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Abstract

For a finite Clifford inverse algebra A, with natural order meet-semilattice YA and group of units GA,
we show that the inverse monoid obtained as the semidirect product Y1

A∗ρGA has a log-polynomial free
spectrum whenever ρ is a term-expressible left action of GA on YA and all subgroups of A are nilpotent.
This yields a number of examples of finite inverse monoids satisfying the Seif conjecture on finite monoids
whose free spectra are not doubly exponential.
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1. Introduction

LetV be a locally finite variety, in the sense of universal algebra [3]. The free spectrum
fn(V) of V is the sequence consisting of the cardinalities of its n-generated free
algebras [9]. In particular, if A is a finite algebra, the free spectrum of A is simply
the free spectrum of the variety V(A) it generates. The free spectrum is an important
invariant of an algebra generating a locally finite variety that is intimately related to a
range of its structural properties. One of the most interesting properties in this regard
is the rate of growth of fn(V), that is, its asymptotic behavior. We say that a variety
V has at least a doubly exponential free spectrum if there is a positive real number c
such that

fn(V) ≥ 22cn

holds for large n. This is precisely as far as finitely generated varieties can go,
since elementary universal-algebraic arguments imply that for a finite algebra A we
have fn(A) ≤ |A||A|

n
. A strikingly different behavior of a free spectrum is encountered
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226 I. Dolinka [2]

when fn(V) is log-polynomial, which means that log fn(V) is bounded above by a
polynomial function in n (where ‘log’ refers to the base-2 logarithm).

The fact that a finite algebra has a doubly exponential free spectrum indicates that
it is sufficiently close to being functionally complete, since it has a rich clone of
term/polynomial operations. For example, the free spectrum of the variety of Boolean
algebras is precisely 22n

, and even the two-element lattice (generating the variety of
distributive lattices) has a doubly exponential free spectrum. The same is true for any
nonnilpotent finite group [20]. The results of [1] and [11, Chapter 12] offer several
universal-algebraic generalisations of these classical results. On the other hand, if a
finite group G is nilpotent of class c, then log fn(G) belongs to the asymptotic class
O(nc) (see Higman [10] and Neumann [20]).

One of the most important discoveries concerning free spectra was made by
Kearnes [16], who observed that the asymptotic behavior of a finite general algebra A
is largely governed by the free spectrum of a naturally associated monoid Tw(A), called
the twin monoid. This provided a significant boost for the investigation of free spectra
of finite monoids and semigroups, and, in particular, for finding the watershed between
log-polynomial and doubly exponential ones (and determining if there is anything in
between). A pioneering paper in this vein was recently written by Seif [24], who
conjectured that a finite monoid M does not have a doubly exponential free spectrum
if and only if M has only nilpotent subgroups and belongs to a certain pseudovariety
(a class of finite monoids closed under taking homomorphic images, submonoids and
finite direct products) called EDA, which is, incidentally, a well-studied object in
finite semigroup theory. (Namely, the pseudovariety DA comprises finite monoids
all of whose regular D-classes are rectangular bands, and a finite monoid belongs to
EDA if and only if its idempotent generated submonoid belongs to DA.) Seif himself
proved the forward implication of his conjecture and verified its converse for monoids
obtained by adjoining an identity element to a finite Rees matrix (that is, completely
0-simple) semigroup. Subsequently, the author in [5] confirmed the Seif conjecture
for completely regular monoids (monoids that are unions of their subgroups): more
generally, a completely regular semigroup has a sub-log-exponential (in fact, a
log-polynomial) free spectrum if and only if it is locally orthodox and all of its
subgroups are nilpotent. Also, all monoids in DA are shown in [7] to have a log-
polynomial free spectrum. Some other related results concerning free spectra of
semigroups may be found, for example, in [4, 6, 14, 15].

The next important particular instance of the Seif conjecture—and, in a sense, a
real ‘test case’ for it—concerns inverse monoids [18]. Namely, since the idempotents
of any inverse semigroup form a semilattice under multiplication, all finite inverse
monoids belong to EDA. Therefore, a verification of the conjecture in the inverse
case would consist of proving that each finite inverse monoid with nilpotent subgroups
has a free spectrum that is not doubly exponential (perhaps even log-polynomial).
In the present state of knowledge on finitely generated inverse semigroup varieties,
this appears to be a distant prospect. Yet, in this note we present a reasonably
broad class of finite inverse monoids with log-polynomial free spectra. These inverse
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monoids are obtained from the so-called (Clifford) inverse algebras extensively studied
by Leech in [19]; loosely speaking, an inverse algebra arises whenever the natural
partial order that can be defined on any inverse monoid turns out to be a meet-
semilattice order, which results in a semiring-like algebraic structure. So, we take
this semilattice component of a Clifford inverse algebra A (see Section 2.3 below)
and construct its semidirect product by GA, the group of units of A, with respect to a
(term-definable) left action of this group on the meet-semilattice reduct YA of A; we
argue (in Theorem 2.7 below, our main result) that any such semidirect product—and
thus any inverse semigroup belonging to the variety it generates—has a free spectrum
whose logarithm is bounded above by a polynomial. We exhibit a few examples
of finite inverse monoids which are covered by this construction. In particular, we
will recover a polynomial upper bound for log fn(B1

2), where B1
2 is the six-element

Brandt monoid, which presented the main obstacle in [24] in obtaining log-polynomial
upper bounds for monoids obtained from finite completely 0-simple semigroups over
nilpotent groups.

2. Preliminaries and formulation of the main result

2.1. Inverse semigroups. A semigroup S is (von Neumann) regular if for each a ∈ S
there is an x ∈ S such that axa = a. If, in addition, xax = x, then x is called an inverse
of a. A regular semigroup is inverse if its idempotent elements commute (and so
form a semilattice); it is not difficult to see that an equivalent condition is that every
element has a unique inverse (we refer to [18] for further background in general and
inverse semigroup theory). It is this latter definition that offers the possibility to define
inverse semigroups as an equational class in the extended signature, which, beyond the
binary multiplication symbol, contains a unary symbol −1. The associative law and the
identities

(xy)−1 ≈ y−1x−1, (x−1)−1 ≈ x, xx−1x ≈ x, xx−1yy−1 ≈ yy−1xx−1

ensure that a−1 is always the unique inverse of a. An inverse monoid is an inverse
semigroup that possesses an identity element; by adding the constant symbol 1 and the
identities x1 ≈ 1x ≈ x and 1−1 ≈ 1 we establish that inverse monoids form a variety,
too.

On the other hand, inverse semigroups (or monoids) in the signature consisting only
of the binary symbol (and, perhaps, the constant 1) do not form a variety, and so if S is
an inverse semigroup/monoid, the variety generated by it may well contain noninverse
semigroups. Therefore, the varieties generated by an inverse monoid in the monoid
signature and in the extended signature are different, as well as their free objects and,
consequently, free spectra. Nevertheless, there is a strong connection.

L 2.1. Let S be an inverse monoid generating a locally finite monoid variety,
and let fn and f ′n be its free spectra when considered as a plain monoid and as an
inverse monoid with the unary inverse operation, respectively. Then fn ≤ f ′n ≤ f2n for
all positive integers n.
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P. It is well known in universal algebra that the standard model of the n-generated
free algebra in the variety generated by A consists of all term operations of A over
a fixed set of n variables. Hence, fn(A) coincides with the number of n-ary term
operations of A. Since the term operations of the plain monoid S are just operations
induced by (possibly empty) words, any such operation is at the same time a term
operation of S considered as an inverse monoid; therefore, fn ≤ f ′n .

On the other hand, the identities (xy)−1 ≈ y−1x−1 and (x−1)−1 ≈ x imply that any term
operation of the inverse monoid S over an n-element set of variables Xn = {x1, . . . , xn}

is equivalent to the operation induced by a word w(x1, . . . , xn, x−1
1 , . . . , x−1

n ) over the
‘doubled’ alphabet Xn ∪ X−1

n . In fact, the latter word can be considered as a substitution
instance of a plain word w over a 2n-element alphabet, obtained by replacing each
occurrence of x−1

i by a new letter, say yi. Then, clearly, if the inverse monoid identity
u(x1, . . . , xn, x−1

1 , . . . , x−1
n ) ≈ v(x1, . . . , xn, x−1

1 , . . . , x−1
n ) fails in S , so does the plain

monoid identity u ≈ v. This shows that f ′n ≤ f2n. �

The previous lemma shows that there is no harm in considering all the inverse
monoids in the remainder of this paper to be algebras of the form (S , ·, −1, 1) of the
type (2, 1, 0) and to identify their free spectra with the number of operations induced
on S by inverse monoid words.

2.2. Semidirect product of a semilattice by a group. A theoretically very
important construction of inverse semigroups is that of a semidirect product of a
semilattice by a group. Namely, let Y be a meet-semilattice monoid, whose binary
operation is denoted by ∧, considered as an inverse monoid (the unary operation −1 is
just the identity mapping). Furthermore, let G be a group acting by automorphisms on
Y; we write this (left) action as ρ : (g, α) 7→ g · α, where α ∈ Y and g ∈G. In effect, we
have a homomorphism ρ : G→ Aut(Y). The semidirect product of Y by G with respect
to ρ is the inverse monoid Y ∗ρ G defined on Y ×G by

(α, g)(β, h) = (α ∧ g · β, gh) and (α, g)−1 = (g−1 · α, g−1)

for all α, β ∈ Y and g, h ∈G. The significance of this construction is underlined by
the following basic result in the theory of inverse semigroups: every (finite) inverse
semigroup/monoid S is a homomorphic image of a subalgebra of a (finite) semidirect
product Y ∗ρ G for suitable ρ and (finite) Y and G. In fact, Y can be taken to be the
semilattice E(S ). See [8, 18] for additional background.

2.3. (Clifford) inverse algebras. It is well known—and, indeed, one of the main
motifs in inverse semigroup theory—that the operations of an inverse semigroup S
induce a natural order ≤ on S defined for a, b ∈ S by

a ≤ b if and only if a = ba−1a.

The natural order is stable under left and right multiplication. One of the most
interesting situations occurs when the natural order is a meet-semilattice order, and
such a situation allows an additional binary operation ∧ to be defined on S (as is done
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[5] Free spectra of finite inverse monoids 229

by several authors), inducing a semilattice order identical to the natural one. Following
Leech [19], we call inverse monoids equipped with such an operation inverse algebras.
It was shown in [13, 19] that inverse algebras form a variety, and that it is defined by:
inverse monoid axioms for ·, −1 and 1, the semilattice axioms for ∧, both distributive
laws for · over ∧, and the identity

x ∧ y ≈ x(x ∧ y)−1(x ∧ y).

A Clifford monoid is an inverse monoid in which all idempotents are central (or,
equivalently, which can be decomposed into a semilattice of its maximal subgroups).
If the underlying inverse monoid of an inverse algebra is Clifford, then the algebra in
question is called a Clifford inverse algebra.

Two main examples of Clifford inverse algebras follow.

E 2.2. For a group G, define an algebra on G ∪ {∞} (where ∞ <G) by setting
∞2 =∞−1 =∞ and ∞g = g∞ =∞ and expanding the obtained inverse monoid by a
meet semilattice operation ∧ such that∞∧ g =∞ and g ∧ h =∞ whenever g , h. The
resulting algebra is denoted by [(G) and called the sink algebra over G (also called
in [12] the flat extension of G). As is easily verified, [(G) is always a Clifford inverse
algebra.

E 2.3 [19, Paragraph 3.12]. Let S be an arbitrary Clifford monoid. Then N(S )
is defined to be the Clifford inverse algebra consisting of all cosets of all normal
subgroups of all maximal subgroups of S : if Gx is the maximal subgroup containing
x ∈ S , then Nx is a typical example of such a coset, N EGx. The multiplication works
as follows: Kx · Hy = Nxy, where N is the least normal subgroup of Gxy containing
Kyy−1 ∪ Hxx−1. The natural semilattice order yields Kx ≤ Hy if and only if Kx ⊇ Hy;
thus Kx ∧ Hy is the least coset of a normal subgroup of G containing Kx ∪ Hy
(it is easily verified that such a least coset always exists). The inverse monoid S
itself embeds into N(S ) via x 7→ Ex = {x}. In that sense, S (that is, the singletons)
generates a subalgebra of N(S ), which is denoted by N∗(S ): it consists of all cosets
of finitely generated normal subgroups of maximal subgroups of S . Hence, we have
N(S ) = N∗(S ) whenever the Clifford monoid S is finite.

Notice that if S is a group, then [(S ) is just a quotient of N(S ) obtained from the
congruence collapsing all nonsingleton cosets of S .

Here are the existing results that we will utilise in what follows.

F 2.4 (see [12, Theorem 7.5]). Clifford inverse algebras form a variety, C, which is
generated by sink algebras [(G) of all groups G. Furthermore, for each group variety
V, the class C(V) of all Clifford inverse algebras all of whose subgroups belong toV
is a subvariety of C.

F 2.5 (see [19, Paragraph 3.17 and Theorem 3.13]). Let V be a variety of groups,
and let Vsl denote the variety of Clifford inverse monoids all of whose subgroups
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belong to V. If S is the free object of Vsl on n > 0 free generators, then N∗(S ) is
isomorphic to Fn(C(V)), the n-generated free object of C(V).

2.4. The main theorem. Let (A, ∧, ·, −1, 1) be a Clifford inverse algebra. We denote
by YA its semilattice reduct (A, ∧), and, as is customary in semigroup theory, by Y1

A
the monoid obtained by adjoining an identity element to YA unless it already has one.
Denote by GA the group of units of A, that is, the maximal subgroup of A containing
the identity element 1.

There are several ways in which GA may act on the semilattice YA by
automorphisms; for example, here is one.

L 2.6. Let A be a Clifford inverse algebra and let g ∈GA. Then the left
multiplication by g, λg : a 7→ ga, a ∈ A, is an automorphism of YA.

P. By left distributivity of multiplication over the meet operation in inverse
algebras, we have λg(a ∧ b) = g(a ∧ b) = ga ∧ gb = λg(a) ∧ λg(b) for all g ∈GA and
a, b ∈ YA, so that each λg is a semilattice endomorphism of YA. Obviously, λg(g−1a) =

a, thus λg is surjective. To prove that λg is injective, we recall a basic fact on
Clifford semigroups/monoids (see [18, Theorem 5.2.12]): any such semigroup can
be represented as a strong semilattice of its maximal subgroups. In more detail, we
have a family of groups {Gα : α ∈ Y} indexed by a semilattice Y (or a semilattice
monoid, if we work with monoids). Along with this family comes a system of
group homomorphisms φα,β : Gα→Gβ for any α, β ∈ Y such that α ≥ β, subject to the
following two conditions: (1) φα,α is the identity mapping on Gα for any α ∈ Y; and (2)
for any α, β, γ ∈ Y such that α ≥ β ≥ γ we have φα,γ = φβ,γφα,β. The multiplication
in the strong semilattice of groups works as follows: if g ∈Gα and h ∈Gβ, then
gh = φα,α∧β(g)φβ,α∧β(h), the right-hand side being a product within the group Gα∧β.
Therefore, the monoid reduct of A is constructed from a suitable system of groups and
group homomorphisms. In particular, if Y is the structure semilattice of that monoid
reduct, then GA = Gε, where ε is the identity element of Y . Thus if we assume that
ga = gb for some a, b ∈ A and g ∈GA such that a ∈Gα, b ∈Gβ for some α, β ∈ Y , we
immediately conclude that α = β. Hence, ga = φε,α(g)φα,α(a) = φε,α(g)a and, similarly,
gb = φε,α(g)b, so ga = gb implies a = b, as required.

Finally, notice that λgλh = λgh and that λ1 is the identity mapping on YA, so that we
indeed have a left action of GA on the semilattice YA. �

We can extend the automorphism λg of YA to an automorphism λ′g of Y1
A by fixing

its adjoined top element, which we denote by > (to distinguish from 1, the identity
element of the algebra A, which is one level ‘lower’ in Y1

A). Similarly, we may consider
the action of GA on YA by conjugation in A, so that g · a = gag−1 for g ∈GA and a ∈ A,
and extend it to an action on Y1

A by fixing >. What is common in these actions is that
g · a can be expressed as t(g, a) for a binary term operation t(x, y) of the algebra A. We
will call such actions term-expressible.
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[7] Free spectra of finite inverse monoids 231

Now, with respect to a fixed term-expressible action ρ : (g, a) 7→ t(g, a) we can form
the semidirect product Y1

A ∗ρ GA of Y1
A and GA. The following is the main result of this

paper.

T 2.7. Let A be a Clifford inverse algebra such that the set of all of its
subgroups generate a locally finite group variety V, and let ρ be a term-expressible
left action of GA on Y1

A. Then

log fn(Y1
A ∗ρ GA) ∈O(n(log fn+1(V))2).

By a direct application of the Higman–Neumann result, we obtain the following
consequence.

C 2.8. If A is a finite Clifford inverse algebra such that all of its subgroups
are nilpotent of class c, while ρ is a term-expressible left action of GA on Y1

A, then

log fn(Y1
A ∗ρ GA) ∈O(n2c+1).

Consequently, the same is true for any finite inverse semigroup belonging to the variety
generated by Y1

A ∗ρ GA.

3. Proof of Theorem 2.7

The vehicle in establishing our principal result is the following inequality.

P 3.1. Let A be a Clifford inverse algebra such that both A and GA generate
locally finite varieties (of inverse algebras and groups, respectively), and let ρ be a
term-expressible left action of GA on Y1

A. Then

fn(Y1
A ∗ρ GA) ≤ fn(GA)( fn+1(A))n.

P. First of all, we look at the way of representing an arbitrary inverse monoid word
w = y1 · · · ym ∈ (Xn ∪ X−1

n )∗ (over an n-element alphabet Xn) in a general semidirect
product Y ∗ρ G of a semilattice monoid Y by a group G with respect to an arbitrary left
action ρ : (g, α) 7→ g · α, where α ∈ Y , g ∈G. To this end, we substitute each variable
x j ∈ Xn by a pair of variables (ξ j, γ j) taking values in Y and G, respectively; then x−1

j

becomes (γ−1
j · ξ j, γ

−1
j ). Now, respecting the way the multiplication works in Y ∗ρ G,

aided by the group action ρ and the semilattice operation ∧, this substitution yields

w((ξ1, γ1), . . . , (ξn, γn)) =

( m∧
i=1

Ei, w(γ1, . . . , γn)
)
,

where the expressions Ei will be explained in the following, while w(γ1, . . . , γn) is
simply a group word over the alphabet {γ1, . . . , γn}. So, let wi = y1 · · · yi be a prefix
of w of length i ≥ 0 (w0 is the empty word). When i > 0, we distinguish two cases:
• yi = x ji ∈ Xn. Then Ei = wi−1(γ1, . . . , γn) · ξ ji .
• yi = x−1

ji
∈ X−1

n . In this case Ei = wi−1(γ1, . . . , γn)γ−1
ji
· ξ ji .
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If we agree, for convenience, to write (g ∧ h) · α instead of g · α ∧ h · α, then
∧m

i=1 Ei

can be written as a ‘linear combination’

n∧
j=1

C j · ξ j,

where each ‘coefficient’ C j is a finite ‘meet’ of some group words over {γ1, . . . , γn}.
Let us now turn to the case where Y = Y1

A and G = GA acts on Y by a left action
ρ associated with an inverse algebra term t(x, y). The previous analysis shows that
if w, w′ are two words over (Xn ∪ X−1

n )∗, then the identity w ≈ w′ fails in Y1
A ∗ρ GA

if and only if it either fails in GA, or
∧n

j=1 C j · ξ j ≈
∧n

j=1 C′j · ξ j fails for the ‘linear
combinations’ that w and w′ induce on Y1

A, respectively.

C. If the semidirect product Y1
A ∗ρ GA fails to satisfy

∧n
j=1 C j · ξ j ≈

∧n
j=1 C′j · ξ j,

then the identity t(C j, ξ) ≈ t(C′j, ξ) fails in A for some 1 ≤ j ≤ n.

To see this, first of all, by substituting the top element > of Y1
A for all but one of

the semilattice variables ξ j, we see that
∧n

j=1 C j · ξ j ≈
∧n

j=1 C′j · ξ j holds in Y1
A ∗ρ GA if

and only if
C j(γ1, . . . , γn) · ξ j ≈C′j(γ1, . . . , γn) · ξ j (3.1)

holds for each 1 ≤ j ≤ n. Clearly, (3.1) is satisfied if ξ j = > regardless of the form of the
coefficients C j,C′j. Therefore, there is an index j such that (3.1) fails for ξ j evaluated
as an element of α ∈ YA, and for each γr, 1 ≤ r ≤ n, evaluated as some gr ∈GA. In
other words, if t, Ĉ j, Ĉ′j are the term operations of A induced by the terms t, C j, C

′
j,

respectively, then

t(Ĉ j(g1, . . . , gn), α) = t(Ĉ′j(g1, . . . , gn), α).

Hence, t(C j, ξ) ≈ t(C′j, ξ) fails in A. This establishes our claim.

In conclusion, to each n-ary term operation on Y1
A ∗ρ GA induced by an inverse

monoid word w we can associate an (n + 1)-tuple

(t(Ĉ1(x̄), y), . . . , t(Ĉn(x̄), y), ŵ(x̄)),

(where x̄ = (x1, . . . , xn) and ŵ is the term operation of GA induced by w) consisting
of n term operations of A (on n + 1 variables) and an n-ary term operation of G.
The previous claim and the considerations preceding it show that such a mapping is
injective, so the proposition follows. �

P  T 2.7. We start by recalling the well-known fact that the structure
semilattice (the greatest semilattice homomorphic image) of S = Fn(Vsl), the n-
generated relatively free Clifford monoid of Vsl, is P(Xn), the ∩-semilattice of all
subsets of an n-element set Xn, while for Z ⊆ Xn the corresponding maximal subgroup
GZ (whose identity is eZ =

∏
z∈Z zz−1) is isomorphic to theV-free group F|Z|(V).
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[9] Free spectra of finite inverse monoids 233

By the conditions given, A ∈ C(V). So, from Fact 2.5 we have the following chain
of inequalities:

fn(A) ≤ |Fn(C(V))| ≤ |N∗(S )| ≤ |N(S )| =
n∑

k=0

(
n
k

) ∑
NEFk(V)

[Fk(V) : N].

The final touch is provided by the seminal memoir of Berman and Idziak [2] on
generative complexity of (finite) algebras: namely, their Lemma 6.8 provides an upper
bound on the size of the congruence lattice of a finite congruence-uniform algebra
(which means that for any congruence θ all θ-blocks have the same size).

F 3.2 [2]. If B is a finite, congruence-uniform algebra, then

|Con(B)| ≤ |B|2 log |B|.

Since V is locally finite, Fk(V) is a finite group for any finite k, a congruence-
uniform algebra (the congruence blocks are just cosets of a normal subgroup).
Therefore, the number of normal subgroups of Fn(V) is estimated by

log |Con(Fn(V))| ≤ 2(log |Fn(V)|)2 = 2(log fn(V))2.

Thus the previous chain of inequalities continues as follows:

fn(A) ≤
n∑

k=0

(
n
k

) ∑
NEFk(V)

[Fk(V) : N] ≤ 2n · |Fn(V)| · | Con(Fn(V))|,

implying that

log fn(A) ≤ n + log fn(V) + 2(log fn(V))2 ∈O((log fn(V))2). (3.2)

By Proposition 3.1 and the fact that fn(GA) ≤ fn(V),

log fn(Y1
A ∗ρ GA) ≤ log fn(GA) + n log fn+1(A) ∈O(n(log fn+1(V))2),

as required. �

R 3.3. For some particular groups G, it is possible to give some more precise
estimations for fn([(G)) than the one obtained in the previous proof for a general
Clifford inverse algebra A. For example, if G = Zp for a prime p, then G generates
the variety Ap of Abelian groups of exponent p. Furthermore, it can be proved that
[(Zp) alone generates C(Ap) (as Ap coincides with the quasivariety generated by Zp,
see [12]). So,

fn([(Zp)) =

n∑
k=0

(
n
k

) ∑
H≤Fk(Ap)

[Fk(Ap) : H],

whereas Fk(Ap) is an elementary Abelian p-group, the kth direct power of Zp. This
group is in fact a k-dimensional vector space over the p-element field, so counting
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its subgroups of index pk−i is the same as counting its i-dimensional subspaces. In
nearly every classical algebra textbook one can find that the number in question is the
so-called Gaussian coefficient

(pk − 1)(pk − p) . . . (pk − pi−1)
(pi − 1)(pi − p) . . . (pi − pi−1)

=
(pk − 1)(pk−1 − 1) . . . (pk−i+1 − 1)

(pi − 1)(pi−1 − 1) . . . (p1 − 1)
≤ (pk−i+1)i,

so that

fn([(Zp)) ≤
n∑

k=0

(
n
k

) k∑
i=0

pi(k−i+1) pk−i =

n∑
k=0

(
n
k

)
pk

k∑
i=0

pi(k−i)

≤

n∑
k=0

(
n
k

)
(k + 1)p

1
4 k2+k ≤ (n + 1)22n p

1
4 n2+n.

Hence,

log fn([(Zp)) ≤
log p

4
n2 + (1 + log p)n + 2 log(n + 1),

while (3.2) gives log fn([(Zp)) ≤ 2(log p)2n2 + (1 + log p)n (since fn(Ap) = pn).

4. A few (simple) examples

We take the simplest example of a Clifford inverse algebra, the sink algebra of a
group G, that is, A = [(G). The corresponding semilattice Y1

A consists of a top (identity)
element >, an anti-chain of elements indexed by G on the ‘middle floor’, and the
bottom (zero) element ∞. Since in this case GA is actually G, to define a semidirect
product Y1

A ∗ρ G it suffices to specify a left action ρ of G on itself (as any automorphism
of Y1

A fixes > and∞ and induces a permutation of the set G).
Of course, there are many ways to do this, but we choose perhaps the most obvious

one: the left translation action ρ : g 7→ λ′g (see Lemma 2.6). In the resulting semidirect
product Y1

A ∗ρ G, we have (as is routine to verify) that the group of units is formed
by pairs of the form (>, h), h ∈G ((>, 1) is the identity element of the considered
monoid), while the elements of K = {(∞, h) : h ∈G} form the kernel, the unique
minimal ideal. The remaining elements are pairs of the form (g, h), g, h ∈G. Upon
defining S ′(G) = (Y1

A ∗ρ G)/K, so that all elements of K are collapsed into a zero
element 0, the multiplication in S ′(G) on the latter set of pairs works as follows:

(g, h)(g′, h′) = (g ∧ hg′, hh′) =

(g, hh′) if g = hg′,

0 otherwise.

Recall that the (combinatorial) Brandt semigroup BX over a set X is the inverse
semigroup defined on the set (X × X) ∪ {0} by

(x, y)(x′, y′) =

(x, y′) if y = x′,

0 otherwise,
and (x, y)−1 = (y, x),
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for all x, x′, y, y′ ∈ X, while 0 behaves as a zero element. Now we claim that the
elements {(g, h) : g, h ∈G} ∪ {0} of S ′(G) form a Brandt subsemigroup of S ′(G) over
G. Indeed, it is rather straightforward to check that the mapping ϕ defined by

ϕ((g, h)) = (g, h−1g) and ϕ(0) = 0

is indeed an inverse semigroup isomorphism. Thus we conclude that the monoid S ′(G)
consists of its group of units G acting on the Brandt semigroup BG as follows:

a · (g, h) = ϕ((>, a)(g, gh−1)) = ϕ((ag, agh−1)) = (ag, h)

and
(g, h) · a = ϕ((g, gh−1)(>, a)) = ϕ((g, gh−1a)) = (g, a−1h).

It can be proved without difficulty (although this is not essential here) that Y1
A ∗ρ G is a

subdirect product of its ideal K �G and S ′(G), so that Y1
A ∗ρ G and S ′(G) generate the

same inverse monoid variety.
Similarly, one can replace the action ρ by ρ : g 7→ ρ′

g−1 , the right multiplication by

g−1 extended by fixed points> and∞. Mutatis mutandis, this yields another semidirect
product of Y1

A and G, again with a group kernel isomorphic to G, and the corresponding
quotient S (G) has its group of units G acting on BG in the following way:

a · (g, h) = (ga−1, h) and (g, h) · a = (g, ha).

It is precisely this monoid S (G), constructed for a finitely generated non-Hopfian
group G, that was used by Sapir [23] to obtain a critical counterexample of a
finitely generated inverse semigroup violating the descending chain condition for its
idempotents. Also, as shown by Reilly in [21], inverse monoids of the form S (Zp)
appear as generators of minimal noncryptic inverse semigroup varieties. By another
result of Reilly [22], each inverse semigroup (monoid) S (Zp), where p is a prime,
generates a variety with infinitely many subvarieties, and S (Z2) (denoted in [22] by
N2) is the smallest inverse semigroup with this property.

Now Corollary 2.8 immediately yields the following conclusion.

C 4.1. Let G be a finite nilpotent group of class c. Then both log fn(S (G))
and log fn(S ′(G)) belong to the asymptotic class O(n2c+1).

Notice that the six-element Brandt monoid B1
2 embeds into both S (G) and S ′(G)

for each nontrivial group G. So, by taking G to be any nontrivial finite Abelian group
(for example, let G = Z2, the two-element cyclic group), we arrive at the same result
as obtained by Seif [24] by other methods.

C 4.2. log fn(B1
2) ∈O(n3).

It is known that the sequence log fn(B1
2) asymptotically belongs to the interval

[n2, n3]; however, the determination of the exact behavior of the free spectrum of B1
2

remains an open problem that is closely connected to some rather difficult and deep
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enumeration problems on directed graphs [17]. (The analogous problem for the free
spectrum of B2 is much easier, though, see [14].)

Of course, the conclusion of Corollary 4.1 (in fact, that of Corollary 2.8) applies
to finite inverse monoids with more intricate structure, such as the semidirect product
N(G) = Y1

N(G) ∗ρ G, where G is an arbitrary group and ρ is the natural coset action
defined by ρ : (g, aN) 7→ gaN for an arbitrary coset aN of a normal subgroup N of G
and g ∈G. Further analysis would show that the latter semidirect product has G as
its group of units, while all other D-classes are in a bijective correspondence (which
is in fact a dual lattice isomorphism) with the lattice of all normal subgroups of G. A
D-class corresponding to N EG turns out to have maximal subgroups isomorphic to N
and contains [G : N] R-(L -)classes. Certainly, it would be interesting to elucidate in
more detail the structure of N(G) (for example, the multiplication between its elements
from different D-classes), and to characterise finite inverse monoids belonging to a
variety generated by N(G) for a particular finite (nilpotent) group G. In particular,
S ′(G) arises a quotient of N(G): it suffices to retain the group of units of N(G) and
the D-class corresponding to the trivial (normal) subgroup of G, while the rest of
N(G) forms an ideal which can be collapsed into a zero element by a suitable Rees
congruence.
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