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Faithfulness of Actions on Riemann-Roch
Spaces

Bernhard Köck and Joseph Tait

Abstract. Given a faithful action of a finite group G on an algebraic curve X of genus gX ≥ 2, we give
explicit criteria for the induced action of G on the Riemann–Roch space H0(X,OX(D)) to be faithful,
where D is a G-invariant divisor on X of degree at least 2gX − 2. This leads to a concise answer to the
question of when the action of G on the space H0(X,Ω⊗m

X ) of global holomorphic polydifferentials of

order m is faithful. If X is hyperelliptic, we provide an explicit basis of H0(X,Ω⊗m
X ). Finally, we give

applications in deformation theory and in coding theory and discuss the analogous problem for the
action of G on the first homology H1(X, Z/mZ) if X is a Riemann surface.

1 Introduction

Let X be a connected smooth projective algebraic curve over an algebraically closed
field k equipped with a faithful action of a finite group G of order n. Furthermore, let
D =

∑
P∈X nP[P] be a G-invariant divisor on X. Then G also acts on the Riemann–

Roch space H0(X,OX(D)) consisting of all meromorphic functions on X whose order
at any point P ∈ X is at least−nP.

Determining the structure of H0(X,OX(D)) as a module over the group ring k[G]
is a widely studied problem. When D is the canonical divisor and k = C,
this amounts to calculating (the character of) the representation of G on the complex
vector space H0(X,ΩX) of global holomorphic differentials on the Riemann surface X
and goes back to Chevalley–Weil [CW]. If the canonical projection π : X → Y from
X to the quotient curve Y = X/G is tamely ramified, fairly general and explicit an-
swers to this problem have been found by Kani [Kan] and Nakajima [Nak2]. The
case of arbitrary wild ramification the explicit calculation of the k[G]-isomorphism
class of H0(X,OX(D)) is still an open problem, but many partial and related results
are known; see the recent papers [Bor,FWK,FGM+,GJK,Hor,Kar] and the literature
cited therein.

In this paper we look at the weaker question of whether the group G acts faithfully
on H0(X,OX(D)). To this end, we first prove formulae for the dimension of the
subspace H0(X,OX(D))G of H0(X,OX(D)) fixed by G, provided the degree of D is
sufficiently large; see Proposition 2.2 and its corollaries.

In Sections 3 and 4 we give explicit criteria for the action on H0(X,OX(D)) to
be trivial and finally criteria for this action to be faithful if the degree of D is at
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least 2gX − 2. The latter criteria become particularly concise when D is a positive
multiple of the canonical divisor (see Theorem 3.2 and Corollary 4.5), and can be
summarized as follows.

Let p ≥ 0 denote the characteristic of k and let gX and gY denote the genus of X
and Y , respectively. Furthermore, let m ≥ 1 and suppose that gX ≥ 2. We recall
that a hyperelliptic involution of X is an automorphism σ of X of order 2 such that
the quotient curve X/〈σ〉 is isomorphic to P1

k. Then G acts faithfully on the space
H0(X,Ω⊗m

X ) of global (poly)differentials of order m, unless G contains a hyperelliptic
involution and either m = 1 and p = 2 or m = 2 and gX = 2.

If X is a Riemann surface, versions of this result can also be found in Lewittes’
paper [Lew] or derived from Broughton’s paper [Bro]. Furthermore, it is possible
to give different and sometimes shorter proofs of parts of this result using deeper
theorems about algebraic curves; see the relevant remarks in Sections 4 and 5.

In Section 5 we look at the particular case when X is hyperelliptic and give an
explicit basis for the space H0(X,Ω⊗m

X ). This will yield a ‘hands-on’ proof of the
above result if G is generated by the hyperelliptic involution.

Faithful actions of permutation groups on Goppa codes play an important role in
Coding Theory. In Section 6 we apply Corollary 4.9 to obtain such actions.

The dimension formula proved in Section 2 also allows us to compute the di-
mension of the tangent space of the equivariant deformation functor associated with
(G,X), provided the group G satisfies a certain assumption; see Theorem 7.1. This
theorem generalizes a main result in [KöKo] and considerably simplifies its proof.

Finally, in Section 8, we investigate a striking analogy between faithful action on
H0(X,Ω⊗m

X ) and faithful action on the first homology H1(X,Z/mZ) if X is a Riemann
surface.

In this final paragraph of the introduction we explain some notation and funda-
mental facts that we will use throughout the paper. We write

R =
∑

P∈X
δP[P]

for the ramification divisor of π : X → Y . The Hurwitz formula (see [Har, Ch. IV,
Corollary 2.4]) states that

(1.1) 2gX − 2 = n(2gY − 2) + deg(R)

(where n = ord(G)). Furthermore, Hilbert’s formula states that

(1.2) δP =
∞∑
j=0

(ord(G j(P))− 1),

where G j(P) is the j-th ramification group at P in lower notation; see [Ser,
Ch. IV, § 1]. For any P ∈ X, let eP = ord(G0(P)) denote the ramification index
at P. For any Q ∈ Y , we write δQ for δP and eQ for eP, where P ∈ π−1(Q); recall
that the cardinality of π−1(Q) is n/eQ. As usual, the sheaf of differentials on X is de-
noted by ΩX and its m-th tensor power by Ω⊗m

X for any m ≥ 2. Sections of Ω⊗m
X are

called polydifferentials of order m and, if m = 2, quadratic differentials. We let KY be a
canonical divisor on Y . Then the divisor KX := π∗(KY ) + R is a G-invariant canoni-
cal divisor on X by [Har, § IV, Prop. 2.3] and OX(mKX) and Ω⊗m

X are isomorphic as
G-sheaves.
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2 Dimension Formulae

In this section, given a G-invariant divisor D on our curve X of sufficiently large de-
gree, we are going to compute the dimension of the subspace H0(X,OX(D))G of the
Riemann–Roch space H0(X,OX(D)) fixed by the action of the group G. When D is
a multiple of the canonical divisor KX on X, we will obtain a formula for the dimen-
sion of the space H0(X,Ω⊗m

X )G of global G-invariant holomorphic polydifferentials
of order m.

We first introduce some notation. Let D =
∑

P∈X nP[P] be a G-invariant divisor
on X (i.e., nσ(P) = nP for all σ ∈ G and P ∈ X). For any Q ∈ Y , let nQ be equal to
nP for any P ∈ π−1(Q). Let OX(D) denote the corresponding equivariant invertible
OX-module, as usual. Furthermore let πG

∗ (OX(D)) denote the subsheaf of the direct
image π∗(OX(D)) fixed by the obvious action of G on π∗(OX(D)) and let

⌊
π∗(D)

n

⌋
denote the divisor on Y obtained from the push-forward π∗(D) by replacing the co-
efficient mQ of Q in π∗(D) with the integral part

⌊mQ

n

⌋
of mQ

n for every Q ∈ Y . The
function fields of X and Y are denoted by K(X) and K(Y ) respectively. For any P ∈ X
and Q ∈ Y , let ordP and ordQ denote the respective valuations of K(X) and K(Y ) at
P and Q. Finally, let 〈a〉 denote the fractional part of any a ∈ R, i.e., 〈a〉 = a− bac.

The next (folklore) lemma is the main idea in the proof of our dimension formu-
lae.

Lemma 2.1 Let D =
∑

P∈X nP[P] be a G-invariant divisor on X. Then the sheaves
πG
∗ (OX(D)) and OY

(⌊
π∗(D)

n

⌋)
are equal as subsheaves of the constant sheaf K(Y ) on

Y . In particular the sheaf πG
∗ (OX(D)) is an invertible OY -module.

Proof For every open subset V of Y , we have

πG
∗
(
OX(D)

)
(V ) = OX(D)

(
π−1(V )

)G ⊆ K(X)G = K(Y ).

In particular, both sheaves are subsheaves of the constant sheaf K(Y ) as stated. It
therefore suffices to check that their stalks are equal. For any Q ∈ Y and P ∈ π−1(Q),
we have

πG
∗
(
OX(D)

)
Q

= OX(D)P ∩ K(Y ) =
{

f ∈ K(Y ) : ordP( f ) ≥ −nP

}
=
{

f ∈ K(Y ) : ordQ( f ) ≥ −nP

eP

}
=
{

f ∈ K(Y ) : ordQ( f ) ≥ −
⌊ nP

eP

⌋}
= OY

(⌊ π∗(D)

n

⌋)
Q
,

as desired.

The next proposition computes the dimension of the subspace H0(X,OX(D))G of
H0(X,OX(D)) fixed by G.

Proposition 2.2 Let D =
∑

P∈X nP[P] be a G-invariant divisor on X such that

deg(D) > 2gX − 2−
∑

P∈X

∑
j≥1

(
ord(G j(P))− 1

)
.
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Then we have

dimk H0(X,OX(D))G = 1− gY +
1

n
deg(D)−

∑
Q∈Y

〈 nQ

eQ

〉
.

Remark 2.3 Note that the double sum
∑

P∈X

∑
j≥1(ord(G j(P))− 1) is non-nega-

tive and it is zero if and only if π is at most tamely ramified. Subtracting this double
sum makes the the usual bound 2gX − 2 smaller and hence the statement stronger;
see also the proof of the next corollary.

Proof We have

deg
⌊ π∗(D)

n

⌋
=
∑

Q∈Y

⌊ n

eQ

nQ

n

⌋
=
∑

Q∈Y

⌊ nQ

eQ

⌋
=
∑

Q∈Y

( nQ

eQ
−
〈 nQ

eQ

〉)
≥
∑

Q∈Y

( nQ

eQ
− eQ − 1

eQ

)
=
∑

P∈X

( nP

n
− eP − 1

n

)
=

1

n

(
deg(D)−

∑
P∈X

(eP − 1)
)

>
1

n

(
2gX − 2−

∑
P∈X

∑
j≥1

(
ord(G j(P))− 1

)
−
∑

P∈X
(eP − 1)

)
(by assumption)

=
1

n

(
2gX − 2− deg(R)

)
(by Hilbert’s formula (1.2))

= 2gY − 2 (by Hurwitz’ formula (1.1)).

Hence, using Lemma 2.1 and the Riemann-Roch formula [Har, Ch. IV, §1, Theo-
rem 1.3 and Example 1.3.4], we obtain

dimk H0(X,OX(D))G = dimk H0
(

Y, πG
∗ (OX(D))

)
= dimk H0

(
Y,OY

(⌊ π∗(D)

n

⌋))
= 1− gY + deg

⌊ π∗(D)

n

⌋
= 1− gY +

∑
Q∈Y

⌊ nQ

eQ

⌋
= 1− gY +

1

n
deg(D)−

∑
Q∈Y

〈 nQ

eQ

〉
,

as stated.

The following corollary computes the dimension of H0(X,Ω⊗m
X )G if gX ≥ 2. (If

gX = 0 or gX = 1, see Example 4.6.) In particular, we see that this dimension is
completely determined by m, gY and deg

⌊
mπ∗(R)

n

⌋
.

Corollary 2.4 Let m ≥ 1 and suppose that gX ≥ 2. Then we have

dimk H0(X,Ω⊗m
X )G ={

gY if m = 1 and π is tamely ramified,

(2m− 1)(gY − 1) + deg
⌊

mπ∗(R)
n

⌋
otherwise.
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Proof If π is tamely ramified, then δP = eP−1 for all P ∈ X and the divisor
⌊
π∗(R)

n

⌋
is the zero divisor. We therefore have⌊ π∗(KX)

n

⌋
=
⌊ π∗(π∗(KY )) + π∗(R)

n

⌋
=
⌊ nKY + π∗(R)

n

⌋
= KY ,

and, using Lemma 2.1, we obtain

dimk H0(X,ΩX)G = dimk H0
(

Y, πG
∗ (OX(KX))

)
= dimk H0

(
Y,OY (KY )

)
= gY ,

as stated.
If π is not tamely ramified, then the double sum

∑
P∈X

∑
j≥1(ord(G j(P))− 1) is

positive. On the other hand, if m ≥ 2, then we have m(2gX − 2) > 2gX − 2, since we
have assumed that gX ≥ 2. So, in either case we have

deg(mKX) = m(2gX − 2) > 2gX − 2−
∑

P∈X

∑
j≥1

(
ord(G j(P))− 1

)
.

We temporarily write
∑

P∈X nP[P] for KX , and, as above, for any Q ∈ Y and
P ∈ π−1(Q), we write nQ for nP. Using the previous proposition and Hurwitz for-
mula (1.1) we then obtain

dimk H0(X,Ω⊗m
X )G = dimk H0(X,OX(mKX))G

= 1− gY +
1

n
(m(2gX − 2))−

∑
Q∈Y

〈 mnQ

eQ

〉
= 1− gY + m(2gY − 2) +

m

n
deg(R)−

∑
Q∈Y

〈 mnQ

eQ

〉
= (2m− 1)(gY − 1) + deg

⌊ mπ∗(R)

n

⌋
,

because

mπ∗(KX)

n
=

mπ∗(π ∗ (KY )) + mπ∗(R)

n
= mKY +

mπ∗(R)

n

and deg(R) = deg(π∗(R)). This finishes the proof of Corollary 2.4.

If m = 1, we reformulate Corollary 2.4 in the following slightly more concrete
way. Let S denote the set of all points Q ∈ Y such that π is not tamely ramified
above Q, and let s denote the cardinality of S. Note that s = 0 if p does not divide n.

Corollary 2.5 We have

dimk H0(X,ΩX)G =

{
gY if s = 0,

gY − 1 +
∑

Q∈S

⌊ δQ

eQ

⌋
otherwise.

Proof We have

deg
⌊ π∗(R)

n

⌋
=
∑
Q∈Y

⌊ ∑
P 7→Q

δP

n

⌋
=
∑

Q∈Y

⌊ δQ

eQ

⌋
.

Furthermore we have
⌊ δQ

eQ

⌋
= 0 if and only if δQ < eQ, i.e., if and only if Q /∈ S. Thus

Corollary 2.5 follows from Corollary 2.4.
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Remark 2.6 If p > 0 and G is cyclic, then Corollary 2.5 can be derived from
[KaKo, Proposition 6] by Karanikolopoulos and Kontogeorgis.

3 Faithfulness of Actions on the Space of Global Holomorphic
Differentials

In this section we consider the space H0(X,ΩX) of global holomorphic differentials
on X and prove that the action of the group G on this space is faithful if and only if G
does not contain a hyperelliptic involution or if p 6= 2; see Theorem 3.2. The proof
is based on the following criterion for the action of G on H0(X,ΩX) to be trivial.

Proposition 3.1 We assume that p > 0, that G is cyclic of order p, that gX ≥ 2, and
that gY = 0. Then G acts trivially on H0(X,ΩX) if and only if p = 2.

Proof Let P1, . . . , Pr ∈ X denote the ramification points of π. We write ei and δi

for ePi and δPi . Also, for i = 1, . . . , r, we define Ni ∈ N by ordPi (σ(t) − t) = Ni + 1
where t is a local parameter at the ramification point Pi and σ is a generator of the
decomposition group G0(Pi). From [Nak1, Lemma 1, p. 87] we know that p does
not divide Ni for i = 1, . . . , r, a fact we will use several times below. We have δi =
(Ni + 1)(p − 1) by Hilbert’s formula (1.2). Let N :=

∑r
i=1 Ni . Using the Hurwitz

formula (1.1) we then obtain

2gX − 2 = −2p + (N + r)(p − 1)

and hence

dimk H0(X,ΩX) = gX =
(N + r − 2)(p − 1)

2
.

Since gX ≥ 0, we obtain r ≥ 1; that is, π is not unramified. As char(k) = p = ord(G),
the morphism π is thus not tamely ramified and the cardinality s defined at the end
of the previous section is not zero. From Corollary 2.5 we conclude that

dimk H0(X,ΩX)G = gY − 1 +
r∑

i=1

⌊ δi

ei

⌋
= −1 + N + r +

r∑
i=1

⌊
−Ni + 1

p

⌋
.

If p = 2, the dimensions of H0(X,ΩX) and H0(X,ΩX)G are therefore equal (to
N+r−2

2 ). This shows the ‘if ’ direction in Proposition 3.1.
To prove the other direction we now assume that G acts trivially H0(X,ΩX) and we

suppose that p ≥ 3. We will show that this contradicts our assumption that gX ≥ 2.
For each i = 1, . . . , r, we write Ni = si p + ti with si ∈ N and ti ∈ {1, . . . , p− 1}. We
furthermore put S :=

∑r
i=1 si and T :=

∑r
i=1 ti ≥ r. Then we have

(N + r − 2)(p − 1)

2
= dimk H0(X,ΩX) = dimk H0(X,ΩX)G = N − S− 1.

Rearranging this equation we obtain

(3− p)N − 2S = (r − 2)(p − 1) + 2

and hence

(−p2 + 3p − 2)S = (r − 2)(p − 1) + 2− (3− p)T.
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Since−p2 + 3p − 2 = −(p − 1)(p − 2) and p ≥ 3, this equation implies that

S =
(r − 2)(1− p)− 2 + T(3− p)

(p − 1)(p − 2)
.

Because S ≥ 0, the numerator of this fraction is non-negative; that is,

0 ≤ (r − 2)(1− p)− 2 + T(3− p)

≤ (r − 2)(1− p)− 2 + r(3− p) = 2(r − 1)(2− p).

Hence we have r = 1 ,and that numerator is 0. We conclude that S = 0 and that
T = 1 or p = 3. If T = 1, we also have N = 1 and finally

gX =
(N + r − 2)(p − 1)

2
= 0,

a contradiction. If T 6= 1 and p = 3, we obtain N = T = 2 and finally

gX =
(N + r − 2)(p − 1)

2
= 1,

again a contradiction.

Theorem 3.2 Suppose that gX ≥ 2. Then G does not act faithfully on H0(X,ΩX) if
and only if G contains a hyperelliptic involution and p = 2.

Remark 3.3 Note that the existence of a hyperelliptic involution σ in G means that
not only the genus of X/〈σ〉 but also the genus of Y = X/G is 0 (by the Hurwitz
formula (1.1)). Again by the Hurwitz formula, the canonical projection X → X/〈σ〉
cannot be unramified. If p = 2, it therefore cannot be tamely ramified and π cannot
be tamely ramified either. Thus, Theorem 3.2 implies that, if the action on H0(X,ΩX)
is not faithful, then we also have that gY = 0 and that π is not tamely ramified.

Proof We first show the ‘if ’ direction. The hyperelliptic involution contained in G
generates a subgroup of order 2. Since p = 2, this acts trivially by Proposition 3.1,
and hence G does not act faithfully.

We now assume that G does not act faithfully on H0(X,ΩX). By replacing G with
the (non-trivial) kernel H if necessary, we may assume that G is non-trivial and acts
trivially on H0(X,ΩX).

We first prove that π is not tamely ramified. Suppose that π is tamely ramified.
Then by Corollary 2.5 we have

gX = dimk H0(X,ΩX) = dimk H0(X,ΩX)G = gY .

Substituting this into the Hurwitz formula (1.1) yields the desired contradiction, be-
cause gX ≥ 2, n ≥ 2 and deg(R) ≥ 0.

As π is not tamely ramified, the characteristic p of k is positive and the group G
has a subgroup of order p; by replacing G with that subgroup we may assume that G
is cyclic of order p. Now Theorem 3.2 will follow from Proposition 3.1 once we have
shown that gY = 0.

https://doi.org/10.4153/CJM-2014-015-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-015-2


Faithfulness of Actions on Riemann-Roch Spaces 855

Corollary 2.5 gives us that

gX = dimk H0(X,ΩX) = dimk H0(X,ΩX)G = gY − 1 +
∑
Q∈S

⌊ δQ

p

⌋
,

where S is the set of all points Q ∈ Y such that π is not tamely ramified above Q.
Substituting this in to the Hurwitz formula (1.1), we see that

2
(

gY − 1 +
∑

Q∈S

⌊ δQ

p

⌋
− 1
)

= 2p(gY − 1) + deg(R).

Rewriting the previous equation yields

(2p − 2)gY = 2p − 4 + 2
∑

Q∈S

⌊ δQ

p

⌋
− deg(R)

= 2
(

p − 2 +
∑

Q∈S

(⌊ δQ

p

⌋
− δQ

2

))
≤ 2(p − 2).

Hence we obtain gY ≤ p−2
p−1 < 1 and therefore gY = 0, as desired.

The curves occurring in Theorem 3.2 are hyperelliptic curves in characteristic
p = 2. The general standard equation for such curves will be stated in Section 5.
We next give a simple example covering every genus gX ≥ 2.

Example 3.4 We suppose that p = 2. Let r be an odd natural number, let k(x, y) be
the extension of the rational function field k(x) given by the Artin–Schreier equation
y2 − y = xr, and define π : X → P1

k to be the corresponding cover of non-singular
projective curves over k. Then we have dimk H0(X,ΩX) = gX = r−1

2 (e.g., see [Köc,
Example 2.5]).

Remark 3.5
(a) The paper [VM] by Valentini and Madan is about determining the k[G]-mod-

ule structure of the space H0(X,ΩX) if G is a cyclic p-group. With some effort it is
also possible to derive major steps of this section from their fine results.

(b) If X is not hyperelliptic, the following argument yields a very short proof of
(the ‘only-if ’ direction of) Theorem 3.2. By [Har, Proposition IV.5.2] the canonical
morphism X → P(H0(X,ΩX)) is a G-equivariant closed embedding; as the action
of G on X is faithful, the action of G on H0(X,ΩX) therefore has to be faithful as well.
A similar, but more intricate argument based on the deeper [Har, Proposition IV.5.3],
can actually be used to prove Theorem 3.2 also if X is hyperelliptic.

4 Trivial Actions and Faithful Actions on Riemann–Roch Spaces

The goal of this section is to give both sufficient and necessary conditions for the
action of G on H0(X,OX(D)) to be faithful if deg(D) > 2gX − 2. For instance,
if m ≥ 2, the group G does not act faithfully on the space H0(X,Ω⊗m

X ) of global
polydifferentials of order m if and only if G contains a hyperelliptic involution and
m = gX = 2; see Corollary 4.5. We begin with a criterion for the action of G on
H0(X,O(D)) to be trivial.

https://doi.org/10.4153/CJM-2014-015-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-015-2
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Theorem 4.1 Let D =
∑

P∈X nP[P] be a G-invariant divisor on X such that
deg(D) > 2gX − 2. Then the action of G on H0(X,OX(D)) is trivial if and only if

(4.1) (n− 1) deg(D) = n
(

gX − gY −
∑

Q∈Y

〈 nQ

eQ

〉)
.

(Recall that nQ := nP for Q ∈ Y and P ∈ π−1(Q).)

Proof The action of G on H0(X,OX(D)) is trivial if and only if

dimk H0(X,OX(D)) = dimk H0(X,OX(D))G.

Using the Riemann–Roch formula [Har, Ch. IV, §1, Theorem 1.3 and Example 1.3.4]
for the left-hand dimension and the formula given by Proposition 2.2 for the right-
hand dimension, we obtain that the action of G on H0(X,OX(D)) is trivial if and only
if

1− gX + deg(D) = 1− gY +
1

n
deg(D)−

∑
Q∈Y

〈 nQ

eQ

〉
.

This condition rearranges to condition (4.1), as desired.

Corollary 4.2 Let D =
∑

P∈X nP[P] be a G-invariant divisor on X. We assume
that deg(D) ≥ 2gX , that n ≥ 2, and that gX ≥ 1. Then the action of the group G on
H0(X,OX(D)) is trivial if and only if deg(D) = 2gX , n = 2, gY = 0, and nP is even for
each ramification point P ∈ X.

Proof The following inequalities always hold under the stated assumptions:

(n− 1) deg(D) ≥ (n− 1)2gX ≥ ngX ≥ n
(

gX − gY −
∑

Q∈Y

〈 nQ

eQ

〉)
.

Now the first inequality is an equality if and only if deg(D) = 2gX . The second is an
equality if and only if n = 2. The third inequality is an equality if and only if gY = 0
and

∑
Q∈Y

〈 nQ

eQ

〉
= 0. The latter is the case if and only if each nQ is divisible by eQ,

which, if n = 2, means that nP is even for each ramification point P ∈ X. Given these
observations, Theorem 4.1 implies Corollary 4.2.

Corollary 4.3 Let m ≥ 2. We assume that n ≥ 2 and that gX ≥ 1. Then the action
of G on H0(X,Ω⊗m

X ) is trivial if and only if gY = 0 and n = gX = m = 2 .

Proof As gX ≥ 2 and m ≥ 2, we have that deg(mKX) ≥ 2gX . So, by Corollary 4.2,
the action of G on H0(X,Ω⊗m

X ) is trivial if and only if deg(mKX) = 2gX , n = 2, gY = 0
and for each ramification point P ∈ X the coefficient of the divisor mKX at P is even.
Now deg(mKX) = 2gX means that m(2gX − 2) = 2gX , i.e., that m(gX − 1) = gX , and
hence that m = gX = 2. It therefore suffices to prove that if n = 2, the coefficient nP

of the divisor KX = π∗(KY ) + R at each ramification point P ∈ X is always even. By
definition, the coefficient of the pull-back divisor π∗(KY ) at P is even. Furthermore,
the coefficient δP of R at P is even; see the proof of Proposition 3.1. Hence also nP is
even.
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To illustrate the conditions in Corollary 4.3, we now give simple examples of hy-
perelliptic curves of genus 2 and state a basis of the corresponding space of global
holomorphic quadratic differentials.

Example 4.4 If p 6= 2, let k(x, y) be the extension of the rational function field k(x)
given by y2 = (x − x1) · · · (x − x6), where x1, . . . , x6 ∈ k are pairwise distinct. Then
the corresponding natural projection π : X → P1

k is of degree 2 and ramified exactly
over x1, . . . , x6 ∈ P1

k. In particular, we have gX = 2 by formulae (1.1) and (1.2).
Furthermore, the three quadratic differentials

dx⊗2

y2
, x

dx⊗2

y2
, x2 dx⊗2

y2

are obviously fixed by the hyperelliptic involution y 7→ −y and form a basis of
H0(X,Ω⊗2

X ) by Theorem 5.1. If p = 2, then the curve X considered in Example 3.4
satisfies gX = 2 when r = 5. Furthermore the quadratic differentials dx⊗2, xdx⊗2,
x2dx⊗2 are obviously fixed by the hyperelliptic involution y 7→ y +1 and form a basis
of H0(X,Ω⊗2

X ) by Theorem 5.1.

Corollary 4.5 Let m ≥ 2 and suppose that gX ≥ 2. Then G does not act faithfully on
H0(X,Ω⊗m

X ) if and only if G contains a hyperelliptic involution and m = 2 and gX = 2.

Proof We first prove the ‘if ’ direction. The subgroup of G generated by the hyper-
elliptic involution is a group of order 2 acting on H0(X,Ω⊗m

X ). Since gX = m = 2,
the action of this subgroup is trivial by Corollary 4.3, and this implies that G does
not act faithfully.

To prove the other direction we apply Corollary 4.3 to the non-trivial kernel of the
action of G on H0(X,Ω⊗m

X ).

In the following examples we look at the cases gX = 0 and gX = 1, which are not
covered by the previous corollary.

Example 4.6 Let gX = 0, i.e., X ∼= P1
k. Then the degree of the canonical divisor KX

on X is −2 and so deg(mKX) < 0 for all m ≥ 1. Hence H0(X,Ω⊗m
X ) = {0} by

[Har, Ch. IV, Lemma 1.2] and every automorphism of X acts trivially on H0(X,Ω⊗m
X )

for all m ≥ 1.

Example 4.7 Let gX = 1, i.e., X is an elliptic curve. Then the OX-module Ω⊗m
X is

free of rank 1 for all m ≥ 1. Hence dimk H0(X,Ω⊗m
X ) = 1 for all m ≥ 1 and the

canonical homomorphism H0(X,ΩX)⊗m → H0(X,Ω⊗m
X ) is bijective. We therefore

study the action of Aut(X) on H0(X,Ω⊗m
X ) only for m = 1. Let

χ : Aut(X) −→ k

denote the corresponding multiplicative character and let j ∈ k denote the j-invari-
ant of X. We are going to describe the kernel of χ and show that the image of χ is the
group µr(k) of r-th roots of unity in k with r given by the following table.
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p 6= 2, 3 6= 2, 3 6= 2, 3 3 3 2 2
j 6= 0, 1728 1728 0 6= 0 0 6= 0 0

r 2 4 6 2 4 1 3

As any basis ω of H0(X,Ω) is translation invariant [Sil, Proposition III.5.1], the
normal subgroup X(k) of Aut(k) consisting of all translations is contained in the ker-
nel of this action. By [Sil, Theorem III.10.1], the subgroup G of Aut(X) consisting of
those automorphisms that fix the zero point is finite, and the canonical homomor-
phism from G to the factor group Aut(X)/X(k) is bijective. We denote the induced
character by χ : G→ k and now distinguish the following cases.

(a) Let p 6= 2, 3. By [Sil, Corollary III.10.2], the group G is cyclic of order 2, 4, or 6
depending on whether j 6= 0, 1728, j = 1728, or j = 0. Furthermore, χ is injective;
i.e., the action of G on H0(X,ΩX) is faithful. Indeed, given a Weierstrass equation
y2 = x3 + Ax + B for X, the action of any generator σ of G is given by (x, y) 7→
(ζ2x, ζ3 y), where ζ is a primitive root of unity of order 2, 4, or 6, respectively; see
the proof of [Sil, Corollary III.10.2]. As ω = dx

y [Sil, Section III.5], we obtain that

χ(σ) = ζ−1 and that χ is injective.
(b) Let p = 3. If j 6= 0, then ord(G) = 2 by [Sil, Prop. A.1.2] and, using Case I

in the proof of that result, the same reasoning as in (a) shows that χ is injective. If
j = 0, the group G is a semidirect product of a normal subgroup C3 of order 3 and
a cyclic subgroup of order 4; see [Sil, Exercise A.1(a)]. The character χ : G → k is
trivial on C3 because µ3(k) is trivial. Using Case II in the proof of [Sil, Prop. A.1.2],
the same reasoning as in (a) shows that the induced character χ : C4 → k is injective.

(c) Let p = 2. If j 6= 0, then ord(G) = 2 [Sil, Proposition A.1.2]. We conclude
that χ is trivial because µ2(k) is trivial. If j = 0, the group G is a semidirect product
of a cyclic subgroup C3 and a normal subgroup Q isomorphic to the quaternion
group of order 8; see [Sil, Exercise A.1(b)]. Again, as µ8(k) is trivial, the character χ
is trivial on Q. Using Case IV in the proof of [Sil, Prop. A.1.2], one easily shows
that the induced character χ : C3 → k is injective. Note that here ω = dx; see
[Sil, Proposition A.1.1(c) and Section III.5].

Similarly to the case deg(D) ≥ 2gX in Corollary 4.2, the following corollary gives,
in the case deg(D) = 2gX − 1, necessary and sufficient conditions for the action of G
on H0(X,OX(D)) to be trivial.

Corollary 4.8 Let D =
∑

P∈X nP[P] be a G-invariant divisor on X. We assume
that deg(D) = 2gX − 1, that n ≥ 2, and that gX ≥ 2. Then the action of G on the
space H0(X,OX(D)) is trivial if and only if gY = 0 and one of the following two sets of
conditions holds:

• n = 2 and there is exactly one ramification point P ∈ X for which nP is odd;
• n = 3, gX = 2, and nP is a multiple of 3 for each ramification point P ∈ X.

Proof As deg(D) = 2gX−1, we conclude from Theorem 4.1 that the action is trivial
if and only if

(n− 1)(2gX − 1) = n
(

gX − gY −
∑

Q∈Y

〈 nQ

eQ

〉)
.
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If n = 2, then this is equivalent to

2gX − 1 = 2gX − 2gY − 2
∑

Q∈Y

〈 nQ

eQ

〉
and hence to gY = 0 and

∑
Q∈Y

〈 nQ

eQ

〉
= 1

2 , and the latter condition means that there

is exactly one ramification point P ∈ X for which nP is odd.
If n ≥ 3, then, as gX ≥ 2, we have gX ≥ n−1

n−2 , which is equivalent to the first
inequality in the following chain of inequalities:

(n− 1)(2gX − 1) ≥ ngX ≥ n
(

gX − gY −
∑

Q∈Y

〈 nQ

eQ

〉)
.

Hence the action is trivial if and only if both inequalities are equalities, which is the
case if and only if n = 3, gX = 2, gY = 0, and eQ | nQ for all Q ∈ Y . When
n = 3, the latter condition means that nP is a multiple of 3 for each ramification
point P ∈ X.

Corollaries 4.2 and 4.8 yield the following sufficient conditions for the action of G
on a general Riemann–Roch space H0(X,OX(D)) to be faithful.

Corollary 4.9 Let gX ≥ 2 and let D =
∑

P∈X nP[P] be a G-invariant divisor on X.
Let Xram := {P ∈ X : π is ramified at P}. Then the action of G on H0(X,OX(D)) is
faithful if any of the following four sets of conditions holds:

(i) deg(D) ≥ 2gX + 1;
(ii) deg(D) = 2gX and nP is odd for each P ∈ Xram;
(iii) deg(D) = 2gX − 1, gX ≥ 3 and nP is even for each P ∈ Xram;
(iv) deg(D) = 2gX−1, gX = 2 and nP is even but not a multiple of 3 for each P ∈ Xram.

Proof Suppose the action of G on H0(X,OX(D)) is not faithful. Then there exists
a non-trivial subgroup H of G such that the action of H on H0(X,OX(D)) is in fact
trivial.

If deg(D) ≥ 2gX , Corollary 4.2 implies that deg(D) = 2gX , that the order of H
is 2, that the genus of X/H is 0, and that nP is even for each ramification point P
of the projection X → X/H. In particular, condition (i) cannot hold, and condi-
tion (ii) cannot hold, because X → X/H is not unramified (by the Hurwitz for-
mula (1.1)) and because each ramification point of X → X/H is also a ramification
point of π : X → X/G.

Similarly, if deg(D) = 2gX − 1, Corollary 4.8 implies that neither of conditions
(iii) and (iv) can hold. Indeed, each of the conditions (iii) and (iv) contradicts both
the first and second sets of conditions in Corollary 4.8.

So we have proved that if any of the conditions (i)–(iv) holds, then the action of
G on H0(X,OX(D)) is faithful.

Remark 4.10 Let deg(D) ≥ 2gX + 1, which amounts to gX ≥ 3 or (gX = 2 and
m ≥ 3) in Corollaries (4.3) and (4.5). Then, as in Remark (3.5)(b), most of the
results of this section are immediate consequences of the fact that D is very ample;
see [Har, Corollary IV.3.2].
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5 Global Holomorphic Polydifferentials on Hyperelliptic Curves

In this section we assume that the curve X is hyperelliptic of genus g ≥ 2 and give
an explicit basis of H0(X,Ω⊗m

X ) for any m ≥ 1; see Theorem 5.1. If, furthermore, G
is the cyclic group of order 2 generated by the hyperelliptic involution σ, this quickly
leads to another proof of Theorem 3.2 and Corollary 4.5.

We fix an isomorphism X/G ∼= P1
k and consider the projection

x : X −→ X/G ∼= P1
k

as an element of the function field K(X). By [Liu, Proposition 4.24 and Remark 4.25,
Chpt. 7], there exists an element y ∈ K(X) such that K(X) = k(x, y) and such that y
satisfies a quadratic equation over k(x) of the following type:

Case p 6= 2: y2 = f(x), where f (x) ∈ k[x] is a polynomial without repeated zeroes.

Case p = 2: y2 − h(x)y = f(x), where f (x), h(x) ∈ k[x] are non-zero polynomials
such that h′(x)2 f (x) + f ′(x)2 and h(x) have no common zeroes in k.

We recall that the stated condition on the polynomial(s) f (x) (and h(x), respec-
tively) means that the affine plane curve defined by the quadratic equation is smooth;
see [Liu, Chap. 7, Remark 4.25].

Let m ≥ 1 and let the meromorphic polydifferential ω ∈ Ω⊗m
K(X)/k be defined as

follows:

ω :=
dx⊗m

ym
if p 6= 2 and ω :=

dx⊗m

h(x)m
if p = 2.

Theorem 5.1 The following polydifferentials form a basis of H0(X,Ω⊗m
X ):

ω, xω, . . . , xg−1ω if m = 1;

ω, xω, x2ω if m = 2 and g = 2;

ω, xω, . . . , xm(g−1)ω; yω, xyω, . . . , x(m−1)(g−1)−2 yω otherwise.

Remark 5.2 The case m = 1 of the previous theorem is for instance also treated in
[Liu, Proposition 4.26, Chpt. 7].

We now briefly explain that Theorem 5.1 yields a new proof of Theorem 3.2 and
Corollary 4.5 if X is hyperelliptic and G is generated by the hyperelliptic involution.
By definition, the hyperelliptic involution σ fixes x and maps y to −y if p 6= 2 and
to y − h(x) if p = 2. We therefore have σ(ω) = ω if p = 2 or if m is even. In
particular, Theorem 5.1 implies that σ acts trivially on H0(X,Ω⊗m

X ) if either m = 1
and p = 2 or m = 2 and g = 2, as stated in Theorem 3.2 and Corollary 4.5. On the
other hand, if p 6= 2 and m is odd, then σ(xiω) = −xiω for i = 0, . . . ,m(g−1), so G
does act faithfully on H0(X,Ω⊗m

X ). Finally, if m ≥ 3 or g ≥ 3, the second half of the
list of basis elements given in Theorem 5.1 is non-empty, and σ does not act trivially
on those basis elements if p = 2 or if m is even, and so again G does act faithfully
on H0(X,Ω⊗m

X ).

Proof of Theorem 5.1 We first observe that the stated family of polydifferentials is
linearly independent over k. This follows from the elementary facts that ω is a basis of
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the vector space ΩK(X)/k over K(X) = k(x, y), that 1 and y are linearly independent
over k(x), and that 1, x, x2, . . . are linearly independent over k. Furthermore, it is
easy to see that the number of elements in the stated family is equal to{

g if m = 1,

(2m− 1)(g − 1) if m ≥ 2,

which in turn is equal to dimk H0(X,Ω⊗m
X ) by the Riemann–Roch theorem ([Har, IV,

Theorem 1.3, Examples 1.3.3 and 1.3.4]). It therefore suffices to prove that each
polydifferential in our family is indeed globally holomorphic.

For each a ∈ P1
k, let Pa denote the unique point in X above a, if a is a branch

point of x, and let Pa, P′a denote the two points above a otherwise. We write Da for
the divisor

Da = x∗([a]) =

{
2[Pa] if a is a branch point of x;

[Pa] + [P′a] otherwise.

Then we obviously have

div(x) = D0 − D∞.

Recall that R denotes the ramification divisor of x. By [Sti, Theorem 3.4.6] (which
implies the Hurwitz formula (1.1)) we have

div(dx) = x∗
(

divP1
k
(dx)

)
+ R = R− 2D∞.

We will prove below that

(5.1)
div(y)

div(h(x))

}
= R− (g + 1)D∞

{
if p 6= 2,

if p = 2.

If p 6= 2, this equation implies that

(5.2) div(y) ≥ −(g + 1)D∞,

and, if p = 2, we will prove this inequality separately. For any i ≥ 0, we then obtain
that

div(xiω) =

{
i div(x) + m div(dx)−m div(y) if p 6= 2,

i div(x) + m div(dx)−m div(h(x)) if p = 2,

= i(D0 − D∞) + m(R− 2D∞)−m(R− (g + 1)D∞)

= iD0 + (m(g − 1)− i)D∞

and hence that

div(xi yω) = div(xiω) + div(y)

≥ iD0 + (m(g − 1)− i)D∞ − (g + 1)D∞

= iD0 + ((m− 1)(g − 1)− 2− i)D∞.

Thus xiω is holomorphic for i = 0, . . . ,m(g − 1), and xi yω is holomorphic for
i = 0, . . . , (m− 1)(g − 1)− 2, as was to be shown.
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We now prove statements (5.1) and (5.2). We first consider the case p 6= 2. Then
the degree of f (x) is equal to 2g + 1 or 2g + 2 by [Liu, Chap. 7, Prop. 4.24(a)]. Let
a1, . . . , adeg( f (x)) ∈ k be the zeroes of f (x). By formulae (1.1) and (1.2), we have

R = [P1] + · · · + [P2g+2],

where Pi := Pai for i = 1, . . . , deg( f (x)) and P2g+2 := P∞ if deg( f (x)) = 2g + 1. We
then obtain that

div(y) =
1

2
div(y2) =

1

2
div( f (x))

=

{
[P1] + · · · + [P2g+2]− (g + 1)D∞ if deg( f (x)) = 2g + 2;

[P1] + · · · + [P2g+1]− (2g + 1)[P∞] if deg( f (x)) = 2g + 1.

= R− (g + 1)D∞,

which proves both (5.1) and (5.2) in the case p 6= 2.
We finally turn to the case p = 2. We write

h(x) =
k∏

i=1
(x − ai)

mi

with m1, . . . ,mk ∈ N and pairwise distinct a1, . . . , ak ∈ k. Then a1, . . . , ak are the
only branch points of x in A1

k and we let Pi := Pai for i = 1, . . . , k. Furthermore,

let d := deg(h(x)) =
∑k

i=1 mi and bi := y(Pi) for i = 1, . . . , k. By the Nakayama
Lemma, y − bi is a local parameter at Pi . By Hilbert’s formula (1.2) we then obtain

δPi = ordPi

(
σ(y − bi)− (y − bi)

)
= ordPi (−h(x)) = 2mi

for i = 1, . . . , k. We hence have

(5.3) R =
k∑

i=1
2mi[Pi] + (g + 1− d)D∞,

because deg(R) = 2g + 2 by the Hurwitz formula (1.1). We therefore obtain

div(h(x)) =
k∑

i=1
2mi[Pi]− d D∞ = R− (g + 1)D∞.

This proves equality (5.1) in the case p = 2.
We finally prove inequality (5.2) by contradiction. We first note that deg( f (x)) ≤

2g + 2 by [Liu, Chap. 7, Prop. 4.24(a)]. If ∞ is a branch point of x, then we have
d < g + 1 by formula (5.3). Now, supposing that inequality (5.2) does not hold
implies that ordP∞(y) < −2(g + 1) (which is less than −2d = ordP∞(h(x))) and
hence that

−4(g + 1) > 2 ordP∞(y) = ordP∞(y(y − h(x))) = ordP∞( f (x)) ≥ −2(2g + 2)

which is a contradiction. If∞ is not a branch point of x, we have deg(h(x)) = g + 1
by formula (5.3). Now, supposing that inequality (5.2) does not hold means that
ordP(y) < −(g + 1) (which is equal to ordP(h(x))) for P = P∞ or P = P′∞ and hence
that

−2(g + 1) > 2 ordP(y) = ordP(y(y − h(x))) = ordP( f (x)) ≥ −(2g + 2),

which again is a contradiction.
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This concludes the proof of Theorem 5.1.

6 Automorphism Groups of Geometric Goppa Codes

Permutation automorphism groups of Goppa codes play an important role in Coding
Theory (e.g., see [Sti, JK, GK] and the literature cited there). In this section we are
going to explain how Corollary 4.9 can be used to obtain permutation groups that
act faithfully on geometric Goppa codes. A slightly more explicit account of the basic
idea can also be found in [FW, Chapter 3].

Let X be a geometrically connected, smooth, projective curve over a finite field Fq.
Let D =

∑
P∈X closed nP[P] be a divisor on X and let E be a set of Fq-rational points

on X none of which belongs to the support of D. Then we have a natural evaluation
map

evD,E : H0(X,OX(D))→ Maps(E, Fq)

the image of which is called a geometric Goppa code and is denoted by C = C(D, E).
Note that the target space of evD,E is usually denoted by Fr

q where r is the number of
points in E. Our notation Maps(E, Fq) simplifies the discussions below.

The group Sym(E) of permutations of E acts on Maps(E, Fq). The subgroup of
Sym(E) consisting of those σ ∈ Sym(E) that induce an automorphism of C is called
the permutation automorphism group of C and denoted by AutPerm(C). Note that
AutPerm(C) acts on C , but not necessarily faithfully.

Now we furthermore assume that G is a finite subgroup of Aut(X/Fq), that the
divisor D is G-invariant, and that σ(E) = E for all σ ∈ G. Then G acts on both
the source and target of the evaluation map evD,E and evD,E is G-equivariant. In
particular we have the following composition of obvious group homomorphisms

G −→ AutPerm(C) −→ AutFq (C).

Lemma 6.1 If the cardinality |E| of E is bigger than deg(D) and G acts faithfully on
H0(X,OX(D)), then this composition is injective.

Proof If |E| > deg(D), then the evaluation map evD,E is injective by [Sti, Corol-
lary 2.2.3] and we have the following obvious commutative diagram:

G //

��

AutPerm(C)

��
AutFq (H0(X,OX(D)))

∼ // AutFq (C).

Now Lemma 6.1 is obvious.

If |E| > deg(D) and G acts faithfully on H0(X,OX(D)), then Lemma 6.1 allows us
to view G as a subgroup of both AutPerm(C) and of AutFq (C). Furthermore, when ap-

plied to the curve X = X×Fq Fq over the algebraic closure Fq of Fq, Corollary 4.9 gives

us sufficient conditions for the action of G on H0(X,OX(D)) = H0(X,OX(D))⊗Fq Fq

to be faithful. (Note that here, by abuse of notation, D also denotes the divisor on
X induced by the divisor D on X.) Under the assumptions of Corollary 4.9 and

https://doi.org/10.4153/CJM-2014-015-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-015-2
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of Lemma 6.1 we thus obtain that G is a subgroup of AutPerm(C) that acts faith-
fully on the Goppa code C . This strengthens [Sti, Proposition 8.2.3] in the case
deg(D) ∈ {2gX − 1, 2gX, 2gX + 1} and gX ≥ 2. A related result can be found in [JK].

7 Computing the Dimension of the Tangent Space of the Equivariant
Deformation Functor

This section depends only on Section 2.
The equivariant deformation problem associated with (G,X) is to determine in

how many ways X can be deformed to another curve that also allows G as a group of
automorphisms. In [BM], Bertin and Mézard have shown that the tangent space of
the corresponding deformation functor is isomorphic to the equivariant cohomology
H1(G,TX) of (G,X) with values in the tangent sheaf TX = Ω∨X . In this section, we
apply Corollary 2.4 to prove the following formula for the dimension of H1(G,TX),
provided the space MG of invariants and the space MG of coinvariants have the same
dimension for every finitely generated k[G]-module M.

Theorem 7.1 Let gX ≥ 2. If dimk MG = dimk MG for every finitely generated
k[G]-module M, then we have

(7.1) dimk H1(G,TX) = 3gY − 3 +
∑

Q∈Y

⌊ 2δQ

eQ

⌋
.

The following lemma implies that the assumption of the previous theorem is satis-
fied if G is cyclic and its order is a power of p. In particular, Theorem 7.1 generalizes
[KöKo, Corollary 2.3], which proves formula (7.1) under the assumption that G is
cyclic and its order is a power of p. Moreover, the proof of Theorem 7.1 at the end
of this section considerably simplifies the proof of [KöKo, Corollary 2.3], which ulti-
mately relies on a comparatively fine and deep theorem in the last section of Borne’s
paper [Bor].

Lemma 7.2 Suppose that the finite group G has a normal subgroup N such that p
does not divide the order of N and such that G/N is cyclic. Then we have dimk MG =
dimk MG for every finitely generated k[G]-module M.

Proof By replacing N with the preimage of the non-p-part of the cyclic group G/N
under the canonical projection G → G/N, we may assume that the order of G/N is
a power of p = char(k). We need to show that dimk(MN )G/N = dimk(MN )G/N for
every finitely generated k[G]-module M. As p does not divide the order of N, the
canonical map MN → MN is obviously an isomorphism of k[G/N]-modules. We
may therefore assume that G is cyclic and that the order of G is a power of p. Then
both dimk MG and dimk MG are equal to the number of summands in a represen-
tation of M as a direct sum of indecomposable k[G]-modules, as one can easily see
from the explicit description of indecomposable k[G]-modules as given for example
in the second paragraph of [KöKo, Section 2].
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Note that the Schur–Zassenhaus theorem tells us that, under the assumptions of
Lemma 7.2, the group G is in fact a semidirect product of N and G/N provided we
assume without loss of generality that the order of G/N is a power of p. Examples of
such semidirect products may be obtained as follows. Suppose q is a prime number
such that p divides q − 1 and let H be a (cyclic) subgroup of (Z/qZ)× whose order
is a power of p. Then H acts on Z/qZ by multiplication, and the semidirect product
H n Z/qZ is of the considered type.

The following simple example shows that the assumption of Theorem 7.1 cannot
be expected to hold true if G is a non-cyclic group whose order is a power of p.

Example 7.3 Let G be the finite group Z/pZ × Z/pZ, represented as the matrix
group 1 Z/pZ Z/pZ

0 1 0
0 0 1

 ,

and let M be the standard representation k3 of G. Then one easily checks that both
MG and the kernel of the canonical map M → MG are generated by the first standard
basis vector of k3, so dimk MG = 1 but dimk MG = 2.

The following lemma will be used in the proof of Theorem 7.1. It generalizes and
simplifies the considerations in [Kon, Section 2]. We use the notation ∗ for the k-dual
of a vector space over k or of a k-representation of G.

Lemma 7.4 Let G be a finite group and let M be a finitely generated k[G]-module.
Then we have a canonical isomorphism

(MG)∗
∼−→ (M∗)G.

Proof The dual of the canonical projection M → MG induces a natural map
αM : (MG)∗ → (M∗)G. Given a representation

k[G]s −→ k[G]r −→ M −→ 0

of M, we obtain the following commutative diagram with exact rows:

0 // (MG)∗ //

αM

��

((
k[G]r

)
G

)∗ //

αk[G]r

��

((
k[G]s

)
G

)∗
αk[G]s

��

0 // (M∗)G //
((

k[G]r
)∗)G //

((
k[G]s

)∗)G
.

It therefore suffices to prove Lemma 7.4 for M = k[G] in which case it is easy to
check.

Proof of Theorem 7.1 A simple spectral-sequence argument (see [Kon, Proposi-
tion 3.1]) shows that

H1(G,TX) ∼= H1(X,TX)G.
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We therefore obtain

dimk H1(G,TX) = dimk H1(X,TX)G

= dimk(H0(X,Ω⊗2
X )∗)G (by Serre duality, [Har, III, 7.12.1])

= dimk(H0(X,Ω⊗2
X )G)∗ (by Lemma 7.4)

= dimk H0(X,Ω⊗2
X )G

= dimk H0(X,Ω⊗2
X )G (by assumption)

= 3(gY − 1) + deg
⌊ 2π∗(R)

n

⌋
(by Corollary 2.4)

= 3gY − 3 +
∑

Q∈Y

⌊ 2δQ

eQ

⌋
,

as was to be shown.

8 When does an Automorphism of a Riemann Surface Act Trivially
on its First Homology?

Let X be a connected compact Riemann surface of genus g ≥ 2, let m ≥ 2 and let σ be
an automorphism of X of order n 6= 1. Rather than the action of σ on H0(X,Ω⊗m

X ),
we now study the action of σ on the first homology group H1(X,Z/mZ) of X with
values in Z/mZ. The object of this section is to point out a striking analogy between
these two actions being trivial.

We recall that Corollary 4.3 states that (in fact for any connected smooth projective
curve X of genus at least 2 over any algebraically closed field) the automorphism σ
acts trivially on H0(X,Ω⊗m

X ) if and only if m = gX = 2 and σ is a hyperelliptic
involution. The following theorem addresses the analogue of the ‘only-if ’ direction
of this statement.

Theorem 8.1 If σ acts trivially on H1(X,Z/mZ), then m = 2 and σ is an involution.

Proof This follows from the theorem at the end of [FK, Section V.3.4]. We remark
that the proof of that theorem is based on a well-known fact (deduced by Serre) about
torsion in principal congruence subgroups.

The next theorem is about the analogue of the ‘if ’ direction of Corollary 4.3.

Theorem 8.2 Let σ be an involution. Then the implications (i)⇔ (ii)⇒ (iii)⇔ (iv)
hold for the following statements.

(i) g = 2 and σ is a hyperelliptic involution.
(ii) For every simple closed curve α on X, the curve σ(α) is freely homotopic to α or

−α.
(iii) There exists a basis B of H1(X,Z) such that σ(x) = ±x for all x ∈ B.
(iv) The involution σ acts trivially on H1(X,Z/2Z).
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Proof The equivalence (i)⇔ (ii) follows from [HS, Theorems 1 and 2] by Haas and
Susskind and from the fact that any two biholomorphic automorphisms of X that are
homotopic to each other are in fact equal; see [Lew, Corollary 2].

The implication (ii)⇒ (iii) follows from the well-known fact that there exists a
basis B of H1(X,Z) consisting of classes of simple closed curves. It also follows from
Theorem 8.3.

The implication (iii)⇒ (iv) is trivial, because H1(X,Z/2Z) ∼= H1(X,Z) ⊗ Z/2Z.
To prove the converse (iv)⇒ (iii), we observe that for any x ∈ H1(X,Z), the classes of
x + σ(x) and x − σ(x) in H1(X,Z/2Z) are zero; hence x+ := x+σ(x)

2 and x− := x−σ(x)
2

are well-defined elements in H1(X,Z) such that σ(x±) = ±x± and x = x+ + x−. The
union of bases for E±(σ) := {x ∈ H1(X,Z) : σ(x) = ±x} is therefore a basis B of
H1(X,Z) with the required property.

The following final theorem shows that after dropping the assumption g = 2
in statement (i) of the previous theorem, the implication (i) ⇒ (iii) still holds. In
contrast to Corollary 4.3, the implication (iv)⇒ (i) is therefore not true.

Theorem 8.3 If σ is a hyperelliptic involution, then σ acts by multiplication with−1
on H1(X,Z).

Proof Topologically, the hyperelliptic involution σ ‘rotates X by 180◦ around an
axis L’ as depicted in Figure 1. Let α1, . . . , αg , β1, . . . , βg be the standard basis el-

L
· · ·

α1 α2 αg

β1 β2 βg

σ(β1) σ(β2) σ(βg)

Figure 1

ements of H1(X,Z) as given in Figure 1. Then we obviously have σ(αi) = −αi in
H1(X,Z) for all i = 1, . . . , g. Furthermore σ(β1) and β1 and also σ(βg) and βg

are homotopic to each other (but with different orientation); hence we have σ(β1) =
−β1 and σ(βg) = −βg in H1(X,Z). To see that σ(βi) = −βi also for i = 2, . . . , g−1,
let Xi be the ‘left-hand (or right-hand) part of the surface X bounded by βi ∪ σ(βi)’.
Being the oriented boundary of the oriented surface Xi , the class βi + σ(βi) vanishes
in the homology H1(Xi ,Z) of the subspace Xi of X and hence also in H1(X,Z), as was
to be shown.

We end with the following problem.

Problem. Give a geometric characterization of those involutions σ ∈ Aut(X) for
which Theorem 8.2(iii) holds.
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[GK] M. Giulietti and G. Korchmáros, On automorphism groups of certain Goppa codes. Des. Codes
Cryptogr. 47(2008), no. 1–3, 177–190. http://dx.doi.org/10.1007/s10623-007-9110-5

[Har] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, 52, Springer-Verlag, New
York, 1977.

[Hor] R. Hortsch, On the canonical representation of curves in positive characteristic. New York J. Math.
18(2012), 911–924.

[HS] A. Haas and P. Susskind, The geometry of the hyperelliptic involution in genus two. Proc. Amer.
Math. Soc. 105(1989), no. 1, 159–165. http://dx.doi.org/10.1090/S0002-9939-1989-0930247-2

[JK] D. Joyner and A. Ksir, Automorphism groups of some AG codes. IEEE Trans. Inform. Theory
52(2006), no. 7, 3325–3329. http://dx.doi.org/10.1109/TIT.2006.876243

[Kan] E. Kani, The Galois-module structure of the space of holomorphic differentials of a curve. J. Reine
Angew. Math. 367(1986), 187–206. http://dx.doi.org/10.1515/crll.1986.367.187

[Kar] S. Karanikolopoulos, On holomorphic polydifferentials in positive characteristic. Math. Nachr.
285(2012), no. 7, 852–877. http://dx.doi.org/10.1002/mana.201000114

[KaKo] S. Karanikolopoulos and A. Kontogeorgis, Representation of cyclic groups in positive
characteristic and Weierstrass semigroups. J. Number Theory 133(2013), no. 1, 158–175.
http://dx.doi.org/10.1016/j.jnt.2012.05.039
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