �7:1�

from 4j onto Rn is a diffeomorphism. Theorem 1.3 can be used prove a integration
formula for this change of variables.

PROPOSITION 7.1. Assume that f �x� is a summable function on Rn and that
g�w� � f �Tÿ1j �w�� does not depend on j. ThenZ

Rn
f �x�dx1 ^ � � � ^ dxn �

Z
Rn

g�w�dw1 ^ � � � ^ dwn: �7:2�

Proof. According to (1.8) we have

Xk
j�1

det
@wn

@xm

� �n

m;n�1

" #ÿ1
x�Tÿ1j �w�

� 1: �7:3�
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Hence Z
Rn

f �x�dx1 ^ � � � ^ dxn �
Xk
j�1

Z
4j

f �x�dx1 ^ � � � ^ dxn

�
Xk
j�1

Z
Rn

f �Tÿ1j �w��
�det�@wn

@xm
�nm;n�1�x�Tÿ1j �w�

dw1 ^ � � � ^ dwn

�
Z
Rn

g�w�dw1 ^ � � � ^ dwn

as required. &

In the case n � 1, setting f �x� � h�T �x�� in (7.2) gives

Z 1
ÿ1

h xÿ
Xp
j�1

lj
xÿ aj

 !
dx �

Z 1
ÿ1

h�w� dw �lj > 0; aj 2 R�:

This formula was ¢rst obtained by G. Boole [5] in the nineteenth century, and has
also been considered in more recent times [9]. For general n some special cases
of (7.2) have been conjectured in [6], and some explicit examples given assuming
the validity of the conjecture.

As an example of an explicit integration formula which follows from (7.2), letA be
the central hyperplane arrangement attached to the A type root system. A is
invariant under the permutation group of nth degree, and k is equal to n!. We assume
that lH are all equal to the same l0 (l0 > 0). The mapping Tj is given by

wn � xn ÿ l0
Xn

m 6�n;m�1

1
xn ÿ xm

:

We take as

g�w� � j�w2
1 � � � � � w2

n� �7:4�

for a one variable function j. Since

Xn
n�1

w2
n �

Xn
n�1

x2n � l20
Xn

n�m�1;n 6�m

1
�xn ÿ xm�2

ÿ n�nÿ 1�l

we have from (7.2)

Z
Rn

j
Xn
n�1

x2n � l20
Xn

n�m�1;n 6�m

1
�xn ÿ xm�2

ÿ n�nÿ 1�l0
 !

dx1 ^ � � � ^ dxn

�
Z
Rn

j�w2
1 � � � � � w2

n�dw1 ^ � � � ^ dwn: �7:5�
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In particular,Z
Rn

exp ÿ
Xn
n�1

x2n ÿ l20
Xn

n�m�1;n 6�m

1
�xn ÿ xm�2

 !
dx1 ^ � � � ^ dxn

� eÿn�nÿ1�l0pn=2: �7:6�

This was ¢rst obtained by G. Gallavotti and C. Marchioro [8] using the
semi-classical limit formula for the Schro« dinger equation corresponding to the
Calogero-Sutherland model and also by Francoise [7] using geometric argument
on integrable Hamiltonian £ows of the same model. The latter author has also
extended the formula (7.6) to the B type root system, which is also a special case
of (7.3). Indeed with the mapping Tj given by

wn � xn ÿ l0
Xn

m 6�n;m�1

1
xn ÿ xm

� 1
xn � xm

� �
ÿ l1
xn

(l0; l1 > 0) we have

Xn
n�1

w2
n �

Xn
n�1

x2n �
l21
x2n

 !
ÿ 2l1N ÿ 2l0N�N ÿ 1��

� l20
Xn

n�m�1;n 6�m

1
�xn ÿ xm�2

� 1
�xn � xm�2

 !
;

and so from (7.3) with g given by (7.4) we obtainZ
Rn

j
Xn
n�1

x2n �
l21
x2n

 !
� l20

Xn
n�m�1;n 6�m

1
�xn ÿ xm�2

� 1
�xn � xm�2

 ! 
ÿ

ÿ 2l1N ÿ 2l0N�N ÿ 1�
!

dx1 ^ � � � ^ dxn

�
Z
Rn

j�w2
1 � � � � � w2

n�dw1 ^ � � � ^ dwn:

In the special case j�x� � eÿx this reduces to the formula presented in [7].
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