A CHARACTERIZATION OF THE FINITE SIMPLE GROUP
PSp.(3)

ZVONIMIR JANKO

The aim of this paper is to characterize the finite simple group PSp4(3) by
the structure of the centralizer of an involution contained in the centre of its
Sylow 2-subgroup. More precisely, we shall prove the following result.

THEOREM. Let ty be an involution contained in the centre of a Sylow 2-subgroup
of PSp4(3). Denote by H, the centralizer of ty in PSpa(3).

Let G be a finite group of even order with the following two properties:

(@) G has no subgroup of index 2, and

(b) G has an involution t such that the centralizer C(t) of t in G s isomorphic
to Ho.

Then G is isomorphic to PSp.(3).

Remark. PSp4(3) is the subgroup of index 2 of the group of the equation
for the 27 lines on a general cubic surface.

The main difficulty in proving our theorem is to show that a group G with
properties (a) and (b) possesses two conjugate classes of involutions and to
determine the structure of the centralizer of an involution of G which is not
conjugate to an involution in the centre of a Sylow 2-subgroup of G. From the
knowledge of the structure of such a centralizer the 3-structure of G can be
deduced. The identification of G with PSp,(3) is then accomplished by using
a theorem of J. G. Thompson (7).

1. A preparatory lemma. For the determination of the centralizers of
involutions in a group with properties (a) and (b) the following proposition
will be used:

PROPOSITION. Let G be a finite group of even order with the following two
properiies:

(1) The centralizer Co(t) of an involution ¢ contained in the centre of a Sylow
2-subgroup of G is equal to (t) X F, where F is isomorphic to Sy (the symmelric
group in four letters).

(2) If S is a Sylow 2-subgroup of G, then Cg(S") = S, where S’ denotes the
commulator group of S.
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Then if G 1is soluble, G = Cg(t). If, however, G is not soluble, then G is iso-
morphic to Se (the symmetric group in six leiters).

Proof. Let G be a finite group of even order satisfying the conditions (1)
and (2). Put F = V-{p)-{(r), where V = (71, 7o) is a four-group, V-{p) =~ 4,,
7 inverts p and centralizes 71, p~ir1p = Ts, p 72 p = T1 72, and TTe T = 71 T9.
Obviously S = (V-(r)) X {t) is a Sylow 2-subgroup of C(t) and V-{r) is a
dihedral group of order 8 with the element @ = 77, of order 4. Also we have
(r1) = 5" and so Cg(r1) = S. The four-group (¢, 71) is equal to the centre
Z(S) of S.

The involutions t, T1, and try lie in three different conjugate classes of G. In fact,
suppose that any two of these three involutions are conjugate in G. Then by
a theorem of Burnside, they are conjugate in N¢(S) and hence in Ng(Z(S)).
But C¢(Z(S)) = Sand so Ng(Z(S)) DO S. It follows that all three involutions
t, 71, and ¢r; would lie in the same conjugate class in G. This is impossible since
|Ce(r1)| = 16 and |Ce(#)| = 16-3. The intersections of the conjugate classes
of C(t) with Sare {1}, {71, 72, 71 72}, {i71, t7e, tr1 72}, {7, 771}, {tr, tr74}, {a, a7V},
{ta, ta71}, {1}.

The group G has precisely two conjugate classes of elements of order 4. Suppose
that ¢ and ta are conjugate in G. Then there is an element x € G such that
x~lax = ta. Since a? = (fa)? = 11, we get x 7y = 7, and so x € S. This is a
contradiction since ¢ and te lie in two different conjugate classes of .S.

The focal group S* of S in G contains V. This is obvious, since p~!r1p = 7
and p~'72 p = 71 72. (For the concept of a focal group see D. G. Higman (5).)

If S* =V, then G = Cg¢(t) = (t) X F. We have in this case a normal
subgroup M of G such that M NS = Vand [G: M] = 4. Because p € M and
V{p) = A4,, all involutions are conjugate in M and a Sylow 2-subgroup of M
is a four-group. Also we have Cy(71) = V. By a result of Suzuki (8) we have
either V<3 M (and then M = V{p), G =S-M, G = Ce(t) = (t) X F) or
M = A;. We shall show that the second case is impossible. Because the auto-
morphism group of 4; is S;, it follows that Ce(M) # (1) and

Co(M) N M = (1),

The condition Cg(r1) =S gives Ce(M) CS. Since Cg(V) = (t) X V, it
follows that Ce(M) C (t) X V and so Ce(M) = (z), where z is an involution
contained in ({{) X V)\V. It follows that ¢ = z-v, where v € V. Both ¢ and z
centralize p. Hence » commutes with p. By the structure of 44, v = 1. We get
Ce(M) = {t), which contradicts our assumption (1).

The case S* = S is not possible. Hence G must have a normal subgroup N of
index 2, and t cannot be an element of S*. By way of contradiction, suppose that
t € S*. Then at least one of the involutions 7 or {r must be conjugate in G to
an involution in Z(S). Replacing 7 by ¢, if necessary, we may suppose that r
is conjugate in G to an involution in Z(S). Put U = (Z(S), 7). Then

CryNCE =U
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and a Sylow 2-subgroup of Cg(r) has order 16. It follows that
Ne(UYNC@E) =S

and Ng(U) & C(t). Also Ce(U) = U and so Ng(U)/U is isomorphic to a
subgroup of GL (3, 2). Obviously 7 cannot divide |N4(U)| (because all involu-
tions in U do not lie in the same conjugate class in G) and so 3 must divide
|[Ne¢(U)|. Let ¢ be an element of order 3 contained in N(U). We want to
determine the orbits of ¢ in U\{1). Since ¢, 71, and fr; lie in three different
conjugate classes in G, it follows that ¢, 71, and {7y must lie in three different
orbits under the action of {. In particular, { must fix one of these three involu-
tions and since ¢ ¢ C(¢) and Cg¢(r1) = S, it follows that ¢! -ir;-¢ = tr1. The
other two orbits are either {¢, 7, 771}, {71, ¢, 771t} or {¢, 7, 771 t}, {71, 7, 771}.
In the first case we get S* = (V, tr) and in the second case S* = (V, 7).
Hence in any case ¢ ¢ S*. It follows that G has a normal subgroup N such that
G = (t)-N and replacing 7 by i¢r, if necessary, we may suppose that r € N
and so FC N, NN\ C(t) = F.

If G has no normal subgroup of index 4, then G = Ss. In this case we have
G={)N, NG, NN C({¢) = F, and S* = (V, 7). N has no normal sub-
group of index 2, Cy(f) = F, and Cy(71) = (V, 7). A Sylow 2-subgroup of N
is dihedral of order 8 and since N has no normal subgroup of index 2, all
involutions in IV are conjugate in NN. Considering the action of 17 on O(V)
(and using the fact that the centralizer of any involution in N has order §),
it follows that O(N) = (1). N has no non-trivial normal subgroup of odd
order. Using a result of Gorenstein and Walter (3), it follows that
N =~ PSL(2, g), ¢ odd, or N =2 A;. However, the second case cannot happen
since the order of the centralizer of an involution in 47 is divisible by 3. Since
the order of the centralizer of an involution in PSL(2, ¢), ¢ odd, is ¢ + e
(e = +1), it follows that N=PSL(2,7) or N=PSL(2,9) =4, It
is easy to see that the first case cannot happen. Suppose that NV = PSL (2, 7).
The case Cq(N) = (1) gives G = Aut(PSL(2,7)) = PGL(2,7). We know
that a Sylow 2-subgroup of PGL (2, 7) is dihedral of order 16. This is a contra-
diction, since G has no elements of order 8. Hence Cg(N) 5 (1) and so
G = N X C¢(N), Ce(N) = (z), where z is an involution contained in
(&) X M\V. It follows that ¢ = zv with v € V. Both ¢ and z centralize F and
so v centralizes F = S,. However, S, has no non-trivial centre and so v = 1.
It follows that ¢ centralizes NV, a contradiction.

We have proved that V= PSL(2, 9) =< 4. The automorphism group 2 of
A has the property that %/A4s is elementary abelian of order 4. Certainly
Ce(N) = (1) and so G is a subgroup of U containing N =< A, Also G is not
isomorphic to PGL (2, 9) because a Sylow 2-subgroup of PGL (2, 9) is dihedral
of order 16.

Now, ¥ is the extension of PGL (2, 9) by the field automorphism f of order 2.
PGL (2, 9) is the group of all 2 X 2 matrices

[au (5¢]
ao1 Qoo |’
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where a;; € GF(9) considered modulo the group of all scalar matrices

E 0
29 seor,

f.|:au alz:l'f _ I:du8 a12®
Q21 Q22 and®  ad

PSL(2,9) is the subgroup of PGL(2,9) consisting of all matrices whose
determinant is square in GF(9). Let ¢ be a generator of the multiplicative
group of GF(9). Then {* = —1. Put

o[ 2] e[ el

and verify thata* = 1,82 =1, 8aB = o7}, §lad = o7, 67186 = o718, 62 = al.
Since {a, B) is the dihedral Sylow 2-subgroup of PSL(2,9), it follow that
(@, B, 8) is a Sylow 2-subgroup of (PSL(2,9), é). Note that

Lo 2]

is an element of PGL (2, 9)\PSL (2, 9). However,
(66)* = 6%7BB = a*-a7B-B = «a

and we have

and so 88 is an element of order 8. Hence G cannot be isomorphic to
(PSL(2,9), 8). It follows that G is isomorphic to (PSL(2,9), f). Because
PSL (2, 9) has a subgroup isomorphic to 4; we have PSL(2,9) = 4¢. Hence
Se is a subgroup of Aut(PSL(2,9)) containing 4. Since S¢ has no elements of
order 8, it follows that .S¢ = (PSL(2,9), f) and so G =< Ss. The proposition
is completely proved.

2. Properties of H,. We shall now study the structure of H, where H,
denotes the centralizer in PSp,(3) of an involution contained in the centre
of a Sylow 2-subgroup of PSp4(3). Let F; be the finite field of three elements.
Let V be a four-dimensional vector space over F; equipped with a ncn-singular
skew-symmetric bilinear form x-y € F; (x,y € V). Then V has a ‘‘symplectic
basis,” i.e. a basis n1, m1, #s, masuch that ny-ne = my-ms = ny-me = my-ny = 0
and #,-m; = ny-my = 1. The group of all linear transformations ¢ of V such
that ¢(x)-o(y) = x-y for all x, y in V is called the symplectic group Sp4(3).
This group has the centre of order 2 and the corresponding factor-group is
PSp4(3). See Artin (1).

Obviously a linear transformation ¢ of V belongs to Sp4(3) if and only if

o(n)-o(ny) = o(my)-a(msy) = o(n1)-o(msy) = o(my)-o(ny) =0,

o(n1)-o(m1) = o(ng)-o(mz) = 1.
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It follows that a linear transformation o given by the matrix (o)
(1,7 =1,...,4) in terms of the basis n1, m1, 1, ms, where

0(”1) = a1 1 + a2 My + aiz Be T+ Qs My,
etc., belongs to Sp,(3) if and only if

11 K32 — (12 &31 _I_ Q13 034 — (14 X33 = 07

Qa1 Cgg — Q2o Q41 T+ Qa3 A4y — Olgg gy = 0»
Q11 04g — Q12 041 + Q13 0y — Ol14 Qg = 0,
Qa1 Q32 — Qlag (31 | Olg3 Olgq — Olgy gz = 0,
Q11 Qg — Q12 o1 T+ 13 Aoy — g ey = 1,
310 — 032041 T 033 Qg — gy = 1.

Take

which is an involution in Sp,(3). (We identify the linear transformations in
Sp.(3) with the corresponding matrices in terms of the basis ni1, m1, ns, ms.)
The centre of Sp4(3) is generated by the following matrix:

I
L

Then a matrix (a;;) from Spy(3) satisfies
(@) t'o = o (ay)-c’ (r=20,1)
if and only if

11 (2
() = o1 Qg with o1 a2 — @z = 1
&g a3z (34 and oagzaus — asioqz = 1,
L Q43 Qigq
or
a3 0114_‘
(aij) g3 (o4 With 13 Kog — Q14 O3 = 1
31 (32 and ez a4 — azgsa = L.
Lan g2 B

Denote by H’y the group of all elements (a;;) of Sps(3) which “commute
projectively’” with #'y, i.e. which satisfy (a;;)t'0 = o+ (@s;)-¢” (r = 0, 1) and
denote by K’ the centralizer C(¢'y) of ', in Sp.(3).
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The matrix
1 0
01
=110
01
belongs to H’, and satisfies /2 = 1 and
11 Q12 Q33 Q34
ﬁ" 021 Olg2 B — 0l43 Oy
Q33 O34 11 012
043 Qyg l_ Q21 Q22

We have [H'y: K'] = 2 and H'y = K'-(8’). Let §’'; be the subgroup of K’
consisting of all matrices of the form

[1 0
O 1 Wlth Q33044 — Ol340043 = 1

L 33 Q34
Oly3  Ol4q

Then we have K’ = 53 X 8, t/0 € 51, &1 =~ S, = SL(2, 3) with
g-S1-8 =5

Also 8’ commutes projectively with a matrix («;;) in K’ if and only if

(i) = [61 :1:/(1)]’

where A is any 2 X 2 matrix (over F3;) with determinant 1. Now put
H, = H'y/{c) and in the natural homomorphism from H’;, onto H, let the
images of ¢, 8/, K’, .S"1, S’2 be ty, 8, K, S1, Ss respectively. Then obviously H,
is the centralizer C(fy) of the involution £, in PSp4(3) = Sp4(3)/{c). We have
Sl _ﬁ’_ Sg g Sll g 5/2 g SL(2, 3), Ho = K(ﬁ), 62 = 1, K = 51‘52, [S], Sz] = ].
(which means that .S; and S; commute elementwise), S; /M S. = (), and
B-S1-8 = Sa. These relations completely determine the structure of H, But
of course we have to show that f, is in fact an involution contained in the
centre of a Sylow 2-subgroup of PSp4(3).

Let Q be a Sylow 2-subgroup of K. Then Q = Q1-Qs Q1M Q2 = (1),
[O1, 0:] = 1, 8018 = Qs, Q122 Q: is the quaternion group (of order 8), where
Q;=0NS,; (¢ =1,2). Note that K is 2-closed because S; and .S; are 2-closed.
It follows that {8, Q) is a Sylow 2-subgroup of H, and obviously the centre of
(B, Q) is contained in Q. But the centre Z(Q) of Q is equal to {f). It follows
that Z(H,) = Z({8, Q)) = Z(Q) = (o) and so (8, Q) has cyclic centre (t).
Let S be a Sylow 2-subgroup of PSp4(3) containing (8, Q). Since

Clt) NS = (8, Q)
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it follows Z(S) C {8, Q) and so Z(S) = (). But this gives .S = (8, Q). Hence
we have shown that (8, Q) is a Sylow 2-subgroup of PSp.(3) and since Z ({8, Q))
has only one non-trivial element it follows that the structure of Hy = C(¢) is
uniquely determined. Also we know that PSp4(3) is a simple group and this
shows that PSp4(3) is a finite group of even order satisfying conditions (a)
and (b).

A previous remark shows that C(8) N Hy = (¢, 8) X L, where {f, 8) is a
four-group and L =~ 4, =~ LF (2, 3).

We have Sl = <O£1, 61, 01]&12 = 612 = fo, t02 = 0';[3 = ]., 61_16(1 61 = al_l,
o1 lay o1 = B1, 017 1B1 01 = a1-B1) because S; = SL(2,3) and SL(2, 3) is an
extension of the quaternion group by an automorphism of order 3. Put
az = Brai*B, B2 = B-B1:B, 05 = B-o1-B. Then Sy = (as, Bs, 72). We may also
put L = (o103, a1-as) because if we put p = o109, 71 = @1 a2, plr1p = 79,
then ({ri, 72) is a four-group normalized by p, {(p,71) € C(B) N K, and
{p, 71) M (to, B) = 1. Every element of H, can be written uniquely in the form
aliﬁlja‘llelT2mpnﬁp, where 7z = O, ]., 2, 3,] = O, 1; k= 0, 1, 2,l = O, 1,1% = O, 1;
n=20,12;p=0,L1

We shall now take a closer look at Hy. In particular we want to determine
the conjugate classes of elements of H,. Obviously (1, 02) is a Sylow 3-subgroup
of H,. This is an elementary abelian group of order 9 and so two non-trivial
elements of (o1, 02) are conjugate in H, if and only if they are conjugate in
Nz, ({01, 02)). We want to determine this normalizer. Suppose that

X1-%g € NHo«ffl, Uz))
where x; € S; (¢ = 1, 2). Then
X Loy ooy X = X177 loy X1 € .S1 M <¢le U2> = <‘Tl>-

But Ng, ({o1)) = {to)-{o1) and so x1 € {fo, o1). Considering x5 1-x;"1-04-x; X5
we see that x» € (4o, o2). This gives

Ng({o1, 02)) = Cx({o1, 02)) = (to) X (o1, 02).

Since B normalizes but does not centralize (o1, o) it follows that
Cuo({o1, 02)) = (to) X (o1, 02)

and Ng,((o1, 02)) = (to, B)+ (o1, 02)-

Hence the representatives of conjugate classes of elements of order 3 in H,
are o1, 01"}, 01°09, 01t 057!, and o1 !-0s. In particular, H,y has only one real
class consisting of elements of order 3. We shall determine the centralizers in
H, of these representatives. Suppose that x € H\\K and x € Cy,(s1). Then
x = B-x" with ¥ € K and so x7loyx = &'~187 10y Bx’ = x'"loa &’ € S, since
S, <a K. But S; N\ Ss = {tp) and so x~loax’ # o1, a contradiction. Hence
Ca,o(o1) € K. We have Cg(o1) 2 Sz and so

Cx(o1) = Sy-Cs,(01) = Sy (o1, to) = (o1, 72)- Q.
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Similarly Cg,y(o171) = (o1, 02)- Q2. We see that a Sylow 2-subgroup of Cy,(c1)
and Cy,(017!) is a quaternion group of order 8. Since 8 centralizes o;- 0y, it
follows that Cyy(o102) = (8):Cx(c1-02). Suppose that x;-x: € C(o1-02),
where x; € S; (¢ = 1,2). Then

o1 X1 o1 X1 = o2°X9 logTxg € S1 NS, = <t0>.

The case o177 1-x1771-01-x1 = #o cannot occur because o1-4y is of order 6 and
x17 - 01-x1 is of order 3. Hence x17 %01 %1 = o1, 1 € Cs,(01) = (o1, to). Similarly
we get X2 € Cs,(02) = {02, bo) and so Cg(o1-02) = (o1, 02) X {t;). We see that
a Sylow 2-subgroup of Cy,(o1-02) and Cgy(o1~t-027t) is elementary abelian
of order 4.

We shall now determine the ‘“‘generalized centralizer’” of ¢ !¢, in H,
(i.e. the set of all x in Hy such that x™1-017l0s-x = (017 '02)E!). The generalized
centralizer Cg,*(o17!-04) contains (8 since B inverts ¢; los. Hence

Cuo* (o171 03) = (8)-Cx* (o171 02).
Let x;-x%2 € Cx*(e17!-02), where x; € S; (z =1, 2). Then

‘

o1 X oy = oprxe T loe Ty € (bo)

or oyl x; oy = g9t X loy I, € (f). However, the second case cannot
happen because
Cs;*(0:) = Cs;i(o4) (@ =1,2).

The first case gives x; € (ty, 03y (2 = 1,2), Cuo*(oc17 1 02) = (B, to)- {01, o2).
We have proved that a Sylow 2-subgroup of the centralizer in H, of a real
element of order 3 in H, has order 2.

Now a;-as is an element of order 2 and we show easily that

@ = CHo(al'a2) = (ah az, B1° B2, ,3)1

which is a non-abelian group of order 32. We want to study the structure of (.
Since _

By Bar™t = an7lay = fyagran
and

(B1B2) "L a1 B1B2rar™t = &y,

it follows that the four-group (¢, @1 @2) is contained in the centre and in the
commutator group of Q. Since O/(ty, a1-as) is abelian, it follows that the
commutator group (0)’ of ( is equal to {fo, a1-as). Q is of class 2. The centre
Z(Q) is obviously contained in (a1, az, B1-B82) and Z ({ai, az, B1-B2)) is contained
in (a1, a2). However, ay ¢ Z(Q) and so Z(Q) = (to, a1 a2). We want to study
the Sylow 2-subgroup (Q, B) of H,. Since

B~181 8B~ = B1 B2 to,

it follows that the commutator group (Q, 8) of (Q, 8) is the elementary
abelian group {fo, @1-as, B1-Bz) of order 8.
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The non-central involutions of K are conjugate in K to a;-as. All elements
of order 4 of K are conjugate to a; in Hy and Cgy(@1) = {a;)-Ss. It is now
easy to determine the centralizers in H, of elements o1-#y (order 6), o171 4,
(order 6), o1-az (order 12), o171 s (order 12), o1-02-ty (order 6), o1 05714,
(order 6) and o1 !-0s ¢y (order 6). The fact that all these elements are non-
conjugate in H, follows easily from the fact that o1, 017, o1 09, 01710271, and
o1~ oy are non-conjugate in H,. If, for instance, there exists z € H, such that
g7l 01 ty-2 = o171ty then g71¢; 2 = 017, a contradiction. Finally

CHo(‘Tl'tO) = CHo(o'l)y CHo(le_lto) = CHo(Ul_l),
etc., and
CHO(‘TI'O‘Q) = CHO(‘TI) M CHo(aZ)

= (Qz, o1, 0'2> M <OL2>'Sl = <O£2, 01) = CHO(O'l_l'Olz).

We have determined all conjugate classes of H, contained in K. It remains
to determine the conjugate classes in Ho\K. We have Cy,(8) = {8, to) X L
and Cy,(te 8) = (B, to) X L. We compute that the 12 conjugates of 8 in H,
are B, thtifB, tot2B, loT172B, o1pB, o1 P78, ero171pB, arlor'TipTIB,
Bro172 0B, toBr1o1 2 p7 1B, a1 Bro1T1m2pB, and «a;7 81 017 1y 70 p7!B. This is
obtained by Conjugating 6 with ]., aq, 61, 61 ay, o1, 0’1—1, oy 01, Q1 (71_1, ,81 gy,
B1 017}, B1ar o1, and B1 ey 017, respectively. It follows in particular that 8 and
to B are not conjugate in H,. Since p and p~! are not conjugate in H,, it follows
that pB and p~!8 are not conjugate in Hy. We have

CHD(PIG) = CHo(P—]ﬁ) = CHO(B) M CHo(P) = <t0, ﬂ) X <P>

We have another two non-conjugate elements of order 6 contained in H,\K:
to p8 and iy p~!8 with the same centralizers. Finally a3 is an element of
order 4 contained in Ho\K. (a1 8)2 = 71 = a1 a2 and so

Cro(1 B) © Crylr ) = @
We have todetermine X = Cg(a; 8). Obviously X D (fy, aras) = Z(Q) = (Q)’
and X D {(a1-8). Hence
X D (to, a1 s, a1-B) = (to) X {1 B),

which is an abelian normal subgroup (of order 8) of (. We have four different
conjugates of a;-8 in Q:

ar B, BroaafB-B=aB Pi1frrarf-Bi1B:=ar'B, B-B1B2aiBBBi1B: = a'B
and so X = (t) X (a1 B).

We have proved that Cyy(a18) = (t)) X {1 8). Summing up the orders

of all conjugate classes of H, found so far, we get 576. Hence we have deter-
mined all conjugate classes of H,.

3. The conjugacy classes of involutions and the structures of their
centralizers. Let G be a finite group of even order with the properties (a) and
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(b) of the theorem. Since H = C¢(t) is isomorphic to H,, we shall identify H
and H,. We have then ¢ = ¢,.

LemMmA 1. The Sylow 2-subgroup {Q, B) of H is a Sylow 2-subgroup of G.
Proof. This is obvious since the centre Z({Q, 8)) = (t) is cyclic.

LEmMMA 2. The group G has precisely two conjugate classes of involutions £
and R, with the representatives t and 1B, respectively: 8 (M H is the union of
two conjugate classes of H with the representatives t and B. K2 M H 1is the union
of lwo conjugate classes of H with the representatives 3 and oy oy Let
S = (t, B, a1 as, B1 B2). Then C¢(S) = .S and Ng(S)/S = 4.

Proof. By way of contradiction, suppose that ¢ is conjugate in G to a;-a,.
The group S = {t, B, 71, 72) is elementary abelian of order 16, where 7, = a; a5,
79 = 182 SC C(t) = H and S contains the commutator group

(Q,B) = (t, 71, 72)
of (Q,8) and so S<1(Q,B). Also S is normalized by p = ¢1-05 and so
S<a{(Q, B, p) = H.We have N4(S) N C(t) = H, since o, does not normalize S.
p normalizes (Q, 8) and C(p) N {(Q, B) = (¢, B). Hence p does not fix any
non-trivial element of (Q, 8)/S and so H/S = A, Now, since 7; = aja, is
conjugate in G to ¢, it follows that C¢(71) = H. We know that C(r1) "H =
is a non-abelian group of order 32 and the centre Z((Q) = (¢, 71) has order 4.
Let 7 be a Sylow 2-subgroup of C(r1) containing . Then [7 : Q] = 2. Suppose
that S is not normal in 7". Then there exists an element x ¢ 7\( such that
x~1Sx € Q and x~1Sx # S. It follows that § = S-x~1Sx and D = S M x~Sx
must have order 8 since |Q| = 32. But then (since .S and x~1Sx are abelian)
Ce(D) D (S, x~15x) = (, which is a contradiction, since |Z(Q)| = 4.
It follows that .S is normal in 7" and so N¢g(S) € H. On the other hand
Ce(S) € Ce(t) N Celr1) = Q

and so C¢(S) = S since Q is non-abelian. We have proved that © = N4(S)/S
is isomorphic to a subgroup of GL(4, 2) =< As. Obviously B = (Q, 8)/S is a
Sylow 2-subgroup (elementary abelian of order 4) of @ and A = H/S is a
subgroup of & isomorphic to 44 Hence, in particular, all involutions of & are
conjugate in &. However, 8; = T/S and 8 = (Q, B)/S are two different
Sylow 2-subgroups of & with the intersection ® = 8 N B; = (/.S of order 2.
This means that Sylow 2-subgroups of & are not independent.

Now the order of Ag is 26-32.5-7 and the centralizer of any involution in 4g
has order 2¢-3 or 2%-3. Since Cg(D) D (B, V1), we get Cx(D) D V. By the
above remark about A4s, Cs(D) = B-U, where U] =3 and U<t U-B.
Since LB and B, are contained in Cg(D), it follows that U-B is not a direct
product of U and 2.

Suppose at first that I = O(S) = (1). Here O(S) denotes the maximal
normal odd-order subgroup of &. Considering the action of the four-group 8
on M we see that the order of M is either 3% or 3. However, the first case cannot

https://doi.org/10.4153/CJM-1967-082-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1967-082-9

882 ZVONIMIR JANKO

occur since 3% does not divide [4s|. It follows that || = 3, B centralizes M,
[B-M =V XM=V X U, a contradiction. Hence O(&) = (1). Using a
result of Gorenstein and Walter (3) we see that & is isomorphic to 47 or to
some LF (2, ¢) with ¢ = £3 (mod 8). However, the first case cannot occur
since a Sylow 2-subgroup of 47 has order 8. From the order of 45 follows that
g = 3 or 5. But both LF(2,3) = 4, and LF(2,5) = 4; have independent
Sylow 2-subgroups, a contradiction.

We have proved that ¢ cannot be conjugate to a;-az in G. Suppose now that
G is 2-normal. Since (¢) is the centre of the Sylow 2-subgroup (Q, 8) of G, it
follows by the Hall-Griin theorem (4) that the greatest factor group of G
which is a 2-group is isomorphic to that of C¢(¢) = H, i.e. is isomorphic to
H/K, which is of order 2. But this contradicts our condition (a).

It follows that G is not 2-normal. This means that there exists an element
zin G such that ¢t € (Q, 8) M 271-(Q, B)z but () is not the centre of z71{Q, B)z.
The centre of 271(Q, B)z is {(z7'z) and so ¢ 3 z7z. On the other hand, because
21z is contained in the centre of 271(Q, 8)z and also ¢ € z71-{(Q, 8)-3, it follows
that ¢t and 27z commute. Hence 7 = 27z € C¢(t) = H. In other words ¢ is
conjugate in G to an involution r in H and ¢ # . Since ¢ cannot be conjugate
in G to a1-ay, it follows that  must be conjugate in G to 8 or #8. Interchanging
B and #B, if necessary, we may assume that ¢ is conjugate in G to 8.

We are now planning to determine the structure of Ng(S), where
S = (B, 71, 72), 71 =01 and 7y = B1Bs. Again S<1(Q, B, p), where
p=oc10gand p7lrip = 7y, plrep = 717y pt = Ip, pB = Bp. Also

No(S) M Colt) = (Q,8,p) = I

and H /S = A,. Now, since 8 is conjugate in G to ¢, we have Cy(8) = H = Ce(t).
We know that C(8) M C(t) = S-{p) = D. Let T be a Sylow 2-subgroup of
C(B) containing .S. Since D is 2-closed, '\ C(t) = S and [T :.S] = 4. In
particular N¢(S) € H and & = N(S)/S is not 2-closed since (N(S) N T)/S
is a non-trivial 2-subgroup of @ which is not contained in 8 = (Q, 8)/S. Here
LB is a Sylow 2-subgroup of & and B is elementary abelian of order 4. All
involutions are conjugate in & since H/S is a subgroup of &. Obviously
C¢(S) = S and so © is isomorphic to a subgroup of GL(4, 2) = 45. We want
to determine Ng(8). We have N4 ({Q, 8)) € C¢(t) = H and so

Ne({Q, 8)) = H.

It follows that Ne(R) = H/S = A,.

Suppose at first that O(&) = I = (1). Then considering the action of B
on M and using the fact that all involutions are conjugate in & and also the
fact that the centralizer of any involution in 4 has order 3-32 or 3-64, it
follows that either || = 27 or |M| = 3 and B-M = B X M. However, the
first case is not possible because 27 does not divide the order of 4. The second
case is also not possible because Ng(B) == 44. We have proved that 0(S) = (1)
and & has no subgroups of index 2. If d is an involution in B, then again by
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the structure of 45 we have either Cg(d) = -8 with U<a U-LB and [U| = 3
or Ce(d) = L. In the first case by a result of Gorenstein and Walter (3) we
have @ = LF(2,q) with ¢+ 1 =12 = 3-4 = |Cx(d)|. Hence ¢ = 11 or
g = 13, which contradicts the order of As. Hence the second case must be
involved and so © & A4;. Let u be an element of order 5 contained in N&(S).
Since C¢(S) = S, it follows that u acts fixed-point-free on S. Now we take a
closer look at the elements of S. Let & be the conjugate class in G with the
representative ¢. Then

S‘Dl mS 2 {tv 6? tTl By tT? 6: tTl 726}'

The six involutions 71, 7o, 71 79, IT1, iTe, {71 T2 are conjugate in G to 7; and the
four involutions #8, 718, 72 3, 71 72 8 are conjugate in G to #8. Since ¢ is not
conjugate in G to 7, it follows that 7; must be conjugate (in N(S)) to #8 and ¢
is not conjugate in G to {8. Lemma 2 is completely proved.

LemMA 3. The group G is not an N-group in the sense of J. G. Thompson (7).

LEMMA 4. We have the following two possibilities for the structure of Ce((8):

(1) Ce(tB) is isomorphic to the centralizer of an involution in As which does not
lie in the centre of any Sylow 2-subgroup of As.

(ii) C¢(tB) s the non-splitiing central extension of (i8) by Se.

Proof. Again put S = (i, B, 71, 72), where 71 = ayas, 72 = B1 Bz Obviously
0 = C(r1) N C(2) is contained in N(S) and Q is a Sylow 2-subgroup of C(r).
Namely, 7; is not conjugate to ¢ in G and so 7, does not lie in the centre of
any Sylow 2-subgroup of G. We have p=lrip = 75, p7lr2p = 7172, where
p = g102 € N(S) and so |C(x) N N(S)| is divisible by 32 for any x € {71, 72,
71+ Te, i1, t7e, tr1 72}. Also we know that {(Q, B8) C N(S) (since S contains the
commutator group of {(Q, 8)) and 8, 7118, 728, 71728 are all conjugate in
(0, 8) € N(S). It follows that ¢8 is conjugate in N(S) to an element of
{r1, 72, T17e, lr1, Ire, tri7e} and so Y = C(tB) N N(S) = Q-(p), where
[0:S5]=20=0, and Cq(tB) N Ce(t) = S-(p). By the structure of
As = N(S)/S, Y is not 2-closed. Y is also not 3-closed since p does not act
trivially on S.

N({p)) N {p)S = (p) X Cs(p) = {p) X (t, B).
Since Y/S is non-abelian of order 6, Ny({p)) # Cy(p). Hence

Y = Ny((e)):S,  Ny((p)) NS = {,8),

p is real in Y, and (¢, B) is normal in Y. However, C¢({t, 8) = S-{o) and so
Ng({t, 8)) = Y because ¢ and {8 are not conjugate in G. S:{p) is a normal
subgroup of index 2 in Y. Let B be a Sylow 2-subgroup of Ny({p)). Then
there exists an element z of 2-power order in B such that 27!z = 8. Hence B
is the dihedral group of order 8 and so we may choose z to be an involution.
The group {p):{r1, 72) is isomorphic to A4 On the other hand S-(p) has the
normal subgroup {p)- (1, 72) of index 4 which is the smallest normal subgroup
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of S-{p) with 2-factor group. Hence (p)- (71, 72) is characteristic in S-{p) and
so {p)-{r1, 72) is normal in Y. But (7, 75) is characteristic in (p)- (71, 72) and
so {r1, 72y is normal in Y. Also the involution z normalizes (p) and because
Cr(p) = {p) X {t, 8) and =z ¢ (¢, B) ({3, ¢, B) being dihedral of order 8), we
have zpz = p~*. We also have (z, S) = @ and this is isomorphic to (. It follows

that the centre of O has order 4 and so |Cs(z)| = 4. On the other hand,
Cs(z) 2 {B) and so |C(z) M {71, 72)] = 2 (using the fact that (r1, 72) <0 V).
We may put 7171 72°8 = 7179 and 271712 = 79+ (2, 71, 72) is the dihedral
group of order 8. The structure of YV is completely determined.

We see that Y/(iB) is the direct product of (¢, 8)/{¢-8) and (s, p, 71,
7o)+ (18)/(1B), which is isomorphic to (z, p, 71, 72) and this is isomorphic to Si.
Also N({t, 8)) M Ce(B) = Y and so Cq(1B)/{IB) satisfies the condition (1) of
Proposition 1, because ¥ contains a Sylow 2-subgroup of Cg(#8). Now, O/(r1)
is a Sylow 2-subgroup of Cq(7r1)/{r1) and (¢, 71)/{r1) is the commutator group
of Q/{r1). On the other hand, N¢({t, 71)) is contained in C¢({) = H because ¢ is
not conjugate in G to either 7; = aj @ or tr; = a; ‘.. It follows that

Ne({t, 71)) M Ca(r1) S Cot) M Co(r1) = Q.
Since 7; is conjugate in G to 18, it follows that the centralizer in Cq(48)/(t-8)
of the commutator group of Q/(t8) is equal to Q/(t B). This shows that the
condition (2) of Proposition 1 is also satisfied.

Applying the Proposition 1 on the group C¢(¢8)/{18) (and using the fact
that since 71 is a square of a; 8 we have that (71) does not split in (Q and con-
sequently (/8) does not split in Q) we get that either

Ce(tB) = ¥V = Ce(iB) M Ng(S) or Ce(1B)
is the non-splitting central extension of (8) by Ss (symmetric group in six
letters).

It remains to show that Y is isomorphic to the centralizer of an involution
in As which does not lie in the centre of any Sylow 2-subgroup of Az We
establish the isomorphism from Y onto C(x) in the notation of Wong (9), by
mapping the generators p, 71, 79, ¢, 8, 2 0of ¥ onto the generators »,~! 7\, mu- 7\,
N, A, #” (in this order) of C(u) and then verifying that the same relations are
satisfied by both systems of generators. The lemma is proved.

LEmMA 5. The case (ii) of Lemma 4 cannot happen.

Proof. Suppose that we have case (ii) of Lemma 4. There are precisely
three conjugate classes of involutions in Ss. Note that the centre Z of a Sylow
2-subgroup of S¢ is elementary of order 4, and that the three involutions in Z
are not conjugate in S¢. Hence Cg(#8) has precisely three conjugate classes of
subgroups of order 4 containing {{8). Since #8 is conjugate in G to a; @y = 74,
we may consider Cg(r1). We want to find explicitly the three subgroups
non-conjugate in Cg(r1) which are of order 4 and contain (r;). They are {¢, 1),
(a1 B8), and {B7s, 71), where 72 = B1 B2. Clearly {(a; 8), being cyclic of order 4,
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cannot be conjugate to any of the four-groups (¢, 1) and {873, 71). On the other
hand (¢, 71)/(r1) is the commutator group of (/(r1) and (B8rs, r1)/(r1) is the
subgroup of order 2 contained in the centre of O/(r;) and is different from
(t, 71)/{r1). Hence the four-groups (¢, 71) and (Brs, 1) cannot be conjugate in
Cg(r1). The four-group {(Brs, 71) is normal in Q but is not contained in the
centre of Q and so 8rs and B7; 7 are conjugate in Cg(ry). Since

N, 1)) N C(r1) = Q,
it follows that

C(t) N\ C(r1) = C(tr)) N\ C(r1) = Q.

Using the structure of Ss, it follows that N({8rs, 1)) N C(r1) = Q-X, where
X C C(r1) is a subgroup of order 3 and so

C(BTz) f\ C(Tl) = X'(t, T1y T2, B).

Let £; and &, have the same meaning as in Lemma 2. Then ¢ € R, tr1 € R,
Bt € o, and Bri72 € K.

Now let x be an involution in C(r;). Suppose x # 71 and consider the
four-group (x, 71). Because Ss has precisely three conjugate classes of involu-
tions, it follows that every group of order 4 in C(r1) which contains r; must
be conjugate in C(71) to one of the following groups (of order 4): (¢, 71), {a1 8),
and {(B7e, 71). Since {x, 71) is a four-group, (x, 71) is conjugate in C(r1) to
(only one of) (¢, 1) or {Brs, 71). The involutions ¢ and {r; cannot be conjugate
in C(r1) because ¢t € f; and ir; € R However, 872 and Br; 7o are elements of
4 and are conjugate in C(r1). It follows that x must be conjugate in C(r1) to
one of the involutions ¢, {r1, and Br.. In particular, we have proved that C(r;)
has precisely four conjugate classes of involutions and only one of them (with
the representative ¢) lies in £; and C(¢) N C(r1) is a 2-group.

Consider now Cg(#8). We have B € Cq(i8), 8 € 1, and C(8) M C(B)
contains (¢, 8) X (71, 79, p), where p = a1 0. and so C(8) M C({8) is not a
2-group. This is a contradiction. The lemma is proved.

Let us find some conjugate classes in C¢(#8). First of all we have one con-
jugate class of involutions consisting of one single involution {8 € .. (81, K2
have the same meaning as in Lemma 2). The conjugate class of ¢t ¢ £, consists
of two elements and

C@t) N C@B) = (B X {p)- (11, 72).
The conjugate class of 71 € {2 consists of three elements and
Clrira) N C8) = (¢, B) X (71, 72)) - (2),

where 7 7, is conjugate to 71 in C(48). The conjugate class of {371 € &1 consists
of three involutions. The conjugate class of {71 € 2 obviously consists of six
elements and

C(tTl) M C(tﬁ) = <tr B) X <Tlr T2>'
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Finally the conjugate class of the involution z consists of 12 involutions,
namely,

Clp) N C(tB) = (p) X (t, B).

On the other hand z inverts p and so C(¢8) has precisely one conjugate class
of elements of order 3 consisting of eight elements. We have

C(z) M CUB) = (2) X (Cla) N ({t B) X (1, 72))p)).

Suppose that z fixes an element x in

W = ({t, B) X (r1, 72)){p)

which is not a 2-element. Then x fixes an element of order 3 lying in ¥ and so
a conjugate of z under an element of TV fixes p, a contradiction. Hence

Cw(z) = Cla) M (& B) X (11, 72)) = (18, 1 72)

because a Sylow 2-subgroup of C(¢8) is isomorphic to Q and |Z(Q)| = 4. It
follows that

Cz) N CB) = (z) X (B, 71 72).

There are three conjugacy classes of elements of order 6 (with the repre-
sentatives ptB3, pt, and pB) with eight elements in each class and

ClotB) M CUB) = Clpt) M C(1B) = C(pB) M C(B) = (o) X {t, B).

We are able to show that we have found all conjugate classes of involutions
in Cg(i8). Namely, any involution of C¢(¢8) is conjugate to z or to an involution
in (t, B) X {71, 72) or to z-x, where

x € C(z) N ({t, B) X {11, 72)) = {IB, T172) (x = 1).

But (z, t, B) is dihedral with the centre (#3) and so in this group z is conjugate
to z-i8. Similarly, working in the dihedral group (2, 71, 72), we see that z is
conjugate to z-71 7o. Hence z is also conjugate to 2z-i8-71 2.

Since S = (t, 8, 71, 72) contains the commutator group of {(Q, 8), it follows
that Q is contained in N(S). But also (z, ¢, 8, 71, 72) is contained in N(S).
We now use the fact that N(S)/S = A4; and that all involutions in A4; are
conjugate. Hence there exists an elementy € N(S) such thatz’ = y~1zy £ Q\S.
The involution a; 81 Bz is contained in Q\S and C(ai 81 82) NS = Z()) has
order 4. Hence the conjugate class of a; 81 82 in O has order 4. On the other
hand, we have either 2’ = a; 8182, or 2 = a;8182%, where x # 1 and
x € SN Clar B1B2) = Z(Q). Hence there are only four involutions in Q\S
and so 2’ is conjugate to a; B1 B2 This gives 2 € R,.

4. The simplicity of G. We are now in the position to prove

LeMMA 6. G is a simple group.
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Proof. Suppose at first that O(G) # 1. Act on O(G) by the four-group
(t, 8). We know that Cg(x) does not have a non-trivial normal odd-order
subgroup for any involution x € {#, 8). Hence (¢, 8) acts fixed-point-free on
0O(G), a contradiction. We have proved that G has no non-trivial odd-order
normal subgroups.

Suppose now that G has a proper normal subgroup N with odd-order factor-
group G/N. Then (Q, B) (being a Sylow 2-subgroup of G) is contained in N.
The Frattini argument gives G = N-N({Q, 8)) and the fact that {¢) is the
centre of {Q, B) gives

NG((Q; 5)) C Ce(t) = H.

Ne((Q, 8)) = (@, 8)-{p),

On the other hand, p is contained in C¢(#8) and {8 € N. This is a contradiction
because C¢(43) does not have proper normal subgroups with an odd-order
factor-group. Hence G has no proper normal subgroups with odd-order factor-
group.

Suppose now that G has a proper non-trivial normal subgroup 3. Then both
numbers | M| and [G : M] are even. Denote by &; and R the conjugate classes
of involutions in G with the representatives ¢ and 183, respectively. Suppose
that £ N M 5 @. Then & € M. In particular, ¢ and 8 are contained in M.
Hence 18 € M and so &: N\ M # @, £: € M. All involutions of G are con-
tained in M. It follows that (Q, 8) € M (because (Q, B) is generated by its
involutions), a contradiction. This gives £ M M = @. It follows that & C M.
This gives Q C M, ¢t € M, a contradiction. The proof of Lemma 6 is complete.

Hence

where p = o1 02 and

5. The 3-structure of G. We want to determine the structure of a Sylow
3-normalizer in G. Put T' = {01, 02) € C¢(¢t) = H. We know that

Cy(T) =)y X T

and Nz (T) = {¢, 8)- 1. Consider now Ng(T). We have Co¢(T") <d No(T") and
{t) is a Sylow 2-subgroup of C¢(T’). It follows that Cy(T") has the normal
2-complement M D 7. Since M char Ce(T), it follows M <1 No(T). By a
Frattini argument N(7) = (¢, 8)M. We know that Cy(¢) = T, {{, 8) cen-
tralizes {01 o2) and Cy ({f, B)) = (p). Also by the structure of Cq(#3) we have
Cx(i8) = (o). By way of contradiction, suppose that C;(8) = {p). Then
[M| = |T| and so M =T, No(T) = T-{t,8), T is an elementary abelian
Sylow 3-subgroup of G and {p) is contained in the centre of N (7). This
contradicts the simplicity of G. Hence Cy(8) = 71 is an elementary abelian
group of order 9 and T\ T = (p). We get |M| =27, M =T-Ty, M is
abelian, and so M is elementary of order 27. We have T" = {p, {), { = c1027},
Ty = {p, {1), ¢ is inverted by B and #8, and ¢{; is inverted by ¢ and ¢8. The
structure of Ng(7T') is determined.
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By way of contradiction, suppose that Ng(M) = Ng(T'). Then Ng(T) is a
Sylow 3-normalizer and (by a theorem of Burnside) 7" and 7', being conjugate
in G, must be conjugate in Ng(T'), a contradiction. Hence Ng(M) D Ng(T).
Obviously O(Ng(M)) = M. Also all involutions in N (M) are not conjugate
in Ng(M) and so (¢, 8) is not a Sylow 2-subgroup of Ng(M).

Let us determine the structure of a Sylow 2-subgroup U (D (¢, 8)) of N¢(M).
We have

CONU=CBNU={,B)
In particular U is non-abelian and Z(U) = (¢8). Also considering
C(t8) M Ng(M)

we see that {p) is normalized by U and U-{p) C C¢(¢8). By the structure of
Cs(tB), we know that U is a dihedral group of order 8, the involution
z € U\{, B) inverts p, (t, B) centralizes p, and z is conjugate to {8 in G.

Suppose that Ng(M) has a normal 2-complement. It follows that
N(M) = M-U and so M is a Sylow 3-subgroup of G. Since 7" and T} are
conjugate in G, they must be conjugate in Ng(M). It follows that 27172 = T
and so since z inverts p we may choose {; = 2z~ 1¢z. We know that 2 is conjugate
in G to 8 and so Cy(18) = {p) should be conjugate in N (M) to Cy(2) = {{¢1),
which is a contradiction.

Suppose now that Ny (M) does not have a normal 2-complement. We see
that N (M) has a normal subgroup L of index 2 which does not have a normal
subgroup of index 2 and a Sylow 2-subgroup of L is a four-group. We have
MCL M=0UL),[U: (UNL)] =2,and UM L is a four-group. Because
Z(U) = {B), 18 € UM L. All involutions in L must be conjugate in L. It
follows that UM L = {z,8) and t € U\L. We want to determine C({3).
We get Cy (#8) = (p) and so {p) is normalized by C({3). By the structure of
Cq(t8) we have Cr(i8) = (z, t8){p). In particular, C.({3) has an abelian
2-complement (p) of order 3 and so by a result of Gorenstein and Walter (3)
we get L/ M = PSL(2, ¢), ¢ odd.

On the other hand C¢(M) = M and so L/ M is isomorphic to a subgroup of
GL(3, 3). It follows that ¢ =3 and so L/M =~ PSL(2,3) = A4 Since
Cy(18) = {p) and p is inverted by z, we get C,; ({8, 2)) = (1). By the structure
of A4, we have (i8, z)- M <1 L. There is an element u € L\{#3, z)- M such that
(18, 2)-{u) =2 A4 and so we may put p~'-i8-p = 3, u~'zu = B8z. Replacing u
by u-x with x € (8, 2), if necessary, we have that ¢ normalizes (u). By the
structure of Cq(f) and the fact that |Cy (¢)] = 9, it follows that tut = u=L
Hence (¢, u, {8, 2) =2 .Sy and so Ng(M) is a splitting extension of M by S,
Since 8 centralizes p and z inverts p, it follows that C, ({#8, 2)) = (1). Acting
by u on ({8, ) and M we see that M = (p) X {p*) X (p**) and C,(t8) = {(p),
Cau(2) = (o), Ca(tB2) = (p**). The action of ({3, 2, u) on M is determined.
It remains to determine the action of ¢t on M. Representing ({8, z, u, ) on the
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“vector space’”’ M over GF (3), we get in terms of the ‘‘basis’” p, p#, p**:

0 1 0] (—10 0
wu—10 0 11, z2— 01 0f,
1 0 0] LOO—I
M —1 0 0
1Bz — 0 -1 0}.
. 0 01

The matrix representing ¢ will be determined by the conditions 2 = 1,
tut = p=1, tat = 1Bz, tpt = p. We get

1 00
t—10 0 1
010

and so fpt = p, tptt = pt*, tp*’t = pt. The structure of Ng(M) is determined.
Put M = (u)- M. Then IM is a Sylow 3-subgroup of Ngs(M). The centre
Z(M) of M is obviously contained in M and so Z(M) = Cp(u). We find
that Z(M) = (o-p*-p**).

We are going to show that Ng(It) © Ng(M). Let x € Ng(M) but
x ¢ Ng(M). Then M* = x'Mx C I and M* = M. Because M- -M* = M
and [ : M] = 3, we get |[M M M*| = 9. On the other hand,

Con (M N M%) 2 (M, M™) = M,

which contradicts the fact that [Z(IN)] = 3.

We have proved that Ng(IM) C Ne(M) and so M is a Sylow 3-subgroup
of G. We are now able to determine the structure of Ng(M). Certainly ¢
normalizes It because ¢ inverts u and normalizes M. We have

Ne(M) = (M) - (18, 2)

and so if Ng(IM) D M{¢) we would get that {8 normalizes M, which is not
the case. We have proved that It-(¢) is a Sylow 3-normalizer in G. We have
proved the following result:

LeMmMA 7. A Sylow 3-normalizer in G has order 2-3* and s given by
(py 0%, 0*, i, tlp? = p? = 12 =1, [p, p*] = [p, p*’] = [p*, p*’] = 1,
tot = p, tpht = p**, tp¥’t = p*, tut = p7t).

We shall now study various 3-subgroups of G and their normalizers. The
commutator group M’ of I is the set of all p?(p*)?(p**)~*7% It follows that
M = {p-p*-p**, p(p*)~1) is elementary of order 9 containing the centre
Z(M) = {(p-p*-p**). Hence [M, M'] = Z(M) and so M is a 3-group of class 3.
We also have that 9t? (the group generated by all third powers of elements
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of M) is equal to Z(IN) and so the Frattini subgroup ¢ (M) = . Hence M
has precisely four maximal subgroups: M (which is characteristic in It and
is the unique maximal normal abelian subgroup of I of an order >27),
(W, u) (which is characteristic in I and is the unique non-abelian maximal
subgroup of exponent 3), and M; and M, which are both non-abelian of
exponent 9. We have M,* = M,.

Put as before T = Cy(t), T1 = Cy(8). Then

TNTy= (o) = Cu(B), {(0*) = Cu(2),
(') = Cu(tB2), T = {p, p*o**),

where
(p*p**) = (o1057"), T = (o1, 02),

Ty = {p, p*(p**)™").

We want to determine at first the structure of N¢({p)). Since z inverts p,
we shall determine at first C¢(p). We know that

Calp) NN(M) = M-, B).

Let U be a Sylow 2-subgroup of Cg(p) containing (¢, 8). If U D (¢, 8), then
there is an involution x in (¢, 8) such that a Sylow 2-subgroup of C¢(x) M Cg(p)
has order >8, which contradicts the structure of C¢(¢) and Cg(28). It follows
that (¢, 8) is a Sylow 2-subgroup of Cg(p). All involutions are not conjugate
in Cg(p). It follows that Cg(p) has a normal 2-complement X containing M.
The order of X cannot be greater than 3% and so X = M. We have proved
that Ne¢({p)) € N¢(M) and so Ns({p)) = M-{¢, 8, 2) is a splitting extension
of the elementary group M of order 27 by the dihedral group (¢, 8, 2) of order 8.
The element p is real.

We are now going to determine the structure of Ng({p*-p**)). Put { = prpr®.
We know that

and

Ne((§)) N Ne(M) = M-, 8),

where ¢ centralizes ¢ and 8 inverts {. Since (¢) = (o1 0271), it follows by the
structure of C(¢) that (¢) is a Sylow 2-subgroup of C¢(¢) and so Ng({¢)) has a
normal 2-complement X; (2 M) acted upon by the four-group (¢, 8) and so
X1 = M. We have proved that Ns({({)) € Ne(M) and so

No((p#-p*)) = M-(t, )

is a splitting extension of the elementary group M of order 27 by the four-
group (¢, 8). The element p*-p** is real and C¢ (o1 0271) = M-{t). In particular,
o1 021 is not conjugate in G to oy os.

We are going to show that u is conjugate in G to oy g5~ 1. For this purpose
we shall determine the structure of Ng({i8, 2)). By the structure of C¢g({8)
we have that C¢({i8, 2)) = (I8, 2, 71 72) is elementary of order 8. On the other
hand, the non-abelian group {f, u) of order 6 acts faithfully on ({8, z) and so
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Ne((t8, 2)) is a splitting extension of (#8, 2, 71 72) by (¢, u). Let & and K,
have the same meaning as in Lemma 2. Then 8, z, {82, 71 79, 271 72, and 8271 74
are in R and only 8717, is in &:. It follows that (¢, u) centralizes #87; 7o.
Hence u is real in Cg(f871 72) and so by the structure of H = C4(f) we have
that u is conjugate in G to o1 o271

We shall put p-p#-p** = \ and we shall determine the structure of Ng({\)).
We note that (\) = Z(IM) and N = ;7! or o2~ L It follows that \ is not real
in G (because ¢ centralizes A and (#) is a Sylow 3-normalizer in G) and by
the structure of Cg(¢) we have that Co(\) € (\) X S;, where

Si = Qo) = SL(2, 3)
and 7 = 1 or 2. Here Q; is a quaternion group containing ¢. Also

Let U be a Sylow 2-subgroup of C(\) containing Q;. If U D Q;, then
Ct) YU D Q4 which contradicts C(A\) N\ C() = (\) X S;. Hence the
quaternion group Q; is a Sylow 2-subgroup of C(\). Put V"= O(C¢(\)). Then
V 2 (\) and by a result of Brauer and Suzuki (2) C(\)/V has only one involu-
tion ¢t- V. Hence {¢)V is normal in C(\) and Cy(¢) = (\) because otherwise
(\) X S; would be 3-closed, which is not the case. We get

CGO\) = (C<t) N CO\))'V = Si<>\>V =S5V,
S.NV = (1).

On the other hand, we know that I C Ce(A) and so Wy =M NV is a
maximal subgroup of M. Since ;€ T"C M and o; € S; (0; ¢ V), it follows
that M, == M. Because ¢ acts fixed-point-free on V/()\), it follows that V/(\)
is abelian and so V is nilpotent (of class 2). Hence ¢ normalizes 9, and so
My = (W, u). The fact that u is conjugate in G to o1 02! and the structure
of Cg (o1 0271) imply that a Sylow 3-complement of Vis (1)andso V = (W, u).
It follows that C¢()\) is a splitting extension of the non-abelian group (I, u)
of order 27 and exponent 3 by .S; which is isomorphic to SL(2, 3). The element
\ is not real.

The centralizer of the element u-p of order 9 must be contained in C(A),
because (up)® = \. We get Cg(up) = (up). Also the generalized centralizer of
up must be contained in C(\) because \ is not real. The fact that C(\)/V
=~ SL (2, 3) does not contain a non-abelian subgroup of order 6 gives the result
that this generalized centralizer is equal to {(up). It follows that up is not real
and

Ceup) = Co((up)™") = (up).

We are going to show that we have found all conjugate classes of 3-elements
of G. We have to show that every non-trivial 3-element in I is conjugate in
G to one of

P, PR, ppte, o1 (0)T1(0*')TY  wp, pTwTL
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Because Cq(p) = M-(t, B8), p has (under the conjugation by the elements of
Ng(M)) 6 conjugates in M. Because Cg(p#0**) = M-{t), p*-p** has (under
the conjugation by the elements of N(M)) 12 conjugates in M. Because

Crvan (pp*e*) = Cyan (071 (0#) "1 (0**)™1) = M- (1),

pp*p** has 4 conjugates and p~!(p*)~1(p**)~! has also 4 conjugates in M. Now u
has 18 conjugates in (P, u)\PV under the conjugation by the elements of
M- (t) since |Cm.(y(u)| = 9. But u is conjugate in G to p#p** and so we have
found all conjugate classes of elements of order 3 in G. It remains to determine
the conjugate classes in G consisting of elements of order 9. The element up
(of order 9) has 18 conjugates in I under the conjugation by the elements of
M- (t) since Cq(up) = (up) and also p~'u~! = (up)~! has 18 conjugates in IN
and up and (up)~! are not conjugate in G. We have proved the following result:

LemMmA 8. The group G has precisely 4 conjugate classes of elements of order 3
with the representatives o1 (nom-real), o1™' (non-real), p = o1-02 (real), and
o1-as7 ! (real). Also G has precisely 2 conjugate classes of elements of order 9 with
the representatives up (non-real) and (up)~! (nom-real). We have

[Co(o1)| = [Calor™)| = 818, |Co(o102)| = 274,
]CG(Gl ol = 27-2, and |CG(#P)] = |CG(/~"P)~11 =9.

6. The identification of G with PSp,(3). We are now in a position to
apply the following result of J. G. Thompson (7).

THEOREM A. PSpy(3) s the only finite simple group G with the following
properties:

(1) G contains an elemeniary subgroup of order 27.

(i1) If P is an Ss-subgroup of G and A € SCEN3(P), then U(A) is trivial.

(iii) The centre of an Ss-subgroup of G is cyclic.

(iv) The normalizer of every non-identity 3-subgroup of G is soluble.

(v) Se-subgroups of G contain normal elementary subgroups of order S.

(vi) If T s a Se-subgroup of G, then Z(T') is cyclic and if B € SCNy(T),
then A (B) 1s trivial.

(vii) The centralizer of every involution of G is soluble.

(viii) G contains a soluble subgroup S with the following two properties: (a)S
contains an elementary subgroup D of order 9 such that, for each x € D, Cq(x)
contains an elementary subgroup E, of order 9 with |G : Ng(E,)] prime to 3.
(B)SS contains an elementary subgroup L of order 8 such that for eachy € L, Cq(y)
contains an elementary subgroup E, of order 4 with |G : Ng(E,)] prime to 2.

Here ©CN3(X) denotes the set of self-centralizing normal subgroups (of a
group X ) which cannot be generated by less than 3 generators and Ux (V) = N(T)
s the set of subgroups of X which V normalizes and which intersect V in the
identity only. Finally an S,-subgroup of a group X is a Sylow p-subgroup of X.
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We are now able to complete the proof of our theorem by showing that our
group G satisfies the conditions (i) to (viii) of Theorem A. First of all, by
Lemma 6 the group G is simple. Now using Lemma 7, we see that G satisfies
the conditions (i) and (iii). Also using Lemma 1 and the assumption (b) of
the theorem, we see that the condition (v) is satisfied and that a Sylow 2-sub-
group of G has cyclic centre. By Lemmas 2, 4, and 5 we see that the condition
(vii) is satisfied. It is not difficult to see that the condition (viii) is satisfied
if we take for .S the soluble subgroup H = C¢(¢), for D the Sylow 3-subgroup
(o1, 02) of H, and for L the commutator subgroup of the Sylow 2-subgroup
(Q, B) of H. We know that (o1, 02) C M, M is elementary abelian of order 27
containing the commutator group M’ (which is elementary of order 9) of the
Sylow 3-subgroup I of G, and so we may put for any x € D = (oy, 02),
E, = M. Let R and R: have the same meaning as in Lemma 2. If y € L
lies also in §, then we can take for E, any normal four-subgroup of a Sylow
2-subgroup of Cg(y). Such four-subgroups exist because the commutator
group of a Sylow 2-subgroup of C(y) is elementary of order 8. If y € L lies in
o, then we may suppose (by conjugating) that y = 71 = a3 as. In this case
we take E, = Z((Q), which is elementary of order 4 and E, is normal in (Q, 8)
because ( is normal in {Q, 8).

We shall now show that the group G satisfies the condition (ii). Take the
Sylow 3-subgroup I of G and note that the only element of SEt;(M) is the
subgroup M. Let ¥ 5 1 be an element of U (M). Since a Sylow 3-subgroup
of G is not abelian, the order | V] is prime to 3. By Lemma 8, 1/ is a 2-group.
If M acts faithfully on V/¢(V), then |V/¢ (V)| = 25, which is not possible.
Hence M; = Cy (V) 5 (1). Using Lemma 8 again, we see that |V| < 8. It is
clear that 7 cannot possess a characteristic subgroup of order 2 because the
order of the centralizer of an involution is not divisible by 27. It follows that
V must be elementary of order 4. But then |My =9 and M, V = M; X V,
which contradicts the structure of C(t) = H. We have proved that the group
G satisfies the condition (ii).

We shall now prove that G satisfies the condition (iv). By Lemma 8, the
centralizer of any non-trivial 3-subgroup of G is soluble. Also a Sylow 3-
normalizer is soluble. It follows that it is enough to show that Ng(X) is
soluble, where X is any subgroup of order 27 which does not possess a charac-
teristic subgroup of order 3. This means that it has to be shown only that
Ng(M) is soluble. This has been done before.

It remains to be shown that M (B) is trivial, where B is an element of
SEN: ({0, B)). By way of contradiction, suppose that W # (1) and W € U(B).
Lemma 3.10 of (6) shows that [WW[ is odd. By the structure of centralizers of
involutions, W is a 3-group. Obviously, W cannot be a Sylow 3-subgroup of
G and also W cannot have a characteristic subgroup of order 3 (Lemma 8).
Using the structure of Ng (M), we see that W must be elementary of order 9.
A Sylow 2-subgroup of GL(2, 3) is semi-dihedral of order 16 and so B does
not act faithfully on W. There is an involution 7 contained in B M & which
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centralizes . This contradicts the structure of C(¢) = H. The proof of our
theorem is completed.

REFERENCES

e

. E. Artin, Geometric algebra.

2. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion
group, Proc. Nat. Acad. Sci. U.S.A., 46 (1959), 1757-1759.

3. D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2-subgroups, 1llinois
J. Math., 6 (1962), 553-593.

4. M. Hall, Jr., The theory of groups (New York, 1959).

5. D. G. Higman, Focal series in finite groups, Can. J. Math., 5§ (1953), 477-497.

6. M. Suzuki, On characterizations of linear groups, I, Trans. Amer. Math. Soc., 92 (1959),
191-204.

7. J. G. Thompson, Non solvable finite groups whose non identity solvable subgroups have solvable
normalizers (to appear).

8. J. G. Thompson and W. Feit, Solvability of groups of odd ovder, Pacific J. Math., 13 (1963),

775-1029.

9. W. J. Wong, 4 characterization of the alternating group of degree 8, Proc. London Math. Soc.,
13 (1963), 359-383.

Monash University,
Melbourne, Australia

https://doi.org/10.4153/CJM-1967-082-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1967-082-9

