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BEYOND THE MEAN: A FLEXIBLE FRAMEWORK FOR STUDYING CAUSAL
EFFECTS USING LINEAR MODELS
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Graph-based causal models are a flexible tool for causal inference from observational data. In this
paper, we develop a comprehensive framework to define, identify, and estimate a broad class of causal
quantities in linearly parametrized graph-based models. The proposed method extends the literature, which
mainly focuses on causal effects on the mean level and the variance of an outcome variable. For example,
we show how to compute the probability that an outcome variable realizes within a target range of values
given an intervention, a causal quantity we refer to as the probability of treatment success. We link graph-
based causal quantities defined via the do-operator to parameters of the model implied distribution of
the observed variables using so-called causal effect functions. Based on these causal effect functions, we
propose estimators for causal quantities and show that these estimators are consistent and converge at a rate
of N−1/2 under standard assumptions. Thus, causal quantities can be estimated based on sample sizes that
are typically available in the social and behavioral sciences. In case of maximum likelihood estimation,
the estimators are asymptotically efficient. We illustrate the proposed method with an example based on
empirical data, placing special emphasis on the difference between the interventional and conditional
distribution.

Key words: causal inference, structural equation modeling, graph-based causal models, acyclic directed
mixed graphs.

Graph-Based Models for Causal Inference

The graph-based approach to causal inference was primarily formalized by Judea Pearl (1988,
1995, 2009) and Spirtes, Glymour, and Scheines (2001). A causal graph represents a researcher’s
theory about the causal structure of the data-generating mechanism. Based on a causal graph,
causal inference can be conducted using the interventional distribution, from which standard
causal quantities such as average treatment effects (ATEs) can be derived. In the most general
formulation, a causal graph is accompanied by a set of nonparametric structural equations. Thus,
a common acronym for Pearl’s general nonparametric model is NPSEM, which stands for non-
parametric structural equation model (Pearl, 2009; Shpitser, Richardson, & Robins, 2020).

Graph-based causal models share many common characteristics with the traditional litera-
ture on structural equation models (SEM) prevalent in the social and behavioral sciences and
economics (Bollen & Pearl, 2013; Heckman & Pinto, 2015; Pearl, 2009, 2012). However, these
two approaches also differ in several aspects including the underlying assumptions (e.g., graph-
based models assume modularity), notational conventions (e.g., the meaning of bidirected edges
in graphical representations), research focus (e.g., nonparametric identification in graph-based
models vs. parametric estimation in traditional SEM), and standard procedures.

Graph-based procedures often focus on a single causal quantity of interest (e.g., ATE) and
establishing its causal identification based on a minimal set of assumptions (e.g., without making
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parametric assumptions). Causal quantities are well defined via the do-operator and the resulting
interventional distribution and causal identification can be established based on graphical tools
such as the back-door criterion (Pearl, 1995) or a set of algebraic rules called do-calculus (Shpitser
& Pearl, 2006; Tian & Pearl, 2002a). The central insights developed within the graph-based
approach relate to causal identification, whereas less attention has been devoted to the estimation
of causal quantities.1

On the other hand, the traditional literature on SEM frequently assumes parametrized (often
linear) models and usually focuses on identification and estimation of the entire model.2 Causal
quantities such as direct, indirect and total effects can be defined based on reduced-form equations
and partial derivatives (Alwin & Hauser, 1975; Bollen, 1987; Stolzenberg, 1980). A main focus
within the traditional SEM literature lies on the model implied joint distribution of observed
variables and its statistical modeling. A considerable body of literature is available on model
identification (Bekker, Merckens, & Wansbeek, 1994; Bollen, 1989; Fisher, 1966; Wiley, 1973)
and estimation (Browne, 1984; Jöreskog, 1967; Satorra & Bentler, 1994) for parametrized SEM.

In this paper, we combine causal quantities from graph-based models with identification and
estimation results from the traditional literature on linear SEM. For this purpose, we formalize
the do-operator using matrix algebra in the section on “Graph-Based Causal Models with Linear
Equations.” Based on this matrix representation, we derive a closed-form parametric expression
of the interventional distribution and several causal quantities in the section entitled “Interven-
tional Distribution.” Linear graph-based models imply a parametrized joint distribution of the
observed variables. We define causal effect functions as a mapping from the parameters of the
joint distribution of observed variables onto the causal quantities defined via the do-operator
in the section entitled “Causal Effect Functions.” Methods for identifying parametrized causal
quantities are discussed in the section entitled “Identification of Parametrized Causal Quantities”.
Estimators of causal quantities that are consistent and converge at a rate of N−1/2 are proposed
in the section on "Estimation of Causal Quantities." We show that the proposed estimators are
asymptotically efficient in case of maximum likelihood estimation.

Our work extends the literature on traditional SEM by providing closed-form expressions
of graph-based causal quantities in terms of model parameters of linear SEM. Furthermore, we
extend the literature on linear graph-based models by providing a unifying estimation framework
for (multivariate) causal quantities that also allows estimation of causal quantities beyond themean
and the variance. We illustrate the method using simulated data based on an empirical application
and provide a thorough discussion of the differences between conditional and interventional
distributions in the illustration section.

Throughout this paper, we focus on situations in which direct causal effects are functionally
independent of the values of variables in the system. In other words, direct causal effects are con-
stant. In such situations, the data-generating mechanisms can be adequately represented by linear
structural equations and the use of linear graph-based causal models is justified. A priori knowl-
edge that suggests constant direct causal effects sometimes allows identifying causal quantities
that would not be identified under the more flexible assumptions of the NPSEM (see illustration
section for an example). However, scientific theories that suggest constant direct causal effects
might be incorrect and consequently, linear models might be misspecified. We will discuss issues

1Exceptions from this statement include, for example Ernest and Bühlmann (2015) and Bhattacharya, Nabi, and
Shpitser (2020). Furthermore, statistical procedures from related fields such as the potential outcome framework (Robins,
1986, 1987; Robins, Rotnitzky, & Zhao, 1994; Rosenbaum& Rubin, 1983; van der Laan & Rubin, 2006) or econometrics
(Chernozhukov, Fernández-Val, Newey, Stouli, & Vella, 2020; Matzkin, 2015) could be adjusted such that they can be
used to estimate causal quantities in the NPSEM framework.

2However, techniques for identification (e.g., rank and order conditions) and estimation (e.g., limited information
estimators) of single structural equations have been developed (c.f. Bollen, 1996; Bollen, Kolenikov, & Bauldry, 2014;
Bowden & Turkington, 1985; Fisher, 1966).
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related to model misspecification in the discussion section, where we will also point to future
research directions.

Graph-Based Causal Models with Linear Equations

Linear graph-based causal models are an appropriate tool in situations in which a priori scientific
knowledge suggests that each of the following statements is true:3

1. The causal ordering of observed variables and unobserved confounders is known.
2. Interventions only alter the mechanisms that are directly targeted (modularity).4

3. The treatment status of a unit (e.g., person) does not affect the treatment status or the
outcome of other units (no interference).

4. Direct causal effects are constant across units (homogeneity).
5. Direct causal effects are constant across value combinations of observed variables and

unobserved error terms (no effect modification).
6. Omitted direct causes as comprised in the error terms follow a multivariate normal dis-

tribution.5

The first three assumptions listed above are generic to the graph-based approach to causal
inference and need to hold in its most general nonparametric formulation. Assumptions 4 and
5 justify the use of linear structural equations. Assumptions 6 justifies the use of multivariate
normally distributed error terms. We further assume that variables are measured on a continuous
scale and are observed without measurement error. Throughout this paper, we assume that the
model is correctly specified. In the discussion section, we briefly point to the literature on statis-
tical tests of model assumptions and methods for analyzing the sensitivity of causal conclusions
with respect to violations of untestable assumptions. Furthermore, we briefly discuss possible
ways to relax the model assumptions (e.g., measurement errors, unobserved heterogeneity, effect
modification, excess kurtosis in the error terms).

A linear graph-based causal models over the set V = {V1, ..., Vn} of observed variables are
defined by the following set of equations (Brito & Pearl, 2006, p.2):6

Vj =
n∑

i

c ji Vi + ε j , j = 1, ..., n (1)

We assume that all variables are deviations from their means and no intercepts are included in Eq.
(1). A nonzero structural coefficient (c ji �= 0) expresses the assumption that Vi has a direct causal
influence on Vj . Restricting a structural coefficient to zero (c ji = 0) indicates the assumption

3If the listed statements are indeed true, the causal Markov assumption is implied. For a detailed discussion of the
logical relation of causal assumptions encoded in graph-based models and causal assumptions from the Neyman–Rubin
potential outcome framework (e.g., ignorability, SUTVA), see, for example, Holland (1988); Pearl (2009); Shpitser et al.
(2020).

4Similar concepts such as autonomy (Aldrich, 1989), exogeneity (Mouchart, Russo, &Wunsch, 2009), and invariance
(Cartwright, 2009) have been discussed in the econometric literature. However, we believe that these concepts are not
part of the canonical assumptions of traditional SEM as used in the social and behavioral sciences.

5Many results derived in this paper (e.g., the moments of the interventional distribution in Eqs. (6a) and (6b) or
Theorem 8) do not rely on multivariate normality. However, Result 3 on the distributional family of the interventional
distribution requires multivariate normality.

6Throughout this article, we use the following conventions: Sets of random variables are denoted by calligraphic
letters (e.g., V = {V1, ..., Vn}). Single random variables from a set are denoted by corresponding upper-case Latin letters
(e.g., Vi ). The column vector containing all random variables in a set is denoted by the corresponding bold Latin letter
(e.g., V = (V1, ..., Vn)ᵀ). Realizations of a random vector V are denoted by lower-case Latin letters (e.g., v).
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that Vi has no direct causal effect on Vj . The parameter c ji quantifies the magnitude of a direct
effect. The q × 1 parameter vector θF ∈ �F ⊆ R

q contains all distinct, functionally unrelated
and unknown structural coefficients c ji . �F denotes the parameter space, and it is a subspace of
the q-dimensional Euclidean space. Restating Eqs. (1) in matrix notation yields:

V = CV + ε ⇔ V = (In − C)−1ε (2)

The n×n identity matrix is denoted as In . The n×n matrix of structural coefficients is denoted as
C, and we sometimes use the notationC(θF ) to emphasize thatC is a function of θF . We restrict
our attention to recursive systems for which the variables V can be ordered in such a way that the
matrixC is strictly lower triangular (which ensures the existence of the inverse in Eq. (2); Bollen,
1989). The set of error terms is denoted by E = {ε1, ..., εn}. Each error term εi , i = 1, ..., n,
comprises variables that determine the level of Vi but are not explicitly included in the model.
Typically the following assumptions (or a subset thereof) are made (Brito & Pearl, 2002; Kang
& Tian, 2009; Koster, 1999):

(a) E(ε) = 0n , where 0n is an n × 1 vector that contains only zeros.
(b) E(εεᵀ) = �, where the n × n matrix � is finite, symmetric and positive definite.
(c) ε ∼ Nn(0n,�), where Nn denotes the n-dimensional normal distribution.

A nonzero covarianceψi j indicates the existence of an unobserved common cause of the variables
Vi and Vj . The p×1 parameter vector θP ∈ �P ⊆ R

p contains all distinct, functionally unrelated
and unknown parameters from the error term distribution. �P denotes the parameter space, and
it is a subspace of the p-dimensional Euclidean space. We sometimes use the notation �(θP )

to emphasize that � is a function of θP . The resulting model implied joint distribution of the
observed variables is denoted by {P(v, θ) | θ ∈ �}, where � = �F × �P , and P is the family
of n-dimensional multivariate normal distributions.

The graph G is constructed by drawing a directed edge from Vi pointing to Vj if and only if
the corresponding coefficient is not restricted to zero (i.e., c ji �= 0). A bidirected edge between
vertices Vi and Vj is drawn if and only if ψi j �= 0 (bidirected edges are often drawn using
dashed lines). The absence of a bidirected edge between Vi and Vj reflects the assumption that
there is no unobserved variable that has a direct causal effect on both Vi and Vj (no unobserved
confounding).7 For recursive systems, the resulting graph belongs to the class of acyclical directed
mixed graphs (ADMG), whereas mixed refers to the fact that graphs in this class contain directed
edges as well as bidirected edges (Richardson, 2003; Shpitser, 2018). An example model with
n = 6 variables and the corresponding causal graph is introduced in the illustration section.

At the heart of the graph-based approach to causal inference lies a hypothetical experiment
in which the values of a subset of observed variables are controlled by an intervention. This
exogenous intervention is formally denoted via the do-operator, namely do(x), where x denotes
the interventional levels and X ⊆ V denotes the subset of variables that are controlled by the
experimenter. The system of equation under the intervention do(x) is obtained from the original
system by replacing the equation for each variable Vi ∈ X (i.e., for each variable that is subject
to the do(x)-intervention) with the equation Vi = vi , where vi is a constant interventional level
(Pearl, 2009; Spirtes et al., 2001). Note that the do(x)-intervention does not alter the equations for
variables that are not subject to intervention, an assumption known as autonomy or modularity
(Pearl, 2009; Peters, Janzing, & Schölkopf, 2017; Spirtes et al., 2001).

7Note that bidirected edges in a causal graph (see Fig. 2 in the illustration section) represent a nonzero covariance
between error terms that is due to an unobserved common cause. This convention for causal graphs is different for path
diagrams from the traditional SEM literature where bidirected edges simply indicate a correlation without being specific
about its origin.
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The probability distribution of the variables V one would observe had the intervention do(x)
been uniformly applied to the entire population is called the interventional distribution, and it
is denoted as P(V | do(x)).8 The interventional distribution differs formally and conceptually
from the conditional distribution P(V | X = x). The former describes a situation where the data-
generatingmechanism has been altered by an external do(x)-type intervention in an (hypothetical)
experiment. The latter describes a situation where the data-generating mechanism of V has not
been altered, but the evidence X = x about the values of a subset of variables X ⊆ V is available.
These differences will be further discussed in the illustration section (see also, e.g., Gische, West,
& Voelkle, 2021; Pearl, 2009).

In the remainder of this section, we translate the changes in the data-generating mechanism
induced by the do(x)-intervention into matrix notation (see Hauser and Bühlmann (2015) for a
similar approach). The following definition introduces the required notation.

Definition 1. (interventions in linear graph-based models)

1. Variables X ⊆ V are subject to an external intervention, where |X | = Kx ≤ n denotes
the set size. The Kx × 1 vector of interventional levels is denoted by x. The external
intervention is denoted by do(x).

2. Let I ⊆ {1, 2, ..., n}, |I| = Kx denote the index set of variables that are subject to
intervention. The index set of all variables that are not subject to intervention is denoted
by N , namely N := {1, 2, ..., n} \ I, |N | = n − Kx , where the operator \ denotes the
set complement.

3. Let ı i ∈ R
n be the i-th unit vector, namely a (column) vector with entry 1 on the i-th

component and zeros elsewhere. The n×Kx matrix 1I := (ı i )i∈I contains all unit vectors
with an interventional index. The n× (n−Kx )matrix 1N is defined analogously, namely
1N := (ı i )i∈N . The matrices 1I and 1N are called selection matrices.

4. Let IN be an n × n diagonal matrix with zeros and ones as diagonal values. The i-th
diagonal value is equal to one if i ∈ N and zero otherwise.

Note that all of the elements of the matrices 1I , 1N , and IN are either zero or unity. The variables
V in a linear graph-based model under the intervention do(x) are determined by the following set
of structural equations:9

given do(x) : V = INCV + IN ε + 1Ix (3)

The corresponding interventional reduced form equation is given by:

V | do(x) = (In − INC)−1(IN ε + 1Ix) = (In − INC)−1IN︸ ︷︷ ︸
=:T1 n×n

ε + (In − INC)−11I︸ ︷︷ ︸
=:a1 n×Kx

x (4)

The matrix INC is obtained from C by replacing its rows with interventional indexes by rows of
zeros, and consequently (In − INC) is non-singular. Equation (4) states that V | do(x) is a linear
transformation of the random vector ε. The corresponding transformation matrix is labeled as T1,
and the additive constant is a1x.

8An alternative approach to compute the distribution of an outcome variable under different (hypothetical) treatments
is Robin’s (1986) G-formula. For similarities and differences between the two approaches, see, for example Hernán and
Robins (2020); Pearl (2009); Pearl and Robins (1995).

9A detailed justification that the matrix expressions in Eq. (3) adequately represent the changes to the linear system
imposed by the do-operator is provided in the online supplementary material.
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The target quantity of interest is the interventional distribution of those variables that are
not subject to intervention, denoted by VN . The reduced form equation of all non-interventional
variables is given by:

VN | do(x) = 1ᵀ
NV | do(x) = 1ᵀ

N (T1ε + a1x) = 1ᵀ
NT1︸ ︷︷ ︸
=:T2

ε + 1ᵀ
N a1︸ ︷︷ ︸
=:a2

x (5)

Important characteristics of the distribution of a linear transformation of a random vector
depend on the rank of the transformation matrix.

Lemma 2. (rank of transformation matrices) The n × n transformation matrix
T1 := (In − INC)−1IN has reduced rank n − Kx . The (n − Kx ) × n transformation matrix
T2 := 1ᵀ

N (In − INC)−1IN has full row rank n − Kx .

Proof. See Appendix. �	
Based on the reduced form equations, we derive the interventional distribution and its features in
the following section.

Interventional Distribution

Combining the reduced form stated in Eq. (4) with the assumptions on the first- and second-
order moments of the error term distribution yields the following moments of the interventional
distribution:

E(V | do(x)) = E(T1ε + a1x) = a1x = (In − INC)−11Ix (6a)

V(V | do(x)) = V(T1ε + a1x) = T1�Tᵀ
1 = (In − INC)−1IN�IN (In − INC)−ᵀ (6b)

The results are obtained via a direct application of the rules for the computation of moments of
linear transformations of random variables. Note that these results do not require multivariate
normality of the error terms. The interventional mean vector is functionally dependent on the
vector of interventional levels x, whereas the interventional covariance matrix is functionally
independent of x. The interventional distribution in linear graph-based models with multivariate
normal error terms is given as:

Result 3. (interventional distribution for Gaussian linear graph-based models)

V | do(x) ∼ Nn−Kx
n ( a1x , T1�Tᵀ

1 ) (7a)

VN | do(x) ∼ Nn−Kx ( a2x , T2�Tᵀ
2 ) (7b)

Proof. Both results follow from the fact that linear transformations of multivariate normal vectors
are also multivariate normal (Rao, 1973). Results on the rank of the transformation matrices T1
and T2 can be found in Lemma 2. �	
Equation (7a) states that the interventional distribution of all variables is a singular normal dis-
tribution in R

n with reduced rank n − Kx as denoted by the superscript n − Kx . Singularity
follows from the fact that the Kx interventional variables are no longer random given the do(x)-
intervention, but are fixed to the constant interventional levels x. Therefore, the random vector
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V | do(x) satisfies the restriction 1ᵀ
I(V | do(x)) = x with a probability of one. Equation (7b)

states that the vector of all non-interventional variables follows a (n − Kx )-dimensional normal
distribution.

Typically, one is interested in a subset Y ⊆ VN of outcome variables. The marginal inter-
ventional distribution P(y | do(x)) can be obtained as follows:

Result 4. (marginal interventional distribution for Gaussian linear graph-based models) Let the
outcome variables Y be a subset of the non-interventional variables (i.e., Y ⊆ VN , |Y| = Ky).
The index set of the outcome variables is denoted as Iy . Then, the following result holds:

P(y | do(x)) ∼ NKy ( 1
ᵀ
Iy
a1x , 1ᵀ

Iy
T1�Tᵀ

1 1Iy ) (8)

The result follows from the fact that the family of multivariate normal distributions is closed
with respect to marginalization (Rao, 1973). An important special case of Result 4 is the ATE
of a single variable Vi on another variable Vj , which is obtained by the setting Y = {Vj } and
X = {Vi } (and consequently Ix = {i}, Iy = { j}, Ky = Kx = 1). The ATE of the intervention
do(x) relative to the intervention do(x ′) (where x and x ′ are distinct treatment levels) on Y is
defined as the mean difference E(y | do(x))−E(y | do(x ′)). For a single outcome variable {Vj },
the selection matrix 1Iy simplifies to the unit vector ı j and E(y | do(x)) − E(y | do(x ′)) can be
expressed as ıᵀj a1(x − x ′) (using the mean expression from the normal distribution in Eq. [8]).

The probability density function (pdf) of the interventional distribution of all non-
interventional variables is given as follows:

f (vN | do(x)) = (2π)−
n−Kx

2 |T2�T2|− 1
2 exp

(
−1

2
(vN − a2x)ᵀ(T2�Tᵀ

2 )−1(vN − a2x)
)

(9)

Many features of the interventional distribution that hold substantive interest in applied research
(e.g., probabilities of interventional events, quantiles of the interventional distribution) can be
calculated from the pdf via integration. For example, a physician would like a patient’s blood
glucose level (outcome) to fall into a predefined range of values (e.g., to avoid hypo- or hyper-
glycemia) given an injection of insulin (intervention). More formally, let [ylow, yup] denote a
predefined range of values of a set of outcome variables Y ⊆ VN . The interventional probability
P(ylow ≤ y ≤ yup | do(x)) is given by:

P(ylow ≤ y ≤ yup | do(x)) =
∫ yup

ylow
f (y | do(x))dy (10)

The interventional distribution and its features will be used to formally define parametric
causal quantities in the following section.

Causal Effect Functions

In this section,we formally define terms containing thedo-operator as causal quantities denoted by
γ . According to this definition, any feature of the interventional distribution that can be expressed
using the do-operator is a causal quantity. Let the space of causal quantities be denoted as �.
As discussed in earlier in the section on “Graph-Based Causal Models with Linear Equations,”
linear causal models imply a joint distribution of observed variables that is parametrized by
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Figure 1.
Causal Effect Functions. Figure 1 displays the mapping g : � �→ � that corresponds to a causal effect function γ = g(θ).
The domain � ⊆ R

q+p (left-hand side) contains the parameters of the model implied joint distribution of observed
variables (no do-operator). The co-domain � ⊆ R

r (right-hand side) contains causal quantities γ that are defined via the
do-operator.

θ ∈ � ⊆ R
q+p and denoted by {P(v, θ) | θ ∈ �}. A function g that maps the parameters θ of

the model implied joint distribution onto a causal quantity γ is called causal effect function. This
idea is illustrated in Fig. 1 and stated in Definition 5.

Definition 5. (causal quantity and causal effect function) Let γ be an r -dimensional feature of
the interventional distribution. Let�γ ⊆ � be an s-dimensional subspace of the parameter space
of the model implied joint distribution of observed variables. A mapping g

g : �γ �→ R
r , with γ = g(θγ ), θγ ∈ �γ ⊆ R

s, γ ∈ R
r (11)

is called a causal effect function. The image γ of a causal effect function is called a causal quantity
which is parametrized by θγ . If the value of a causal quantity depends on other variables (e.g., the
interventional level x ∈ R

Kx , the values vN ∈ R
n−Kx of non-interventional variables), we include

these variables as auxiliary arguments in the causal effect function separated by a semicolon (e.g.,
g(θγ ; x, vN )).

This idea can be applied to the interventional mean fromEq. (6a) by defining it as a causal quantity
γ 1 as follows:

γ 1 := E(V | do(x)) = g1(θF ; x) = (In − INC(θF ))−11Ix (12a)

g1 : � ⊇ �F �→ R
n ⊆ � (12b)

The right-hand side of Eq. (12a) is free of the do-operator and contains the parameter vector θF
(structural coefficients ) as amain argument and the interventional level x as an auxiliary argument.
Thus, the causal effect function g1 maps the parameter vector θF onto the interventional mean.
The interventional mean is an n×1 vector and therefore the co-domain of g1 isR

n (i.e., r = n), as
stated in Eq. (12b). Note that the causal effect function g1 depends on the distinct and functionally
unrelated structural coefficients θF but is independent of the parameters from the error term
distribution θP . Therefore, the domain of g1 is �F and s = q.

The interventional covariance matrix from Eq. (6b) can be expressed using the notation from
Definition 5 as follows:

γ 2 : = vech(V(V | do(x))) = g2(θ)

= vech
(
(In − INC(θF ))−1IN�(θP )IN (In − INC(θF ))−ᵀ

)
(13)

To avoid matrix valued causal effect functions, we defined γ 2 as the half-vectorized interventional
covariance matrix, which is of dimension r = n(n + 1)/2 (the operator vech stands for half-
vectorization). The interventional covariancematrix is a function of both the structural coefficients
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θF and the entries of the covariance matrix θP . Thus, θγ 2
= θ and s = q + p. No auxiliary

arguments are included in the causal effect function g2, since the value of γ 2 only depends on the
values of θ (recall that In, IN , 1I are constant zero-one matrices).

The interventional pdf f (vN | do(x)) from Eq. (9) can be formally defined as a causal effect
function as follows:

γ3 :=g3(θ; x, vN ) = (2π)−
n−Kx

2 |T2(θF )�(θP )T2(θF )ᵀ|− 1
2

× exp

(
−1

2
(vN − a2(θF )x)ᵀ(T2(θF )�(θP )T2(θF )ᵀ)−1(vN − a2(θF )x)

)
(14)

The interventional density depends on both the structural coefficients and the parameters of the
error term distribution, yielding θγ3 = θ , �γ3 = � and s = q + p. The interventional density
is scalar-valued and thus r = 1. Since the value of the interventional pdf depends on x and vN ,
both are included as auxiliary arguments in the causal effect function g3, namely g3(θ; x, vN ).

Probabilities of interventional events can be understood as a causal quantity in the following
way:

γ4 := P(ylow ≤ y ≤ yup | do(x)) = g4(θγ4; x, ylow, yup) =
∫ yup

ylow
f (y | do(x))dy (15)

Where θγ4 is the subset of parameters that appear in the marginal interventional pdf f (y | do(x)).
The causal effect function g4 is a scalar-valued and thus r = 1. The value of the interventional
probability depends on x, ylow, and yup (y integrates out), which are included as auxiliary argu-
ments in the causal effect function g4.

Identification of Parametrized Causal Quantities

The meaning of the term “identification” as used in the nonparametric graph-based approach
slightly differs from the meaning in the field of traditional SEM. A graph-based causal quantity is
said to be identified if it can be expressed as a functional of joint, marginal, or conditional distri-
butions of observed variables (Pearl, 2009). The latter distributions can in principle be estimated
based on observational data using nonparametric statistical models. In other words, an identified
nonparametric causal quantity could in theory be computed from an infinitely large sample with-
out further limitations.10 Graph-based tools for identification exploit the causal structure depicted
in the causal graph and are independent of the functional form of the structural equations. Thus,
causal identification is established in the absence of the risk of misspecification of the functional
form.

By contrast, model identification in traditional parametric SEM relies on the solvability of a
system of nonlinear equations in terms of a finite number of model parameters. A single parameter
θ ∈ � is identified if it can be expressed as a function of moments of the the joint distribution of
observed variables in a uniqueway (Bekker et al., 1994; Bollen&Bauldry, 2010). If all parameters
in θ are identified, then themodel is identified. Definition 6 uses causal effect functions to combine
the above ideas.

10In practice, nonparametric estimation of multivariate distributions requires certain regularity conditions and large
sample sizes due to reduced rates of convergence (as compared to parametric estimation procedures). This practical
limitation will be particularly pronounced in high dimensional systems with continuous variables, a phenomenon known
as the curse of dimensionality.
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Definition 6. (causal identification of parametrized causal quantities) Let γ be a parametrized
causal quantity in a linear graph-based model. γ is said to be causally identified if (i) it can be
expressed in a unique way as a function of the parameter vector θγ via a causal effect function,
namely γ = g(θγ ), and (ii) the value of θγ can be uniquely computed from the joint distribution
of the observed variables.

Based on this insight, graph-based techniques for causal identification in linear models have
been derived, for example by Brito and Pearl (2006); Drton, Foygel, and Sullivant (2011); Kuroki
and Cai (2007). Furthermore, part (ii) of the above definition has been dealt with extensively in
the literature on traditional linear SEM (see, e.g., Bekker et al., 1994; Bollen, 1989; Fisher, 1966;
Wiley, 1973).

We now illustrate Definition 6 for the causal quantities defined in Eqs. (22a) and (22b) from
the illustration section. For the interventional mean stated in Eq. (22a), part (i) of the definition is
satisfied, since the causal quantity γ1 can be expressed as a function of the parameter θγ1 = cyx
in a unique way as follows: γ1 := E(Y3 | do(x2)) = g1(θγ1; x2) = cyx x2. Part (ii) of the above
definition requires that the single structural coefficient cyx can be uniquely computed from the
joint distribution of the observed variables.

Similarly, part (i) of the definition is satisfied for the the causal quantity γ2 := V(Y3 |
do(x2)) = g2(θγ2) in Eq. (22b). Part (ii) of the above definition requires that each of the
structural coefficients and (co)variances on the right-hand side of Eq. (22b), namely θγ2 =
(cyx , cyy, ψx1x1, ψx1y1, ψy1y1 , ψy1y2 , ψy2 y3 , ψyy)

ᵀ, can be uniquely computed from the joint dis-
tribution of the observed variables.

Note that both of the causal quantities discussed above require only a subset of parameters
to be identified (i.e., it is not required to identify the entire model θ ). After causal identification
of a parametrized causal quantity has been established, it can be estimated from a sample using
the techniques described in the following section.

Estimation of Causal Quantities

Estimators of causal quantities as defined in Eq. (11) are constructed by replacing the parameters
in the causal effect function with a corresponding estimator, namely γ̂ = g(̂θγ ). This plug-in
procedure is summarized in the following definition.

Definition 7. (estimation of parametrized causal quantities) Let γ be an identified causal quantity
in a linear graph-based models and g(θγ ) the corresponding causal effect function. Let θ̂ γ denote
an estimator of θγ , then γ̂ := g(̂θγ ) is an estimator of the causal quantity γ .

A main strength of the traditional SEM literature is that a variety of estimation procedures have
been developed. Common estimation techniques include maximum likelihood (ML; Jöreskog,
1967; Jöreskog & Lawley, 1968), generalized least squares (GLS; Browne, 1974), and asymp-
totically distribution free (ADF; Browne, 1984).11 Note that some estimation techniques do not
rely on the assumption of multivariate normal error terms and for others robust versions have
been proposed that allow for certain types of deviations from multivariate normality (Satorra &
Bentler, 1994; Yuan & Bentler, 1998).

In the following, we assume that causal effect functions g and estimators θ̂ γ satisfy certain
regularity conditions stated as Properties A.1 and A.2 in the Appendix. The following theorem
establishes the asymptotic properties of estimators of causal quantities γ̂ = g(̂θγ ).

11Additional estimation techniques include two- and three-stage least squares (2SLS, 3SLS; Bollen, 1996; Sargan,
1988; Theil, 1971), instrumental variables (IV; Bowden & Turkington, 1985), and generalized methods of moments
(GMM; Bollen et al., 2014; Hansen, 1982; Hayashi, 2011).
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Theorem 8. (asymptotic properties of estimators of causal quantities) Let γ be a causal quantity
and g(θγ ) the corresponding causal effect function. Let θ̂ γ be an estimator of θγ . Assume that g
and θ̂ γ satisfy Property A.1 and Property A.2, respectively.

γ̂ = g(̂θγ )
p−→ g(θ∗

γ ) = γ ∗ (16a)
√
N
(
γ̂ − γ ∗) d−→ Nr

(
0r , AV(

√
N γ̂ )

)
(16b)

with AV(
√
N γ̂ ) := ∂g(θγ )

∂θ
ᵀ
γ

∣∣∣
θγ =θ∗

γ

AV(
√
N θ̂ γ )

∂g(θγ )

∂θγ

∣∣∣
θγ =θ∗

γ

(16c)

Where θ∗
γ denotes the true population value and

p−→ (
d−→) refers to convergence in probability

(distribution) as the sample size N tends to infinity. AV(
√
N θ̂γ ) denotes the covariance matrix of

the limiting distribution.

Proof. The results are obtained via a straightforward application of standard results on trans-
formations of convergent sequences of random variables (Mann & Wald, 1943; Serfling, 1980,
Chapter 1.7), one of which is known as the multivariate delta method (Cramér, 1946; Serfling,
1980, Chapter 3.3). �	
Theorem 8 establishes that the estimator γ̂ = g(̂θγ ) is consistent and converges at a rate of N− 1

2

to the true population value γ ∗ = g(θ∗
γ ). The rate of convergence is independent of the finite

number of parameters and variables in the model. If the causal effect function contains auxiliary
variables, then the results in Theorem 8 hold pointwise for any fixed value combination of the
auxiliary variable.

Note that the results in Theorem 8 hold whenever an estimator satisfies Property A.2 and
they do not depend on a particular estimation method. However, if θγ is estimated via maximum
likelihood, the proposed estimator γ̂ of the causal quantity has the following property:

Theorem 9. (asymptotic efficiency of γ̂ = g(̂θ
ML
γ )) Let the situation be as in Theorem 8 and

θ̂
ML
γ denote the maximum likelihood estimator of θγ . Then, the estimator γ̂ = g(̂θ

ML
γ )

(i) is the maximum likelihood estimator γ̂ ML of the causal quantity γ ;
(ii) is asymptotically efficient, namely the asymptotic covariancematrixAV(

√
N γ̂ ) reaches

the Cramér–Rao lower bound.

Proof. Result (i) is a direct consequence of the functional invariance of theML-estimator (Zehna,
1966; see, for example, Casella & Berger, 2002, Chapter 7.2) and result (ii) was established by
Cramér (1946) and Rao (1945). �	

To make inference feasible in practical applications, a consistent estimator of AV(
√
N γ̂ ) is

required.

Corollary 10. (consistent estimator of AV(
√
N γ̂ )) Let the situation be as in Theorem 8 and let

the estimator of AV(
√
N γ̂ ) be defined as:

ÂV(
√
N γ̂ ) := ∂g(θγ )

∂θ
ᵀ
γ

∣∣∣
θγ =θ̂ γ

ÂV(
√
N θ̂ γ )

∂g(θγ )

∂θγ

∣∣∣
θγ =θ̂ γ

(17)

Then, ÂV(
√
N γ̂ ) is a consistent estimator of AV(

√
N γ̂ ) if ÂV(

√
N θ̂ γ )

p−→ AV(
√
N θ̂ γ ).
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Proof. Note that the partial derivatives ∂g(θγ )

∂θ
ᵀ
γ

are continuous (see Property A.1) and that θ̂ γ
p−→

θ∗
γ holds (see Property A.2). Thus, the result is a direct consequence of standard results on

transformations of convergent sequences of random variables (Mann & Wald, 1943; Serfling,
1980, Chapter 1.7). �	

Equation (17) states that estimates of the asymptotic covariance matrix of a causal quantity γ̂

can be computed based on (i) the estimate of the asymptotic covariancematrix ÂV(
√
N θ̂ γ ), and (ii)

the Jacobian matrix ∂g(θγ)

∂θ
ᵀ
γ

(evaluated at θ̂ γ ). Estimation results for (i) the asymptotic covariance

matrix depend on the estimation method that is used to obtain θ̂ γ . For many standard procedures
(e.g., 3SLS, ADF, GLS, GMM, ML, IV), theoretical results on the asymptotic covariance matrix
are available in the corresponding literature and estimators are implemented in various software
packages (e.g., seeMuthén &Muthén, 1998-2017; Rosseel, 2012). Explicit expressions of (ii) the
Jacobian matrices for the causal effect functions g1, g2, g3, and g4 are provided in the following
corollary.

Corollary 11. (Jacobian matrices of basic causal effect functions) Let the causal effect functions
g1, g2, g3, and g4 be defined as in Eqs. (12a), (13), (14), and (15), respectively. Then, the Jacobian
matrices with respect to θ are given by:

∂g1(θγ 1
; x)

∂θᵀ = (
(xᵀ1ᵀ

I(In − INC)−ᵀ) ⊗ ((In − INC)−1IN ))
)∂vecC

∂θᵀ (18a)

∂g2(θγ 2
)

∂θᵀ = Ln
[
G2,C

∂vecC
∂θᵀ + G2,�

∂vec�
∂θᵀ

]
(18b)

∂g3(θγ3; x, vN )

∂θᵀ = f (vN | do(x))[G3,μ,G3,�
]
(

1ᵀ
N

∂g1(θγ 1 ;x)
∂θᵀ

(1ᵀ
N ⊗ 1ᵀ

N )Dn
∂g2(θγ 2 )

∂θᵀ

)
(18c)

∂g4(θγ4; x, ylow, yup)
∂θᵀ = [

G4,μ,G4,σ 2
]
(

ıᵀj
∂g1(θγ 1 ;x)

∂θᵀ

ıᵀ( j−1)n+ j Dn
∂g2(θγ 2 )

∂θᵀ

)
(18d)

Where the unit vector in the upper entry of the vector in Eq. (18d) is of dimension (n× 1) and the
unit vector in the lower entry is of dimension (n2 ×1). The matrices denoted byG and a subscript
are defined as follows:

G2,C := (In2 + Kn)
[
((In − INC)−1IN�IN ) ⊗ In

][
(In − INC)−ᵀ ⊗ ((In − INC)−1IN )

]

G2,� := [
(In − INC)−1 ⊗ (In − INC)−1](IN ⊗ IN )

G3,μ := (vN − μN )ᵀ�−1
N

G3,� := 1

2

([
(vN − μN )ᵀ ⊗ (vN − μN )ᵀ

]
(�−1

N ⊗ �−1
N ) − vec(�−1

N )ᵀ
)

G4,μ := − 1

σy

[
φ

(
yup − μy

σy

)
− φ

(
ylow − μy

σy

)]

G4,σ 2 := − 1

2σ 2
y

[
φ

(
yup − μy

σy

)(
yup − μy

σy

)
− φ

(
ylow − μy

σy

)(
ylow − μy

σy

)]

WhereLn ,Dn , andKn denote the eliminationmatrix, duplicationmatrix, and commutationmatrix
for n×n-matrices, respectively (Magnus & Neudecker, 1979, 1980).μy and σy denote univariate
inerventional moments.

Proof. See Appendix. �	
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Figure 2.
Causal Graph (ADMG) in the Absence of Interventions. Figure 2 displays the ADMG corresponding to the linear graph-
basedmodel. The dashed bidirected edge drawn between X1 and Y1 represents a correlation due to an unobserved common
cause. Directed edges are labeled with the corresponding path coefficients that quantify direct causal effects. For example,
the direct causal effect of X2 on Y3 is quantified as cyx . Traditionally, disturbances (residuals, error terms), denoted by ε
in Eq. (19), are not explicitly drawn in an ADMG.

Note that the Jacobian matrix for interventional probabilities stated in Eq. (18d) is given for a
single outcome variable Y = Vj (i.e., |Y| = Ky = 1). For simplicity of notation, the derivatives
in Corollary 11 are takenwith respect to the entire parameter vector θ . Recall that a causal quantity

is a function of the s × 1 subvector θγ . Consequently, the r × (q + p) Jacobian matrix ∂g(θγ )

∂θᵀ will
contain (q + p − s) columns with zero entries that can be eliminated by pre-multiplication with
an appropriate selection matrix.

These asymptotic results canbeused for approximate causal inference basedonfinite samples,
as will be illustrated in the following section.

Illustration

We illustrate the method proposed in the previous paragraphs using simulated data. In this way,
the data-generating process is known and we know with certainty that the model is correctly
specified. For didactic purposes, we link the simulated data to a real-world example: The data are
simulated according to a modified version of the model used in a study by Ito et al. (1998).12

Our simulation mimics an observational study where N = 100 persons are randomly drawn
from a target population of homogeneous individuals and measured at three successive (
t =
6 min) occasions. Variables X1, X2, X3 represent mean-centered blood insulin levels at three
successivemeasurement occasionsmeasured inmicro international units per milliliter (mcIU/ml).
Variables Y1,Y2,Y3 represent mean-centered blood glucose levels measured in milligrams per
deciliter (mg/dl).Mean-centered blood glucose levels below−40mg/dl or above 80mg/dl indicate
hypo- or hyperglycemia, respectively. Both hypo- and hyperglycemia should be avoided, yielding
an acceptable range for blood glucose levels of [ylow, yup] = [−40, 80]. The graph of the assumed
linear graph-based models is depicted in Fig. 2.

Each directed edge corresponds to a direct causal effect and is quantified by a nonzero
structural coefficient. We assume that direct causal effects are identical (stable) over time. For

example, we assign the same parameter cyx to the directed edges X1
cyx→ Y2 and X2

cyx→ Y3 to
indicate that we assume time-stable direct effects of Xt−1 on Yt . The absence of a directed edge

12A more detailed description of the data simulation is provided in the online supplementary material.
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from, say, X1 to Y3 in the ADMG encodes the assumption that there is no direct effect of insulin
levels at t = 1 on glucose levels at t = 3. In other words, we assume that X1 only indirectly
affects Y3 via X2 or via Y2. Furthermore, we assume the absence of effect modification which
justifies the use of the following system of linear structural equations:

⎛

⎜⎜⎜⎜⎜⎜⎝

X1
Y1
X2
Y2
X3
Y3

⎞

⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
V

=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
cxx cxy 0 0 0 0
cyx cyy 0 0 0 0
0 0 cxx cxy 0 0
0 0 cyx cyy 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C

⎛

⎜⎜⎜⎜⎜⎜⎝

X1
Y1
X2
Y2
X3
Y3

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎝

εx1
εy1
εx2
εy2
εx3
εy3

⎞

⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ε

(19)

Each bidirected edge in the ADMG indicates the existence of an unobserved confounder. In linear
graph-based models, unobserved confounders are formalized as covariances between error terms.
The covariance matrix of the error terms implied by the graph is given by:

� =

⎛

⎜⎜⎜⎜⎜⎜⎝

ψx1x1 ψx1y1 ψx1x2 0 0 0
ψx1y1 ψy1y1 0 ψy1y2 0 0
ψx1x2 0 ψxx ψxy ψx2x3 0
0 ψy1y2 ψxy ψyy 0 ψy2 y3
0 0 ψx2x3 0 ψxx ψxy

0 0 0 ψy2 y3 ψxy ψyy

⎞

⎟⎟⎟⎟⎟⎟⎠
(20)

The entriesψx1x1 ,ψy1y1 andψx1y1 describe the (co-)variances of the initial values of blood insulin
and blood glucose. (Co-)Variances of error terms at time 2 and time 3 are assumed to be constant
and are denoted as ψxx , ψyy , and ψxy . Serial correlations in the X -series (Y -series) are denoted
by ψx1x2 , ψx2x3 (ψy1y2 , ψy2y3 ). The covariances COV(Xt ,Yt ), t = 1, 2, 3, encode the assumption
that the contemporaneous relationship of blood insulin and blood glucose is confounded. The
absence of a bidirected edge between Xt and Yt+1 encodes the assumption that there are no
unobserved confounders that affect the lagged relationship of blood insulin and blood glucose.

Further, we assume that the error terms follow a multivariate normal distribution. Thus,
the linear graph-based model is parametrized by the following vector of distinct, functionally
unrelated and unknown parameters: θᵀ = (θ

ᵀ
F , θ

ᵀ
P ) with θ

ᵀ
F = (cxx , cxy, cyx , cyy) and θ

ᵀ
P =

(ψx1x1, ψy1y1 , ψx1y1, ψxx , ψyy, ψxy, ψx1x2 , ψx2x3 , ψy1y2 , ψy2 y3).
We are interested in the effect of an intervention on blood insulin at the second measurement

occasion (i.e., X2) on blood glucose levels at the third measurement occasion (i.e., Y3). We set the
interventional level of blood insulin to one standard deviation, namely x2 = √

V(X2) = 11.54.
The graph of the causal model under the intervention do(x2) is depicted in Fig. 3.

Based on the above description of the research situation and the hypothetical experiment, all
terms in Definition 1 are uniquely determined and given by:

n = 6, X = {X2}, Y = {Y3}, Kx = Ky = 1, I = {3}, N = {1, 2, 4, 5, 6}

x = x2 = √
V(X2), 1I =

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
, 1N =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
, IN =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
(21)
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Figure 3.
Causal Graph (ADMG) Under the Intervention do(x2). Figure 3 displays the ADMG of the graph-based model under the
intervention do(x2). Edges that enter node X2 (i.e., that have an arrowhead pointing at node X2) are removed since the
value of X2 is now set by the experimenter via the intervention do(x2). The interventional value x2 is neither determined
by the values of the causal predecessors of X2 nor by unobserved confounding variables. All other causal relations are
unaffected by the intervention reflecting the assumption of modularity.

The target quantity of causal inference in this example is the interventional distribution
P(Y3 | do(x2)), which can be characterized, for example, by the following causal quantities:13

γ1 :=E(Y3 | do(x2)) = cyx x2 (22a)

γ2 :=V(Y3 | do(x2)) = c2yx c
2
yyψx1x1 + c4yyψy1y1 + 2cyxc

3
yyψx1y1 + (1 + c2yy)ψyy

+2c3yyψy1y2 + 2cyyψy2y3 (22b)

γ3 := f (y3 | do(x2)) = (2π)−
1
2 (V(Y3 | do(x2)))− 1

2 exp

(
−1

2

(y3 − cyx x2)2

V(Y3 | do(x2))
)

(22c)

γ4 :=P(ylow ≤ Y3 ≤ yup | do(x2)) =

�

(
yup − E(Y3 | do(x2))√

V(Y3 | do(x2))
)

− �

(
ylow − E(Y3 | do(x2))√

V(Y3 | do(x2))
)

(22d)

Where � denotes the cumulative distribution function (cdf) of the standard normal distribution.
A central goal of a treatment at time 2 (i.e., do(x2)) is to avoid hypo- or hyperglycemia at time
3. We therefore refer to the event {ylow ≤ Y3 ≤ yup | do(x2)} as treatment success. Using this
terminology, the causal quantity γ4 from Eq. (22d) is called the probability of treatment success.

The causal effect functions corresponding to these causal quantities are stated below and
satisfy Property A.1:

γ1 = g1(θγ1; x2), with θγ1 = cyx (23a)

γ2 = g2(θγ2), with θγ2 = (cyx , cyy, ψx1x1, ψx1y1 , ψy1y1, ψy1y2 , ψy2 y3, ψyy)
ᵀ (23b)

γ3 = g3(θγ3; x2, y3), with θγ3 = θγ2 (23c)

γ4 = g4(θγ4; x2, ylow, yup), with θγ4 = θγ2 (23d)

Figure 4 displays the pdfs of interventional distributions that result from three distinct (hypothet-
ical) experiments where different interventional levels are chosen, namely −11.54, 0, and 11.54.

13For the detailed derivation of analytic expressions and computational details, we refer the reader to the online
supplementary material.
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Figure 4.
Interventional Distributions for Three Distinct Treatment Levels. Figure 4 displays several features of the interventional
distribution for three distinct interventional levels x2 = 11.54 (solid), x ′

2 = 0 (dashed), and x ′′
2 = −11.54 (dotted). The

pdfs of the interventional distributions are represented by the bell-shaped curves. The interventional means are represented
by vertical line segments. The interventional variances correspond to the width of the bell-shaped curves and are equal
across the different interventional levels. The probabilities of treatment success are represented by the shaded areas below
the curves in the interval [−40, 80].

Note that the interventional mean γ1 = g1(θγ1; x2) is functionally dependent on the interven-
tional level x2 (see also Eq. [22a]). Thus, the location of the interventional distributions in Fig. 4
depends on the interventional level x2. By contrast, the interventional variance γ2 = g2(θγ2) is
functionally independent of x2 (see also Eq. [22b]). Consequently, the scale of the interventional
distributions in Fig. 4 is the same for all interventional levels.

Equations 23(a-d) display the causal effect functions corresponding to the causal quantities
γ1, . . . , γ4. Definition 6 states that the parametrized causal quantities γ1, . . . , γ4 are identified
if the corresponding parameters θγ1 , θγ2 , θγ3 , and θγ4 can be uniquely computed from the joint
distribution of the observed variables. We show in the Appendix that the values of the entire
parameter vector θ can be uniquely computed from the joint distribution of the observed variables.
In fact, the values of θ can be uniquely computed from the covariance matrix of the observed
variables.14

The joint distribution of the observed variables is given by {P(v, θ) | θ ∈ �}, where P is the
family of 6-dimensional multivariate normal distributions. We estimated all parameters simul-
taneously by minimizing the maximum likelihood discrepancy function of the model implied

covariancematrix and the sample covariancematrix. TheML-estimator θ̂
ML

is consistent, asymp-
totically efficient, and asymptotically normally distributed (Bollen, 1989) and therefore satisfies
Property A.2. Additionally, the asymptotic covariance matrix of the ML-estimator is known (e.g.,
see Bollen, 1989) and consistent estimates thereof are implemented in many statistical software
packages (e.g., in the R package lavaan; Rosseel, 2012). The corresponding estimation results for
θ are displayed in Table 1.

Since Property A.1 and Property A.2 are satisfied, the asymptotic properties of the estimators
γ̂1, γ̂2, γ̂3 and γ̂4 can be established via Theorem 8. The Jacobian matrices of the causal effect
functions in Eq. (23) can be calculated according toCorollary 11. Estimates of the causal quantities
are reported in Table 2 together with estimates of the asymptotic standard errors and approximate
z-values.

From Theorem 8, we know that γ̂3 = g3(̂θγ3; x2, y3) = f̂ (y3 | do(x2)) p−→ f (y3 | do(x2))
holds pointwise for any (y3, x2) ∈ R

2. Figure 5 displays the estimated interventional pdf together

14Put more technically, we show that the model is locally identified using a generalized version of Wald’s (1950) rank
rule (Bekker et al., 1994). Given the triangular structure of the matrix of structural coefficients and the special structure of
the covariance restrictions, we believe that the model is also globally identified (Hausman & Taylor, 1983; Hsiao, 1983).
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with its population counterpart as well as pointwise asymptotic confidence intervals for the fixed
interventional level x2 = 11.54 over the range y3 ∈ [−100, 100].

Figure 5 shows that a sample size of N = 100 yields very precise estimates of the interven-
tional pdf over the whole range of values y3 ∈ [−100, 100], which is a consequence of the rate

of convergence N− 1
2 established in Theorem 8.

Figure 6 displays the estimated probability that the blood glucose level falls into the acceptable
range (i.e., hypo- and hyperglycemia are avoided) at t = 3, given an intervention do(x2) on
blood insulin at t = 2, as a function of the interventional level x2. Just like in the case of the
interventional pdf, Fig. 6 shows that a sample size of N = 100 yields very precise estimates of
interventional probabilities over the whole range of values x2 ∈ [−50, 50]. Given the intervention
do(x2 = 11.54), the probability of treatment success (i.e, blood glucose levelwithin the acceptable
range at t = 3) equals .85, as depicted in Fig. 6. Since the curve in Fig. 6 displays a unique (local

Table 1.
Parameters in the Linear Graph-Based Model.

Structural coefficients

cxx cxy cyx cyy

Population 0.05 0.4 −0.6 1.2
Estimate 0.08 0.39 −0.52 1.18
Est. ASE 0.08 0.03 0.09 0.04
z-value 1.00 13.00 −5.78 29.50

Variance-covariance parameters

ψx1x1 ψy1y1 ψx1y1 ψxx ψyy ψxy ψx1x2 ψx2x3 ψy1y2 ψy2 y3

Population 131.76 632.94 254.12 20 40 3 15 2 35 10
Estimate 126.32 601.85 241.19 22.15 35.88 1.71 16.57 2.31 28.96 9.03
Est. ASE 17.02 83.23 35.83 2.58 3.93 1.93 2.71 1.78 7.07 3.29
z-value 7.42 7.23 6.73 8.59 9.13 0.89 6.11 1.30 4.10 2.74

The estimation results θ̂
ML

for the model parameters θ (using a covariance-based maximum likelihood
estimator with N = 100) are displayed together with the true population values used for data simulation.
The z-values are reported for the null hypothesis of a population quantity equal to zero. Structural coefficients
are displayed in the upper part, and the variance–covariance parameters are displayed in the lower part. ASE
= asymptotic standard error.

Table 2.
Causal Quantities in the Linear Graph-Based Model.

γ̂1 γ̂2 γ̂
†
3 γ̂

†
4

Population −0.6000x2 1096.3855 0.0120 0.8368
Estimate −0.5217x2 1007.2180 0.0123 0.8545
Est. ASE 0.0909x2 146.7012 0.0009 0.0007
z-value −5.7393 6.8658 13.6667 1220.71

The estimation results for the causal quantities γ1, γ2, γ3, and γ4 are displayed together with the population
values used for data simulation. The z-values are reported for the null hypothesis of a population quantity
equal to zero. † The estimates γ̂3 and γ̂4 depend on x2, y3, y

low
3 , or yup3 in a nonlinear way. The displayed

quantities are calculated for x2 = 11.54, y3 = 0, ylow3 = −40 and yup3 = 80. ASE = asymptotic standard
error.
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Figure 5.
Estimate of the Probability Density Function of the Interventional Distribution. Figure 5 displays the estimated interven-
tional pdf f̂ (y3 | do(x2 = 11.54)) (black solid line) with pointwise 95% confidence intervals, that is,±1.96 · ÂSE[ f̂ (y3 |
do(x2 = 11.54))] (gray shaded area). The true population interventional pdf f (y3 | do(x2 = 11.54)) is displayed by the
gray dashed line.

and global) maximum, the interventional level can be chosen such that the probability of treatment
success is maximized. The maximal probability of treatment success is equal to .94 and can be
obtained by administering intervention do(x∗

2 = −38.3). Note that the curve is relatively flat
around its maximum, meaning that slight deviations from the optimal treatment level will result
in a small decrease in the probability of treatment success.

Interventional Distribution vs. Conditional Distribution

To illustrate the conceptual differences between the interventional and conditional distribution,
we use the numeric population values from the first row of Table 1 and Table 2, respectively. The
interventional distribution is given by P(Y3 | do(x2)) = N1(−0.6x2 , 1096.39) and it differs from

Figure 6.
Estimated Probability of Treatment Success. Figure 6 displays the estimated probability of treatment success (i.e., γ̂4 =
P̂(−40 ≤ Y3 ≤ 80 | do(x2)); black solid line) as a function of the interventional level x2. The pointwise confidence
intervals ±1.96 · ÂSE[P̂(−40 ≤ Y3 ≤ 80 | do(x2))] are displayed by the (very narrow) gray shaded area around the
solid black line (see electronic version for high resolution). The vertical dashed lines are drawn at the interventional levels
x2 = 11.54 and x2 = −38.3. The horizontal dashed lines correspond to the probabilities of treatment success for the
treatments do(X2 = 11.54) and do(X2 = −33.3).
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Figure 7.
Marginal, Conditional, and Interventional Distribution. The panels depict (i) the pdf of the unconditional distribution
P(Y3) (top panel), (ii) the conditional distribution P(Y3 | X2 = x2) (middle panel), and (iii) the interventional distribution
P(Y3 | do(x2)) (bottom panel). In (ii) the level x2 = 11.54 mg/dl was passively measured whereas in (iii) the intervention
do(X2 = 11.54) was performed. The central vertical black solid lines are drawn at the mean and shaded areas cover 95%
of the probability mass.

both the conditional distribution, P(Y3 | X2 = x2) = N1(1.76x2 , 353.99), and the unconditional
distribution, P(Y3) = N1(0 , 766.91), as depicted in Fig. 7.15

The unconditional distribution (upper panel) corresponds to a situation where no prior obser-
vation is available and no intervention is performed. Note that the conditional distribution (middle
panel) is shifted to the right (for X2 = 11.54), whereas the interventional distribution (bottom
panel) is shifted to the left for do(X2 = 11.54), as displayed in Fig. 7. The differences displayed
between P(Y3 | X2 = 11.54) and P(Y3 | do(X2 = 11.54)) reflect the fundamental difference
between the mode of seeing, namely passive observation, and the mode of doing, namely active
intervention (Pearl, 2009).

On the one hand, observing a blood insulin level of X2 = 11.54 at the second measurement
occasion leads to an expected value of 20.31 mg/dl for blood glucose at the third measurement
occasion (i.e., E(Y3 | X2 = 11.54) = 1.76·11.54 = 20.31).Using the conditional varianceV(Y3 |
X2 = 11.54) = 353.99 to compute a 95% forecast interval yields P(Y3 ∈ [−16.56, 57.19] |
X2 = 11.54) = .95, as indicated by the shaded area under the curve in the middle panel of Fig. 7.

On the other hand, setting the level of blood insulin to do(X2 = 11.54) at the second occasion
by an active intervention leads to an expected value of −6.92 mg/dl for blood glucose at the third
measurement occasion (i.e., E(Y3 | do(x2 = 11.54)) = −0.60 · 11.54 = −6.92). Using the
interventional variance V(Y3 | do(11.54)) = 1096.39 to compute a 95% forecast interval yields
P(Y3 ∈ [−71.82, 57.97] | do(x2 = 11.54)) = .95, as indicated by the shaded area under the
curve in the bottom panel of Fig. 7.

Based on both the conditional and interventional distribution, valid statements about values
of blood glucose can be made. A patient who measures a high level of insulin at time 2 in the
absence of an intervention (e.g., self-measured monitoring of blood insulin; mode of seeing) will
predict a high level of blood glucose at time 3 based on the conditional distribution. A physician
who actively administers a high dose of insulin at time 2 (e.g., via an insulin injection; mode of
doing) will forecast a low value of blood glucose at time 3 based on the interventional distribution.

15For the detailed derivation of analytic expressions and computational details, we refer the reader to the online
supplementary material.
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Incorrect conclusions arise if the conditional distribution is used to forecast effects of
interventions, or the other way around, the interventional distribution is used to predict future
values of blood glucose in the absence of interventions. For example, a physician who cor-
rectly uses the interventional distribution to choose the optimal treatment level would administer
do(X2 = −38.3), resulting in a 94% probability of treatment success (see Fig. 6). A physician
who erroneously uses the conditional distribution to specify the optimal treatment level would
administer do(X2 = 11.4). Such a non-optimal intervention would result in a 85% probability
of treatment success. Thus, an incorrect decision results in an absolute decrease of 9% in the
probability of treatment success (Gische et al., 2021).

Discussion

Graph-based causal models combine a priori assumptions about the causal structure of the data-
generatingmechanism (e.g., encoded in a ADMG) and observational data tomake inference about
the effects of (hypothetical) interventions. Causal quantities are defined via the do-operator and
may comprise any feature of the interventional distribution (e.g., the mean vector, the covariance
matrix, the pdf). This flexibility allows researchers to analyze effects of interventions beyond
changes in the mean level. Causal effect functions map the parameters of the model implied joint
distribution of observed variables onto causal quantities and therefore enable analyzing causal
quantities using tools from the literature on traditional SEM. We propose an estimator for causal

quantities and show that it is consistent and converges at a rate of N− 1
2 . In case of maximum

likelihood estimation, the proposed estimator is asymptotically efficient.
In the remainder of the paper, we discuss several situations in which linear graph-based

models are misspecified and how the proposed procedure can be extended to be applicable in
such situations.

Causal Structure, Modularity, and Conditional Interventions

A researcher’s beliefs about the causal structure are encoded in the graph. Based on the concept
of d-separation, every ADMG implies a set of (conditional) independence relations between
observable variables that can be tested parametrically (Chen, Tian, & Pearl, 2014; Shipley, 2003;
Thoemmes, Rosseel, & Textor, 2018) or nonparametrically (Richardson, 2003; Tian & Pearl,
2002b). One drawback of these tests is that they only distinguish between equivalence classes of
ADMGs and do not evaluate the validity of a single graph.

One way of dealing with this situation is to further analyze the equivalence class to which a
specified model belongs (Richardson & Spirtes, 2002). Some authors have proposed methods to
draw causal conclusions based on common features of an entire equivalence class instead of using
a single model (Hauser & Bühlmann, 2015; Maathuis, Kalisch, & Bühlmann, 2009; Perkovic,
2020; Zhang, 2008). However, equivalence classes can be large and its members might not overlap
with respect to the causal effects of interest (He & Jia, 2015).

Another approach discussed in the literature is to complement the available observational
data with experimental data. If these experiments are optimally chosen, the size of an equivalence
class can be substantially reduced (Eberhardt, Glymour, & Scheines, 2005; Hyttinen, Eberhardt,
& Hoyer, 2013). The idea of combining observational data and experimental data is theoretically
appealing for many reasons, and it has stimulated the development of a variety of techniques (He
& Geng, 2008; Peters, Bühlmann, & Meinshausen, 2016; Sontakke, Mehrjou, Itti, & Schölkopf,
2020). Most importantly, the combination of observational and interventional data allows differ-
entiating causal models that cannot be distinguished solely based on observational data.
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Furthermore, the availability of experimental evidence enables (partly) testing further causal
assumptions such as the assumption of modularity, which cannot be tested solely based on obser-
vational data. While modularity seems rather plausible if the mechanisms correspond to natural
laws (e.g., chemical or biological processes, genetic laws, laws of physics), it needs additional
reflection if the mechanisms describe human behavior. For example, humans might respond to an
intervention by adjusting behavioral mechanisms different from the one that is intervened on. The
proposed method can readily be adjusted to capture such violations of the modularity assumption
if an intervention changes other mechanisms in a known way. However, if the ways in which
humans adjust their behavior in response to an intervention are unknown, they need to be learned.
Well-designed experiments may be particularly useful for this purpose.

Throughout themanuscript,we focus on specificdo-type interventions that assignfixedvalues
to the interventional variables according to an exogenous rule. However, in practical applications
interventional values are often chosen conditionally on the values of other observed variables. In
our illustrative example, the interventional insulin level at t = 2 might be chosen in response to
the glucose level observed at t = 1. Such situations are discussed in the literature on conditional
interventions (Pearl, 2009) and dynamic treatment plans (Pearl & Robins, 1995; Robins, Hernán,
& Brumback, 2000). In principle, the proposed method can be extended to evaluate conditional
interventions and effects of dynamic treatment plans. However, the derivation of the closed-form
representations of parametrized causal quantities and the corresponding causal effect functions
in these settings require further research.

Finally, consequences of specific violations of non-testable causal assumptions can be gauged
via sensitivity analyses and robustness checks (Ding & VanderWeele, 2016; Dorie, Harada,
Carnegie, & Hill, 2016; Franks, D’Amour, & Feller, 2020; Rosenbaum, 2002).

Effect Modification and Heterogeneity

In this article, we have focused on situations in which direct causal effects are constant across
value combinations of observed variables and error terms. In such situations, the use of linear
models is justified. Statistical tests for linearity of the functional relations exist for both nested
and non-nested models (Amemiya, 1985; Lee, 2007; Schumacker &Marcoulides, 1998). If these
tests provide evidence against linearity, the assumption of constant direct effects is likely to be
violated.

Theoretical considerations often suggest the existence of so-called effect modifiers (mod-
erators), which can be modeled in parametrized graph-based models via nonlinear structural
equations (Amemiya, 1985; Klein & Muthén, 2007). However, a closed-form representation of
the entire interventional distribution in case of nonlinear structural relations cannot be derived via
a direct application of the method proposed in this paper. The extent to which the proposed para-
metric method can be generalized to capture common types of nonlinearity (e.g., simple product
terms that capture certain types of effect modification) is a focus of ongoing research. Preliminary
results suggest that parametrized closed-form expressions of certain features of the interventional
distribution (e.g., its moments) can be obtained (Kan, 2008; Wall & Amemiya, 2003), which in
turns enables analyzing ATEs and other causal quantities.

Furthermore, we assumed that direct causal effects quantified by structural coefficients are
equal across individuals in the population. However, (unobserved) heterogeneity in mean levels or
direct effectsmight be present inmany applied situations. A common procedure to capture specific
types of unobserved heterogeneity is to include random intercepts or random coefficients in panel
data models (Hamaker, Kuiper, & Grasman, 2015; Usami, Murayama, & Hamaker, 2019; Zyphur
et al. 2019). Gische et al. (2021) apply the method proposed in this paper to linear cross-lagged
panel models with additive person-specific random intercepts and show how absolute values of
optimal treatment levels differ across individuals.
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Even though additive random intercepts capture unobserved person-specific differences in the
mean levels of the variables, these models still imply constant effects of changes in treatment level
across persons. The latter implication might be overly restrictive in many applied situations in
which treatment effects vary across individuals (e.g., different patients respond differently to vari-
ations in treatment level). An extension of the proposed methods to more complex dynamic panel
data models (e.g., models including random slopes) requires further research. Several alternative
approaches to model effect heterogeneity have been proposed for example within the social and
behavioral sciences (Xie, Brand, & Jann, 2012), economics (Athey & Imbens, 2016), the political
sciences (Imai & Ratkovic, 2013), and the computer sciences (Nie & Wager, 2020; Wager &
Athey, 2018).

Measurement Error and Non-Normality

We assumed that variables are observed without measurement error. The proposed method can be
extended to define, identify, and estimate causal effects among latent variables. In other words,
measurement errors and measurement models can be included. The model implied joint distri-
bution of observed variables in latent variable SEM is known (Bollen, 1989), and the derivation
of the parametric expressions for causal quantities and causal effect functions in such models is
subject to ongoing research.

However, measurement models for latent variables often can only mitigate measurement
error issues (unless the true measurement model is known and everything is correctly specified).
Furthermore, the degree to which interventions on certain types of latent constructs is feasible in
practice needs further discussion (e.g., see Bollen, 2002; Borsboom,Mellenbergh,& vanHeerden,
2003; van Bork, Rhemtulla, Sijtsma, & Borsboom, 2020).

Some population results derived in this paper rely on multivariate normally distributed error
terms (e.g., Result 3), while others do not (e.g., the moments of the interventional distribution
in Eqs. (6a) and (6b) or Theorem 8). For the former results, a systematic analytic inquiry of the
consequences of incorrectly assumingmultivariate normal error terms requires specific knowledge
about the type of misspecification. If such knowledge is not available, one could attempt to
assess the sensitivity of, for example, the interventional pdf, to misspecifications in the error term
distribution via simulation studies.

Some estimation results derived in this paper rely on a known parametric distributional family
of the error terms (e.g., Theorem 9 requires maximum-likelihood estimation), while others do not
(e.g., Theorem 8 ensures consistency of the estimators of causal quantities for a broad class
of estimators including ADF or WLS estimation of θ). Thus, inference about the interventional
moments can be conducted in the absence of parametric assumptions on the error termdistribution.
Furthermore, it has been shown that ML-estimators in linear SEM are robust to certain types of
distributional misspecification but sensitive to others (West, Finch, & Curran, 1995) and robust
estimators have been developed for several types of distributional misspecifications (Satorra &
Bentler, 1994; Yuan & Bentler, 1998).

Conclusion

Causal graphs (e.g., ADMGs) allow researchers to express their causal beliefs in a transparent
way and provide a sound basis for the definition of causal effects using the do-operator. Causal
effect functions enable analyzing causal quantities in parametrized models. They are a flexible
tool that allow researchers to model causal effects beyond the mean and covariance structure
and can thus be applied in a large variety of research situations. Consistent and asymptotically
efficient estimators of parametric causal quantities are provided that yield precise estimates based
on sample sizes commonly available in the social and behavioral sciences.
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Appendix

Proof of Lemma 2. Proof of rank(T1) = n − Kx : The matrix (In − INC)−1 is lower triangular
with ones on the diagonal and thus has full rank n (Lütkepohl, 1997, result 9.14.1(4)(c), p.
165). By construction IN is a diagonal matrix where Kx diagonal elements are equal to zero
which implies rank(IN ) = n − Kx (Lütkepohl 1997, result 9.4(3)(a), p. 120). Thus, rank(T1) =
rank((In − INC)−1IN ) = n − Kx , where the last equality sign follows from result 4.3.1(9) in
Lütkepohl (1997).
Proof of rank(T2) = n − Kx : (In − INC)−1 is a lower triangular matrix of full rank n that
has ones on the diagonal. Postmultiplying (In − INC)−1 with IN sets all columns with index
i ∈ I to zero. Or more formally, [t1]•i = 0n×1, i ∈ I, where [t1]•i denotes the i-th column of
the matrix T1. Similarly, [t1]i• denotes the i-th row of the matrix T1. Thus, all diagonal elements
tii with i ∈ I are equal to zero. Premultiplying T1 with 1ᵀ

N deletes all rows [t1]i• that have an
index i ∈ I. The deleted rows are exactly those rows that have tii = 0 as diagonal elements. The
matrix T2 = 1ᵀ

NT1 contains only those rows of T1 that have a non-interventional index, that is,
rows that have diagonal elements tii equal to 1. The resulting structure of T2 is illustrated below:

T2 =

[t2]•1 . . . [t2]• j2
. . . [t2]• j3

. . . [t2]•n
1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 [t2]1•
∗ ∗ . . . ∗ 1 0 . . . 0 0 0 . . . 0 [t2]2•
∗ ∗ . . . ∗ ∗ ∗ . . . ∗ 1 0 . . . 0 [t2]3•
...

...
...

∗ ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ ∗ . . . 1 [t2](n−Kx )•
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The ordered set of non-interventional indexes is given by N := {1, 2, ..., n} \ I =
{ j1, j2, ..., jn−Kx }. For clarity of display (and without loss of generality), we assume j1 = 1
and jn−Kx = n, that is, variables V1 and Vn are not subject to intervention. Due to the step struc-
ture of the matrix T2 with the rightmost nonzero element of each row equal to one, the matrix T2
has full row rank, that is, rank(T2) = n − Kx . �	
Sketch of proof of local identification of example model. Due to space restrictions and the neces-
sity to state high-dimensional vectors and matrices explicitly, a detailed and fully reproducible
version of the proof is given in the online supplementary material.

Let V = CV + ε be a linear graph-based model as defined in Eq. (2), where n = 6, and C
and � are given in Eq. (19) and (20), respectively. Plugging in these quantities into Eq. (3.3.6)
from Bekker et al. (1994) yields:

J̃ =
(
R�(I36 + K6)(I6 ⊗ �)

RC(I6 ⊗ (I − C)ᵀ)

)
, (43 × 36) (A.1)

The (32 × 36) matrix R� and the (11 × 36) matrix RC encode the zero restrictions and equality
constraints imposed on the covariance matrix and the matrix of structural coefficients in Eqs. (20)
and (19), respectively. ThematrixK6 denotes the commutationmatrix for n×nmatrices (Magnus
& Neudecker, 1979). Theorem 3.3.1 in Bekker et al. (1994) states that under certain regularity
conditions the parameter vector θ is locally identified, if and only if, the Jacobian matrix J̃ has
full column rank. We show that rank(J̃) = 36. The exact form of the restriction matrices R� and
RC, and the Mathematica (Wolfram Research Inc., 2018) code used to evaluate the rank of J̃ are
provided in the online supplementary material. �	
Properties Required for Theorem 8:

Property A.1. (properties of causal effect functions g) Let γ be a causal quantity and g(θγ ) the
corresponding causal effect function. Let g(θγ ) be continuously differentiable with respect to θγ

in a neighborhood around the true population parameter value θ∗
γ ∈ �γ . The r × s matrix of

partial derivatives is non-singular and denoted by ∂g(θγ )

∂θ
ᵀ
γ

. If the causal effect function contains

auxiliary variables, say g(θγ ; x, vN ), then non-singularity of the matrix of partial derivatives is
supposed to hold for any fixed value combination (x, vN ) ∈ R

Kx × R
n−Kx .16

Property A.2. (statistical properties of θ̂ γ ) Let θ̂ γ be an estimator of θγ with:

θ̂ γ
p−→ θ∗

γ (A.2a)
√
N
(
θ̂ γ − θ∗

γ

)
d−→ Ns

(
0s , AV(

√
N θ̂ γ )

)
(A.2b)

Where θ∗ denotes the true population value and
p−→ (

d−→) refers to convergence in probabil-
ity (distribution) as the sample size N tends to infinity. The covariance matrix of the limiting
distribution is denoted as AV(

√
N θ̂ γ ) and is assumed to be finite.17

16Note that the functions g1, g2, g3 and g4 introduced in Eqs. (12a), (13), (14) and (15) satisfy Property A.1 at every
point in the interior of � for any fixed (x, vN ) ∈ R

Kx × R
n−Kx .

17Note that many standard estimators from the field of linear SEM (e.g., 3SLS, ADF, GLS, GMM, ML, IV) satisfy
Property A.2 under fairly general conditions.
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Proof of Corollary 11. We follow the definition of a matrix differential and a matrix derivative
in Magnus and Neudecker (1999). To complete the proof, we make extensive use of results (a)
from matrix differential calculus (Abadir & Magnus, 2005; Magnus & Neudecker, 1999) and (b)
regarding the vec-operator and Kronecker products (e.g., see Lütkepohl, 1997 for an overview).
Proof of Equation (18a):

E(V | do(x)) = (In − INC)−11Ix
⇒ dE(V | do(x)) = d

[
(In − INC)−11Ix

] = (In − INC)−1IN [dC](In − INC)−11Ix
⇔ vec

(
dE(V | do(x))) = vec

(
(In − INC)−1IN [dC](In − INC)−11Ix

)

⇔ dE(V | do(x))) = (
(xᵀ1ᵀ

I(In − INC)−ᵀ) ⊗ ((In − INC)−1IN )
)
dvecC

⇔ dE(V | do(x))) = (
(xᵀ1ᵀ

I(In − INC)−ᵀ) ⊗ ((In − INC)−1IN )
)∂vecC

∂θᵀ
︸ ︷︷ ︸

= ∂E(V|do(x))
∂θᵀ

dθ (A.3)

Note that vec dC = ∂vecC
∂θᵀ dθ holds by definition and that each entry of the matrix C = C(θ) is

either equal to a single element of θ or equal to zero. Thus, the n2 × p Jacobian matrix ∂vecC
∂θᵀ is

a zero-one matrix.
Proof of Equation (18b):

V(V | do(x)) = (In − INC)−1IN�IN (In − INC)−ᵀ

⇒ dV(V | do(x)) = d
[
(In − INC)−1IN�IN (In − INC)−ᵀ]

= (In − INC)−1IN [dC](In − INC)−1IN�IN (In − INC)−ᵀ

+ (In − INC)−1IN [d�]IN (In − INC)−ᵀ

+ (In − INC)−1IN�IN (In − INC)−ᵀ[dCᵀ]IN (In − INC)−ᵀ (A.4)

Vectorizing Eq. (A.4) yields the following term for vec dV(V | do(x)):

(In2 + Kn)
[
((In − INC)−1IN�IN ) ⊗ In

][
(In − INC)−ᵀ ⊗ ((In − INC)−1IN )

]
vec dC

+[(In − INC)−1 ⊗ (In − INC)−1](IN ⊗ IN )vec d� (A.5)

WhereKn denotes the commutation matrix for n× n matrices (Magnus & Neudecker, 1979). For
simplicity of notation, we define the following n2 × n2 matrices:

G2,C := (In2 + Kn)
[
((In − INC)−1IN�IN ) ⊗ In

][
(In − INC)−ᵀ ⊗ ((In − INC)−1IN )

]

G2,� := [
(In − INC)−1 ⊗ (In − INC)−1](IN ⊗ IN )

Substituting G2,C and G2,� into the expression for vec dV(V | do(x)) yields:

vec dV(V | do(x)) = [
G2,C

∂vec C
∂θᵀ + G2,�

∂vec �

∂θᵀ
]

︸ ︷︷ ︸
= ∂vec V(V|do(x))

∂θᵀ

dθ (A.6)
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Note that vec d� = ∂ vec�
∂θᵀ dθ holds by definition and each entry of the matrix � = �(θ) is

either equal to a single element of θ or equal to zero. Thus, the n2 × p Jacobian matrix ∂vec �
∂θᵀ is a

zero-one matrix. Since V(V | do(x)) is symmetric, one oftentimes works with the half-vectorized
version, given by:

vech dV(V | do(x)) = Ln
[
G2,C

∂vec C
∂θᵀ + G2,�

∂vec �

∂θᵀ
]

︸ ︷︷ ︸
= ∂vechV(V|do(x))

∂θᵀ

dθ (A.7)

Where Ln denotes the elimination matrix for n × n matrices Magnus and Neudecker (1980).
Proof of Equation (18c): We treat the interventional pdf f (vN | do(x)) as a function ϕ of the
interventional mean vector and the interventional covariance matrix:

ϕ(μN ,�N ) = (2π)−
n−Kx

2 |�N |− 1
2 × exp

(
−1

2
(vN − μN )ᵀ�−1

N (vN − μN )

)
(A.8a)

μN : = 1ᵀ
NE(V | do(x)) , �N := 1ᵀ

NV(V | do(x))1N (A.8b)

Further, we treat ϕ as a product of two functions, that is, ϕ = ϕ1 · ϕ2, with:

ϕ1(�N ) := (2π)−
n−Kx

2 |�N |− 1
2 (A.9a)

ϕ2(μN ,�N ) := exp

(
−1

2
(vN − μN )ᵀ�−1

N (vN − μN )

)
(A.9b)

We display ϕ from Eq. (A.8a) as a function of ϕ1 and ϕ2 and apply the product rule, yielding:

dϕ = d[ϕ1 · ϕ2] = [dϕ1] · ϕ2 + ϕ1 · [dϕ2] (A.10)

Both ϕ1 and ϕ2 are composite functions:

ϕ1 = g1( f1(�N )), ϕ2 = h2(g2[f21(μN ), f22(�N )]) (A.11)

with:

f1(�N ) = |�N |, R
n×n �→ R (A.12a)

g1( f1) = (2π)−
n−Kx

2 f
− 1

2
1 , R �→ R (A.12b)

f21(μN ) = (vN − μN ), R
n−Kx �→ R

n−Kx (A.12c)

f22(�N ) = �−1
N , R

n×n �→ R
n×n (A.12d)

g2(f21, f22) = fᵀ21f22f21, R
n−Kx × R

n×n �→ R (A.12e)

h2(g2) = exp(−1

2
g2), R �→ R (A.12f)

The differentials of ϕ1 and ϕ2 are computed using Cauchy’s invariance (Magnus & Neudecker,
1999). We start with ϕ1 and compute the differential of the innermost function f1(�N ):

d f1 = |�N |tr(�−1
N d�N ) = |�N |vec (�

−ᵀ
N )ᵀvec d�N = f1vec (�−1

N )ᵀvec d�N (A.13)
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Next, we obtain the differential of g1 with respect to f1:

dg1
d f1

= −1

2
(2π)−

n−Kx
2 f

− 3
2

1 = −1

2
ϕ1 f

−1
1 ⇒ dg1 = −1

2
ϕ1 f

−1
1 d f1 (A.14)

Plugging in Eq. (A.13) into Eq. (A.14) yields:

dϕ1 = dg1
d f1

d f1 = −1

2
ϕ1 f

−1
1 f1vec (�−1

N )ᵀvec d�N = −1

2
ϕ1vec (�−1

N )ᵀvec d�N (A.15)

For ϕ2, we start with the differentials of f21(μN ) and f22(�N ):

df21 = d(vN − μN ) = −dμN ⇒ ∂f21
∂μ

ᵀ
N

= −In−Kx (A.16a)

df22 = d�−1
N = −�−1

N [d�N ]�−1
N ⇒ vec df22 = −(�−1

N ⊗ �−1
N )vec d�N (A.16b)

Next, we obtain the total differential of g2 by applying the product rule twice:

dg2 = d[fᵀ21f22f21] = [dfᵀ21]f22f21 + fᵀ21[df22]f21 + fᵀ21f22df21
= 2fᵀ21f22df21 + (fᵀ21 ⊗ fᵀ21)vec df22 (A.17)

The last mapping that is applied in this chain is h2(g2), which is a scalar function of a scalar
argument:

dh2
dg2

= d
dg2

exp(−1

2
g2) = −1

2
exp(−1

2
g2) = −1

2
ϕ2 ⇒ dh2 = −1

2
ϕ2dg2 (A.18)

Plugging in (A.17) into (A.18) yields:

dϕ2 = dh2
dg2

dg2 = −1

2
ϕ2
[
2fᵀ21f22df21 + (fᵀ21 ⊗ fᵀ21)vec df22

]
(A.19)

Plugging in Eqs. (A.16) into (A.19) yields:

dϕ2 = −1

2
ϕ2(2f

ᵀ
21f22[ − dμN ] + (fᵀ21 ⊗ fᵀ21)[−(�−1

N ⊗ �−1
N )vec d�N ])

= ϕ2
[
fᵀ21f22dμN + 1

2
(fᵀ21 ⊗ fᵀ21)(�

−1
N ⊗ �−1

N )vec d�N
]

(A.20)
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We now insert Eqs. (A.9a), (A.9b), (A.15), and (A.20) into Eq. (A.10):

dϕ = d f (vN | do(x))
=
(

− 1

2
ϕ1vec (�−1

N )ᵀvec d�N
)

ϕ2

+ ϕ1 ·
(

ϕ2
[
fᵀ21f22dμN + 1

2
(fᵀ21 ⊗ fᵀ21)(�

−1
N ⊗ �−1

N )vec d�N
])

= ϕ1ϕ2

[
fᵀ21f22dμN +

(
−1

2
vec (�−1

N )ᵀ + 1

2
(fᵀ21 ⊗ fᵀ21)(�

−1
N ⊗ �−1

N )

)
vec d�N

]

=ϕ

[
(vN−μN )ᵀ�−1

N dμN+1

2

([
(vN−μN )ᵀ ⊗ (vN −μN )ᵀ

]
(�−1

N ⊗ �−1
N ) −vec(�−1

N )ᵀ
)
vecd�N

]

= f (vN | do(x))[G3,μ,G3,�
] ( dμN

vec d�N

)
(A.21)

Where we have resubstituted the expressions for ϕ1, ϕ2, ϕ, f21, f22 and introduced the following
terms for simplicity of notation:

G3,μ := (vN − μN )ᵀ�−1
N

G3,� := 1

2

([
(vN − μN )ᵀ ⊗ (vN − μN )ᵀ

]
(�−1

N ⊗ �−1
N ) − vec (�−1

N )ᵀ
)

From the equations stated in Eq. (A.8b), it immediately follows:

dμN = d[1ᵀ
NE(V | do(x))] = 1ᵀ

N dE(V | do(x)) (A.22)

vec d�N = vec d[1ᵀ
NV(V | do(x))1N ] = (1ᵀ

N ⊗ 1ᵀ
N )vec dV(V | do(x)) (A.23)

Using Eqs. (A.3) and (A.4), we obtain the final result:

d f (vN | do(x)) =

f (vN | do(x))[G3,μ,G3,�
]
(
1ᵀ
N
(
(xᵀ1ᵀ

I(In − INC)−ᵀ) ⊗ ((In − INC)−1IN )
)

∂vec C
∂θᵀ

(1ᵀ
N ⊗ 1ᵀ

N )
(
G2,C

∂vec C
∂θᵀ + G2,�

∂vec �
∂θᵀ

)
)

︸ ︷︷ ︸
∂ f (vN |do(x))

∂θᵀ

dθ

(A.24)

Proof of Equation (18d): The general definition of g4 for a vector of outcome variablesY is given
in Eq. (15). The following derivation is restricted to the case of a single (scalar) outcome variable
Y , that is, |Y| = Ky = 1.

γ4 := P(ylow ≤ y ≤ yup | do(x)) = g4(θγ4; x, ylow, yup) =
∫ yup

ylow
f (y | do(x))dy (A.25)

Let Y be the j-th entry of V. For simplicity of notation, we denote the scalar interventional mean
and the scalar interventional variance as:

μy = μy(θ) := E(y | do(x)) = ıᵀj E(V | do(x)) (A.26a)

σ 2
y = σ 2

y (θ) := V(y | do(x)) = ıᵀjV(V | do(x))ı j (A.26b)
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Again, we take the derivative with respect to the entire parameter vector θ .

∂

∂θᵀ g4(θ; x, yup, ylow) = ∂

∂θᵀ

∫ yup−μy (θ)

σy (θ)

ylow−μy (θ)

σy (θ)
)

φ(u)du =
∫ yup−μy (θ)

σy (θ)

ylow−μy (θ)

σy (θ)
)

∂

∂θᵀ φ(u)du

+ φ

(
yup − μy(θ)

σy(θ)

)
∂

∂θᵀ

[
yup − μy(θ)

σy(θ)

]
− φ

(
ylow − μy(θ)

σy(θ)

)
∂

∂θᵀ

[
ylow − μy(θ)

σy(θ)

]

(A.27)

The last equation sign of Eq. (A.27) follows from Leibniz’s rule for partial differentiation of
an integral (Dieudonné, 1969). The derivative under the integral sign (first term after the last
equation sign) is equal to zero since the pdf of the standard normal φ(u) is functionally inde-
pendent of θ . For simplicity of notation, we use μy and σ 2

y instead of μy(θ) and σ 2
y (θ) in the

following. The two partial derivatives in the second line of Eq. (A.27) have the same structure
ϕ3 = h3[ f31(μy), f32(σ 2

y )] and differ only in the constants yup and ylow. The functions below
are stated for yup and are defined analogously for ylow (we do not state the latter ones explicitly):

f31(μy) = (yup − μy) , R �→ R , f32(σ
2
y ) = (σ 2

y )
− 1

2 , R
+ �→ R

+ (A.28a)

h3( f31, f32) = f31 f32 , R × R
+ �→ R (A.28b)

The corresponding differentials and derivatives are given by:

∂h3
∂ f31

= (σ 2
y )

− 1
2 ,

∂h3
∂ f32

= (yup − μy) ,
d f31
dμy

= −1 ,
d f32
dσ 2

y
= (−1

2
)(σ 2

y )
− 3

2 (A.29)

The differential of ϕ3 = h3[ f31(μy(θ)), f32(σ 2
y (θ))] can be evaluated as follows using the total

differential, Cauchy’s invariance and the chain rule:

dϕ3 = ∂h3
∂θᵀ dθ =

(
∂h3
∂ f31

∂ f31
∂μy

∂μy

∂θᵀ + ∂h3
∂ f32

∂ f32
∂σ 2

y

∂σ 2
y

∂θᵀ

)
dθ (A.30)

Inserting Eqs. (A.28) and (A.29) into Eq. (A.30) yields the following term for yup (analogous for
ylow):

∂h3
∂θᵀ = − 1

σy

∂μy

∂θᵀ − 1

2σ 2
y

(
yup − μy

σy

)
∂σ 2

y

∂θᵀ (A.31)
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Inserting Eqs. (A.28), (A.29), (A.30), and (A.31) into the derivative of the causal effect function
g4 (Eq. [A.27]) and rearranging yields:

∂

∂θᵀ g4(θ; x, yup, ylow) =

φ

(
yup − μy

σy

)(
− 1

σy

∂μy

∂θᵀ − 1

2σ 2
y

(
yup − μy

σy

)
∂σ 2

y

∂θᵀ

)

− φ

(
ylow − μy

σy

)(
− 1

σy

∂μy

∂θᵀ − 1

2σ 2
y

(
ylow − μy

σy

)
∂σ 2

y

∂θᵀ

)
=

− 1

σy

[
φ

(
yup − μy

σy

)
− φ

(
ylow − μy

σy

)]
∂μy

∂θᵀ

− 1

2σ 2
y

[
φ

(
yup − μy

σy

)(
yup − μy

σy

)
− φ

(
ylow − μy

σy

)(
ylow − μy

σy

)]
∂σ 2

y

∂θᵀ (A.32)

The derivatives ∂μy
∂θᵀ and

∂σ 2
y

∂θᵀ are obtained from the general expressions in Eqs. (A.3) and (A.6)
by selecting the corresponding rows. Row selection can be obtained by premultiplication with a
selection matrix:

∂

∂θᵀ g4(θ; x, yup, ylow) = [
G4,μ,G4,σ 2

]
(

ıᵀj
∂E(V|do(x))

∂θᵀ

ıᵀ( j−1)n+ j
∂vec V(V|do(x))

∂θᵀ

)
(A.33)

Where the unit vector in the upper entry of the vector in Eq. (A.33) is of dimension (n × 1) and
the unit vector in the lower entry is of dimension (n2 × 1). The matrices denoted by G and a
subscript are defined as follows:

G4,μ := − 1

σy

[
φ

(
yup − μy

σy

)
− φ

(
ylow − μy

σy

)]
(A.34a)

G4,σ 2 := − 1

2σ 2
y

[
φ

(
yup − μy

σy

)(
yup − μy

σy

)
− φ

(
ylow − μy

σy

)(
ylow − μy

σy

)]
(A.34b)

where ∂μy
∂θᵀ is obtained from ∂E(V|do(x))

∂θᵀ by selecting the j-th row. Since ∂vec V(V|do(x))
∂θᵀ is a vec-

torized quantity,
∂σ 2

y
∂θᵀ is obtained by selecting the (( j − 1)n + j)-th row. �	

References

Abadir, K. M., & Magnus, J. R. (2005). Matrix algebra. Cambridge University Press. https://doi.org/10.1017/
CBO9780511810800

Aldrich, J. (1989). Autonomy. Oxford Economic Papers, 4–1(1), 15–34. https://doi.org/10.1093/oxfordjournals.oep.
a041889

Alwin, D. F., & Hauser, R. M. (1975). The decomposition of effects in path analysis. American Sociological Review,
40(1), 37–47. https://doi.org/10.2307/2094445

Amemiya, T. (1985). Advanced econometrics (1st ed.). Harvard University Press.
Athey, S., & Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National

Academy of Sciences, 113(27), 7353–7360. https://doi.org/10.1073/pnas.1510489113
Bekker, P. A.,Merckens, A., &Wansbeek, T. J. (1994). Identification, equivalent models, and computer algebra. Academic

Press.

https://doi.org/10.1007/s11336-021-09811-z Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511810800
https://doi.org/10.1017/CBO9780511810800
https://doi.org/10.1093/oxfordjournals.oep.a041889
https://doi.org/10.1093/oxfordjournals.oep.a041889
https://doi.org/10.2307/2094445
https://doi.org/10.1073/pnas.1510489113
https://doi.org/10.1007/s11336-021-09811-z


898 PSYCHOMETRIKA

Bhattacharya, R., Nabi, R., & Shpitser, I. (2020). Semiparametric inference for causal effects in graphical models with
hidden variables. Retrieved from https://arxiv.org/abs/2003.12659

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17,
37–69. https://doi.org/10.2307/271028

Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons. https://doi.org/10.1002/
9781118619179

Bollen, K. A. (1996). An alternative two-stage least squares (2SLS) estimator for latent variable equations.Psychometrika,
61(1), 109–121. https://doi.org/10.1007/BF02296961

Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53, 605–634.
https://doi.org/10.1146/annurev.psych.53.100901.135239

Bollen, K. A., &Bauldry, S. (2010). A note on algebraic solutions to identification. The Journal ofMathematical Sociology,
34(2), 136–145. https://doi.org/10.1080/00222500903221571

Bollen, K. A., Kolenikov, S., & Bauldry, S. (2014). Model-implied instrumental variable-generalized method of moments
(MIIV-GMM) estimators for latent variable models. Psychometrika, 79(1), 20–50. https://doi.org/10.1007/s11336-
013-9335-3

Bollen, K. A., & Pearl, J. (2013). Eight myths about causality and structural equation models. In S. L. Morgan (Ed.),
Handbook of causal analysis for social research (pp. 301–328). Springer. https://doi.org/10.1007/978-94-007-6094-
3_15

Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of latent variables. Psychological
Review, 110(2), 203–19. https://doi.org/10.1037/0033-295X.110.2.203

Bowden, R. J., & Turkington, D. A. (1985). Instrumental variables. Cambridge University Press. https://doi.org/10.1017/
CCOL0521262410

Brito, C.,&Pearl, J. (2002). A new identification condition for recursivemodelswith correlated errors. Structural Equation
Modeling: A Multidisciplinary Journal, 9(4), 459–474. https://doi.org/10.1207/S15328007SEM0904_1

Brito, C., & Pearl, J. (2006). Graphical condition for identification in recursive SEM. In R. Dechter & T. S. Richardson
(Eds.), Proceedings of the 23rd conference on uncertainty in artificial intelligence (pp. 47-54). AUAI Press.

Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African
Statistical Journal, 8(1), 1–24. https://doi.org/10.1002/j.2333-8504.1973.tb00197.x

Browne,M.W. (1984). Asymptotically distribution-freemethods for the analysis of covari-ance structures.British Journal
of Mathematical and Statistical Psychology, 37(1), 62–83. https://doi.org/10.1111/j.2044-8317.1984.tb00789.x

Cartwright,N. (2009).Causality, invariance, andpolicy. InD.Ross&H.Kincaid (Eds.),Theoxford handbookof philosophy
of economics. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195189254.003.0015

Casella, G., & Berger, R. (2002). Statistical inference. Duxbury.
Chen, B., Tian, J., & Pearl, J. (2014). Testable implications of linear structural equation models. In Proceedings of the

28th AAAI conference on artificial intelligence (pp. 2424–2430). AAAI Press.
Chernozhukov, V., Fernández-Val, I., Newey, W., Stouli, S., & Vella, F. (2020). Semiparametric estimation of struc-

tural functions in nonseparable triangular models. Quantitative Economics, 11(2), 503–533. https://doi.org/10.3982/
QE1239

Cramér, H. (1946).Mathematical methods of statistics. Princeton University Press.
Dieudonné, J. (1969). Foundations of modern analysis. In Pure and applied mathematics. Academic Press.
Ding, P., & VanderWeele, T. J. (2016). Sensitivity analysis without assumptions. Epidemiology, 27(3), 368–377. https://

doi.org/10.1097/EDE.0000000000000457
Dorie, V., Harada, M., Carnegie, N. B., & Hill, J. (2016). A flexible, interpretable framework for assessing sensitivity to

unmeasured confounding. Statistics in Medicine, 35(20), 3453–3470. https://doi.org/10.1002/sim.6973
Drton,M., Foygel, R.,&Sullivant, S. (2011).Global identifiability of linear structural equationmodels.Annals of Statistics,

39(2), 865–886. https://doi.org/10.1214/10-AOS859
Eberhardt, F., Glymour, C., & Scheines, R. (2005).On the number of experiments sufficient and in the worst case necessary

to identify all causal relations among N variables (pp. 178–184). AUAI Press.
Ernest, J.,&Bühlmann, P. (2015).Marginal integration for nonparametric causal inference.Electronic Journal of Statistics,

9(2), 3155–3194. https://doi.org/10.1214/15-EJS1075
Fisher, F. (1966). The identification problem in econometrics. McGraw-Hill.
Franks, A., D’Amour, A., & Feller, A. (2020). Flexible sensitivity analysis for observational studies without observ-

able implications. Journal of the American Statistical Association, 115(532), 1730–1746. https://doi.org/10.1080/
01621459.2019.1604369

Gische, C., West, S. G., & Voelkle, M. C. (2021). Forecasting causal effects of interventions versus predicting future
outcomes. Structural Equation Modeling: A Multidisciplinary Journal, 28(3), 475–492. https://doi.org/10.1080/
10705511.2020.1780598

Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological
Methods, 20(1), 102–116. https://doi.org/10.1037/a0038889

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4),
1029–1054. https://doi.org/10.2307/1912775

Hauser, A., & Bühlmann, P. (2015). Jointly interventional and observational data: Estimation of interventional Markov
equivalence classes of directed acyclic graphs. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 77(1), 291–318. https://doi.org/10.1111/rssb.12071

Hausman, J.A.,&Taylor,W.E. (1983). Identification in linear simultaneous equationsmodelswith covariance restrictions:
An instrumental variables interpretation. Econometrica, 51(5), 1527–1549. https://doi.org/10.2307/1912288

https://doi.org/10.1007/s11336-021-09811-z Published online by Cambridge University Press

https://arxiv.org/abs/2003.12659
https://doi.org/10.2307/271028
https://doi.org/10.1002/9781118619179
https://doi.org/10.1002/9781118619179
https://doi.org/10.1007/BF02296961
https://doi.org/10.1146/annurev.psych.53.100901.135239
https://doi.org/10.1080/00222500903221571
https://doi.org/10.1007/s11336-013-9335-3
https://doi.org/10.1007/s11336-013-9335-3
https://doi.org/10.1007/978-94-007-6094-3_15
https://doi.org/10.1007/978-94-007-6094-3_15
https://doi.org/10.1037/0033-295X.110.2.203
https://doi.org/10.1017/CCOL0521262410
https://doi.org/10.1017/CCOL0521262410
https://doi.org/10.1207/S15328007SEM0904_1
https://doi.org/10.1002/j.2333-8504.1973.tb00197.x
https://doi.org/10.1111/j.2044-8317.1984.tb00789.x
https://doi.org/10.1093/oxfordhb/9780195189254.003.0015
https://doi.org/10.3982/QE1239
https://doi.org/10.3982/QE1239
https://doi.org/10.1097/EDE.0000000000000457
https://doi.org/10.1097/EDE.0000000000000457
https://doi.org/10.1002/sim.6973
https://doi.org/10.1214/10-AOS859
https://doi.org/10.1214/15-EJS1075
https://doi.org/10.1080/01621459.2019.1604369
https://doi.org/10.1080/01621459.2019.1604369
https://doi.org/10.1080/10705511.2020.1780598
https://doi.org/10.1080/10705511.2020.1780598
https://doi.org/10.1037/a0038889
https://doi.org/10.2307/1912775
https://doi.org/10.1111/rssb.12071
https://doi.org/10.2307/1912288
https://doi.org/10.1007/s11336-021-09811-z


CHRISTIAN GISCHE, MANUEL C. VOELKLE 899

Hayashi, F. (2011). Econometrics. Princeton University Press.
He, Y.-B., & Geng, Z. (2008). Active learning of causal networks with intervention experiments and optimal designs.

Journal of Machine Learning Research, 9, 2523–2547.
He, Y.-B., & Jia, J. (2015). Counting and exploring sizes ofMarkov equivalence classes of directed acyclic graphs. Journal

of Machine Learning, Research(16), 2589–2609.
Heckman, J. J., & Pinto, R. (2015). Causal analysis after Haavelmo. Econometric Theory, 31(1), 115–151. https://doi.

org/10.1017/S026646661400022X
Hernán, M. A., & Robins, J. M. (2020). Causal inference: What if. Chapman & Hall / CRC.
Holland, P. W. (1988). Causal inference, path analysis, and recursive structural equations models. Sociological Method-

ology, 18, 449–484. https://doi.org/10.2307/271055
Hsiao, C. (1983). Identification. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics. (Vol. 1). North-

Holland.
Hyttinen, A., Eberhardt, F., &Hoyer, P. O. (2013). Experiment selection for causal discovery. Journal ofMachine Learning

Research, 14(57), 3041–3071.
Imai, K., &Ratkovic,M. (2013). Estimating treatment effect heterogeneity in randomized program evaluation. The Annals

of Applied Statistics, 7(1), 443–470. https://doi.org/10.1214/12-AOAS593
Ito, K., Wada, T., Makimura, H., Matsuoka, A., Maruyama, H., & Saruta, T. (1998). Vector autoregressive modeling

analysis of frequently sampled oral glucose tolerance test results. The Keio Journal of Medicine, 47(1), 28–36.
https://doi.org/10.2302/kjm.47.28

Jöreskog, K. G. (1967). A general approach to confirmatory maximum likelihood factor analysis. ETS Research Bulletin
Series, 1967(2), 183–202. https://doi.org/10.1002/j.2333-8504.1967.tb00991.x

Jöreskog, K. G., & Lawley, D. N. (1968). New methods in maximum likelihood factor analysis. British Journal of
Mathematical and Statistical Psychology, 21(1), 85–96. https://doi.org/10.1111/j.2044-8317.1968.tb00399.x

Kan, R. (2008). From moments of sum to moments of product. Journal of Multivariate Analysis, 99(3), 542–554. https://
doi.org/10.1016/j.jmva.2007.01.013

Kang, C., & Tian, J. (2009). Markov properties for linear causal models with correlated errors. Journal of Machine
Learning Research, 10, 41–70.

Klein, A. G., & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with mul-
tiple interaction and quadratic effects. Multivariate Behavioral Research, 42(4), 647–673. https://doi.org/10.1080/
00273170701710205

Koster, J. T. A. (1999). On the validity of the Markov interpretation of path diagrams of Gaussian structural equations
systems with correlated errors. Scandinavian Journal ofStatistics, 26(3), 413–431. https://doi.org/10.1111/1467-
9469.00157

Kuroki, M., & Cai, Z. (2007). Evaluation of the causal effect of control plans in nonrecursive structural equation models.
In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence (pp. 227-234). AUAI Press.

Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach. John Wiley & Sons.
Lütkepohl, H. (1997). Handbook of matrices (1st ed.). Wiley.
Maathuis,M.H.,Kalisch,M.,&Bühlmann, P. (2009). Estimating high-dimensional intervention effects fromobservational

data. The Annals of Statistics, 37(6A), 3133–3164. https://doi.org/10.1214/09-AOS685
Magnus, J. R., & Neudecker, H. (1979). The commutation matrix: Some properties and applications. The Annals ofStatis-

tics, 7(2), 381–394. https://doi.org/10.1214/aos/1176344621
Magnus, J. R., & Neudecker, H. (1980). The elimination matrix: Some lemmas and applications (Other publications

TiSEM). Tilburg, The Netherlands: Tilburg University, School of Economics and Management. Retrieved from
https://pure.uvt.nl/ws/portalfiles/portal/649691/26951_6623.pdf

Magnus, J. R., & Neudecker, H. (1999).Matrix differential calculus with applications in statistics and econometrics (2nd
ed.). Wiley.

Mann, H. B., &Wald, A. (1943). On stochastic limit and order relationships. The Annals of Mathematical Statistics, 14(3),
217–226. https://doi.org/10.1214/aoms/1177731415

Matzkin, R. L. (2015). Estimation of nonparametric models with simultaneity. Econometrica, 83(1), 1–66. https://doi.
org/10.3982/ECTA9348

Mouchart, M., Russo, F., & Wunsch, G. (2009). Structural modelling, exogeneity, and causality. In H. Engelhardt, H.
Kohler, & A. Fürnkranz-Prskawetz (Eds.), Causal analysis in population studies (Vol. 23, pp. 59–82). Springer.

Muthén, L. K., & Muthen, B. O. (1998-2017). Mplus user’s guide (8th ed.) [Computer software manual]. Los Angeles,
CA. Retrieved from https://www.statmodel.com/

Nie, X., &Wager, S. (2020, 09). Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108(2), 299-319.
https://doi.org/10.1093/biomet/asaa076

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference (1st.). Morgan Kaufmann.
https://doi.org/10.1016/B978-0-08-051489-5.50001-1

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669–688. https://doi.org/10.1093/biomet/82.
4.669

Pearl, J. (2009). Causality (2nd ed.). Cambridge University Press.
Pearl, J. (2012). The causal foundations of structural equationmodeling. InR.Hoyle (Ed.),Handbook ofstructural equation

modeling (pp. 68–91). Guilford Press.
Pearl, J., & Robins, J. M. (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables.

In P. Besnard & S. Hanks (Eds.), Uncertainty in artificial intelligence (pp. 444–453). Morgan Kaufmann.

https://doi.org/10.1007/s11336-021-09811-z Published online by Cambridge University Press

https://doi.org/10.1017/S026646661400022X
https://doi.org/10.1017/S026646661400022X
https://doi.org/10.2307/271055
https://doi.org/10.1214/12-AOAS593
https://doi.org/10.2302/kjm.47.28
https://doi.org/10.1002/j.2333-8504.1967.tb00991.x
https://doi.org/10.1111/j.2044-8317.1968.tb00399.x
https://doi.org/10.1016/j.jmva.2007.01.013
https://doi.org/10.1016/j.jmva.2007.01.013
https://doi.org/10.1080/00273170701710205
https://doi.org/10.1080/00273170701710205
https://doi.org/10.1111/1467-9469.00157
https://doi.org/10.1111/1467-9469.00157
https://doi.org/10.1214/09-AOS685
https://doi.org/10.1214/aos/1176344621
https://pure.uvt.nl/ws/portalfiles/portal/649691/26951_6623.pdf
https://doi.org/10.1214/aoms/1177731415
https://doi.org/10.3982/ECTA9348
https://doi.org/10.3982/ECTA9348
https://www.statmodel.com/
https://doi.org/10.1093/biomet/asaa076
https://doi.org/10.1016/B978-0-08-051489-5.50001-1
https://doi.org/10.1093/biomet/82.4.669
https://doi.org/10.1093/biomet/82.4.669
https://doi.org/10.1007/s11336-021-09811-z


900 PSYCHOMETRIKA

Perkovic, E. (2020). Identifying causal effects in maximally oriented partially directed acyclic graphs. In J. Peters &
D. Sontag (Eds.), Proceedings of the 36th conference on uncertainty in artificial intelligence (UAI) (Vol. 124, pp.
530-539). PMLR.

Peters, J., Bühlmann, P., & Meinshausen, N. (2016). Causal inference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(5), 947–1012.
https://doi.org/10.1111/rssb.12167

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements ofcausal inference. The MIT Press.
Rao, C. (1945). Information and accuracy attainable in the estimation of statistical parameters. Bulletin ofthe Calcutta

Mathematical Society, 37, 81–91.
Rao, C. (1973). Linear statistical inference and its applications (2nd ed.). Wiley.
Richardson, T. S. (2003). Markov properties for acyclic directed mixed graphs. Scandinavian Journal ofStatistics, 30(1),

145–157.
Richardson, T. S., & Spirtes, P. (2002). Ancestral graph Markov models. Annals ofStatistics, 30(4), 962–1030. https://doi.

org/10.1214/aos/1031689015
Robins, J.M. (1986).Anewapproach to causal inference inmortality studieswith a sustained exposure period—application

to control of the healthy worker survivor effect. Mathematical Modelling, 9–12(7), 1393–1512. https://doi.org/10.
1016/0270-0255(86)90088-6

Robins, J. M. (1987). A graphical approach to the identification and estimation of causal parameters in mortality studies
with sustained exposure periods. Journal of Chronic Diseases, 40(Suppl 2), 139–161. https://doi.org/10.1016/s0021-
9681(87)80018-8

Robins, J. M., Hernán, M. A., & Brumback, B. (2000). Marginal structural models and causal inference in epidemiology.
Epidemiology, 11(5), 550–560. https://doi.org/10.1097/00001648-200009000-00011

Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not
always observed. Journal of the American Statistical Association, 89(427), 846–866. https://doi.org/10.2307/2290910

Rosenbaum, P. R. (2002). Observational studies (2nd ed.). Springer. https://doi.org/10.1007/978-1-4757-3692-2
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal

effects. Biometrika, 70(1), 41–55. https://doi.org/10.1093/biomet/70.1.41
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal ofStatistical Software, 48(2), 1–36.

https://doi.org/10.18637/jss.v048.i02
Sargan, D. (1988). Lectures on advanced econometric theory. Basil Blackwell.
Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In

A. von Eye & C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399–419).
Sage Publications.

Schumacker, R., & Marcoulides, G. (1998). Interaction and nonlinear effects in structural equation modeling. Lawrence
Erlbaum Associates.

Serfling, R. (1980). Approximation theorems of mathematical statistics. John Wiley. https://doi.org/10.1002/
9780470316481

Shipley, B. (2003). Testing recursive path models with correlated errors using dseparation. Structural Equation Modeling:
A Multidisciplinary Journal, 10(2), 214–221. https://doi.org/10.1207/S15328007SEM1002_3

Shpitser, I. (2018). Identification in graphical causal models. In M. Maathuis, M. Drton, S. Lauritzen, & M. Wainwright
(Eds.), Handbook of graphical models (pp. 381–403). CRC Press.

Shpitser, I., & Pearl, J. (2006). Identification of conditional interventional distributions. In R. Dechter & T. S. Richardson
(Eds.), Proceedings ofthe 22nd conference on uncertainty in artificial intelligence (pp. 437-444). AUAI Press.

Shpitser, I., Richardson, T. S., & Robins, J. M. (2020). Multivariate counterfactual systems and causal graphical models.
Preprint on arXiv. Retrieved from arXiv:2008.06017

Sontakke, S. A., Mehrjou, A., Itti, L., & Schölkopf, B. (2020). Causal curiosity: RL agents discovering self-supervised
experiments for causal representation learning. Preprint on arXiv. Retrieved from arXiv:2010.03110

Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation, prediction, and search (2nd ed.). The MIT Press.
Stolzenberg, R. M. (1980). The measurement and decomposition of causal effects in nonlinear and nonadditive models.

Sociological Methodology, 11, 459–488. https://doi.org/10.2307/270872
Theil, H. (1971). Principles ofeconometrics. Wiley.
Thoemmes, F., Rosseel, Y., & Textor, J. (2018). Local fit evaluation of structural equation models using graphical criteria.

Psychological Methods, 23(1), 27–41. https://doi.org/10.1037/met0000147
Tian, J., & Pearl, J. (2002a). A general identification condition for causal effects. In Proceedings of the 18th national

conference on artificial intelligence (pp. 567-573). AAAI Press / MIT Press.
Tian, J., & Pearl, J. (2002b). On the testable implications of causal models with hidden variables. In A. Darwiche & N.

Friedman (Eds.), Proceedings of the 18th conference on uncertainty in artificial intelligence (pp. 519-527). Morgan
Kaufmann.

Usami, S., Murayama, K., & Hamaker, E. L. (2019). A unified framework of longitudinal models to examine reciprocal
relations. Psychological Methods, 24(5), 637–57. https://doi.org/10.1037/met0000210

van Bork, R., Rhemtulla, M., Sijtsma, K., & Borsboom, D. (2020). A causal theory of error scores. Preprint on PsyArXiv.
Retrieved from arXiv:2009.10025 https://doi.org/10.31234/osf.io/h35sa

van der Laan,M. J., &Rubin, D. (2006). Targetedmaximum likelihood learning. The International Journal ofBiostatistics,
2(1). https://doi.org/10.2202/1557-4679.1043

Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal
of the American Statistical Association, 113(523), 1228–1242. https://doi.org/10.1080/01621459.2017.1319839

https://doi.org/10.1007/s11336-021-09811-z Published online by Cambridge University Press

https://doi.org/10.1111/rssb.12167
https://doi.org/10.1214/aos/1031689015
https://doi.org/10.1214/aos/1031689015
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.1016/s0021-9681(87)80018-8
https://doi.org/10.1016/s0021-9681(87)80018-8
https://doi.org/10.1097/00001648-200009000-00011
https://doi.org/10.2307/2290910
https://doi.org/10.1007/978-1-4757-3692-2
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.1002/9780470316481
https://doi.org/10.1002/9780470316481
https://doi.org/10.1207/S15328007SEM1002_3
http://arxiv.org/abs/2008.06017
http://arxiv.org/abs/2010.03110
https://doi.org/10.2307/270872
https://doi.org/10.1037/met0000147
https://doi.org/10.1037/met0000210
http://arxiv.org/abs/2009.10025
https://doi.org/10.31234/osf.io/h35sa
https://doi.org/10.2202/1557-4679.1043
https://doi.org/10.1080/01621459.2017.1319839
https://doi.org/10.1007/s11336-021-09811-z


CHRISTIAN GISCHE, MANUEL C. VOELKLE 901

Wald, A. (1950). Note on the identification of economic relations. In T. C.Koopmans (Ed.), Statistical inference in dynamic
economic models. Wiley.

Wall, M. M., & Amemiya, Y. (2003). A method of moments technique for fitting interaction effects in structural
equation models. British Journal of Mathematical and Statistical Psychology, 56, 47–63. https://doi.org/10.1348/
000711003321645331

West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnor-mal variables: Problems and
remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 56–75). SAGE.

Wiley, D. (1973). The identification problem for structural equations with unmeasured variables. In A. Goldberger & O.
Duncan (Eds.), Structural equation models in the social sciences (pp. 69–83). Academic Press.

Wolfram Research Inc. (2018). Mathematica, Version 11.3 [Computer software manual]. Champaign, IL. Retrieved from
https://www.wolfram.com/mathematica

Xie, Y., Brand, J. E., & Jann, B. (2012). Estimating heterogeneous treatment effects with observational data. Sociological
Methodology, 42(1), 314–347. https://doi.org/10.1177/0081175012452652

Yuan, K.-H., & Bentler, P. M. (1998). Structural equation modeling with robust covariances. Sociological Methodology,
28(1), 363–396. https://doi.org/10.1111/0081-1750.00052

Zehna, P.W. (1966). Invariance ofmaximum likelihood estimators.TheAnnals ofMathematical Statistics, 37(3), 744–744.
https://doi.org/10.1214/aoms/1177699475

Zhang, J. (2008). Causal reasoning with ancestral graphs. Journal of Machine Learning Research, 9, 1437–1474.
Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z., & Diener, E. (2019). From data to causes

I: Building a general cross-lagged panel model (GCLM).Organizational Research Methods. https://doi.org/10.1177/
1094428119847278

Manuscript Received: 14 JAN 2020
Final Version Received: 25 AUG 2021
Published Online Date: 11 DEC 2021

https://doi.org/10.1007/s11336-021-09811-z Published online by Cambridge University Press

https://doi.org/10.1348/000711003321645331
https://doi.org/10.1348/000711003321645331
https://www.wolfram.com/mathematica
https://doi.org/10.1177/0081175012452652
https://doi.org/10.1111/0081-1750.00052
https://doi.org/10.1214/aoms/1177699475
https://doi.org/10.1177/1094428119847278
https://doi.org/10.1177/1094428119847278
https://doi.org/10.1007/s11336-021-09811-z

	Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models
	Abstract
	Graph-Based Models for Causal Inference
	Graph-Based Causal Models with Linear Equations
	Interventional Distribution
	Causal Effect Functions
	Identification of Parametrized Causal Quantities
	Estimation of Causal Quantities
	Illustration
	Interventional Distribution vs. Conditional Distribution
	Discussion
	Causal Structure, Modularity, and Conditional Interventions
	Effect Modification and Heterogeneity
	Measurement Error and Non-Normality
	Conclusion
	Acknowledgments
	Appendix
	References




