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A proper subgraph of a connected linear graph is said to disconnect the 
graph if removing it leaves a disconnected graph. In this paper we characterize, 
in the following sense, the disconnecting subgraphs of a fixed connected graph. 
We define two distinct types of disconnecting subgraphs (isthmuses and 
articulators) which are minimal in the sense that no proper subgraph of 
either type can disconnect the graph. We then show that any disconnecting 
subgraph must contain either an isthmus or an articulator. We also define a 
set of subgraphs (called dense) which form a lattice. We show that the union 
of the minimal dense subgraphs contains all isthmuses and articulators. In 
terms of these subgraphs we investigate some of the consequences of assuming 
that a disconnecting subgraph must contain at least m points. 

1. Definitions. A (linear, undirected) graph G is a finite set of elements 
pu pi, • • • , pn called points, and a set of ordered pairs of these elements defining 
a symmetric, non-reflexive binary relation. Two points occurring in an 
ordered pair are said to be neighbours. A subgraph of G is a subset of the 
points of G together with all the ordered pairs in G containing only elements 
of the subset. A subgraph is thus determined by its set of points when the 
binary relation of G is understood. 

Two distinct points, p and q, in G are said to be connected by a path of 
length k if there exist k + 1 distinct points p = pi, p2 , . . . , pk+i — q such 
that the ordered pairs (pu pt+i), for i = 1, 2, . . . , k, are in G. The distance 
between two points is the length of the shortest path between them. The 
diameter of the graph is the greatest distance between pairs of points in the 
graph. 

A graph having only one point or more than one point and every pair of 
points connected is also called connected. If every pair of points are neigh­
bours the graph is called completely connected. A graph which is not connected 
is called disconnected. The null graph is disconnected. 

The union, intersection, and difference of two subgraphs G\ and G2 is the 
subgraph whose set of points is the union, intersection, or difference of the 
sets of points of G\ and G2. We denote the union by G\ + G2 and the difference 
by Gi — G2. 

If a graph is not connected it is the union of a set of disjoint subgraphs 
each one of which is connected and such that the union of any two is not 
connected. This set is unique and we refer to it as the partition of the graph. 
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We say that a proper subgraph G of a connected graph G disconnects G if 
G — Gr is disconnected. We shall be interested in ways of disconnecting a 
fixed connected graph G containing n points and to this end we introduce 
two definitions. 

A k-isthmus of G is a completely connected subgraph which has k points, 
disconnects G, but does not properly contain a completely connected subgraph 
which disconnects G. A k-articulator of G is a subgraph Gf which has k points, 
disconnects G, is not completely connected, and has the property that each 
subgraph in the partition of G — Gf has a neighbour of each point in G'. We 
shall use the generic terms isthmus and articulator when the number of points 
is irrelevant. 

For example, if we denote G pictorially with lines representing the relation 
between points we can see the isthmuses and articulators in the following 
connected graphs: 

1 2 1 2 1 2 

3 4 3 4 3 4 5 

FIGURE 1 FIGURE 2 FIGURE 3 

In Figure 1 the subgraphs with point sets {1, 4} and {2, 3} are articulators 
but there are no isthmuses. In Figure 2 {2, 3} is an isthmus but there are no 
articulators. In Figure 3 {2, 4} is an isthmus and {1, 4} and {2, 3} are arti­
culators. 

We now define a type of subgraph which we shall prove has a close con­
nection with the isthmuses and articulators of G. A connected subgraph G 
is called dense if G = G or if every point in G — G has a neighbour in G. A 
dense proper subgraph which is contained in no other dense subgraph except 
G we call D-maximal; a dense subgraph containing no other dense subgraph 
we call D-minimal. We let SD denote the collection of dense subgraphs of G 
ordered by inclusion together with the empty graph <£. We let Y denote the 
union of all D-minimal subgraphs of G. Unless otherwise stated all dense 
subgraphs, isthmuses, and articulators are those of G. 

We call G m-connected if G — G is connected for every subgraph G con­
taining fewer than m points. 

The subgraph of neighbours of a point p in a subgraph G we denote by 
G'{p). 

2. Dense Subgraphs. Suppose Gi is a dense subgraph and G2 is a subgraph 
containing G\. Since every point in G2 — d has a neighbour in the connected 
graph Gi it follows that G2 is connected. Also every point in G — G2 has a 
neighbour in G2 (in fact in Gi). Therefore we have 

LEMMA 2.1. A subgraph which contains a dense subgraph is also dense. 
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Let Gi and G2 be two dense subgraphs. By this lemma their union is also 
dense. Their intersection need not be dense but if it is not it cannot contain 
a dense subgraph, again by this lemma. Therefore we have 

THEOREM 2.2. SD is a lattice in which the l.u.b. is the graph union, and the 
g.l.b. is the graph intersection when the intersection is dense and otherwise is 0. 

Applying Lemma 2.1 to the definition of -D-maximal we get 

LEMMA 2.3. A subgraph is D-maximal if and only if it is connected and 
contains n — 1 points. 

Suppose n > 2 and let d denote the diameter of G. Let pi and p2 be points 
such that the distance between them is d. Ii G — pi is not connected let 
{Gt} denote its partition. Suppose p2 is in G\ and let pz be a point in G2 which 
is a neighbour of pi. Any path between p2 and pz must pass through pi since 
removing pi disconnects an otherwise connected graph. Thus the distance 
between p2 and pz is d + 1 which is a contradiction. It follows that G — pi, 
and G — p2 by symmetry, is connected and so a Z)-maximal subgraph. We 
have proved 

THEOREM 2.4. If n > 2 then G contains at least two D-maximal subgraphs. 
Thus every point is contained in a proper dense subgraph. 

We shall show that if G = Y and the Z>-minimal subgraphs are mutually 
disjoint then G is completely connected. First we need 

LEMMA 2.5. Let { Tt} be a collection of mutually disjoint dense subgraphs whose 
union is G. If at least one of the I \ contains more than one point then there is a 
dense subgraph containing none of the Yit 

We shall prove this by constructing the desired dense subgraph G'. 
Let Ti, r2 , . . . , Ys be those subgraphs among the Yt containing more 

than one point. 
If 5 = 1 let G' denote an arbitrary Z)-maximal subgraph of IY Every 

point in Ti has a neighbour in G' and every other point in G is dense and so 
is a neighbour to every point in Gf. Thus G' is a dense subgraph of G properly 
contained in Ti and disjoint from the other I \ , as desired. 

Now suppose 5 > 2. Choose an arbitrary point g in Y\. Let qi — q and qt 

be a neighbour of q in Yt for i = 2, 3, . . . , s. Since each Yt (i = 1, 2, . . . , s) 
contains more than one point, it contains a /^-maximal subgraph Gi which 
contains qt. Let G' be the union of the d. 

Each of the Gt is connected and each has a neighbour of q or contains q 
so Gf is connected. Let p be an arbitrary point in G distinct from q. Let 1% 
be that subgraph containing p. If Yt contains no other points p is a neighbour 
of every point in G'. If r t has more than one point then either p has a neigh­
bour in d (if p is not in G t or G t contains more than one point) or is a neigh-
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bour of q (if p is the only point in Gt). Thus G is dense and we can complete 
our argument as before. 

We can now prove 

THEOREM 2.6. If G = Y and the D-minimal subgraphs are mutually disjoint 
then G is completely connected. 

Given the hypothesis, if any Z)-minimal subgraph contains more than one 
point we can apply Lemma 2.5 to obtain a dense subgraph not containing 
any D-minimal subgraph. Since this is absurd every Z)-minimal subgraph 
contains exactly one point. Therefore every point of G is dense and so G is 
completely connected. 

Now we prove 

THEOREM 2.7. If a point p is not D-minimal then T(p) disconnects G. 

Suppose G — T(p) is connected. It contains p and every point in T(p) is 
a neighbour of p so that G — T(p) is dense. Thus G — T(p) contains a 
D-minimal subgraph G' having no neighbours of p. This is possible only if 
G = p. 

We have incidentally proved 

LEMMA 2.8. If G — (G(p) — H) is connected it is dense. 

LEMMA 2.9. G — G(p) is connected if and only if p is D-minimal. 

3. Connectivity. We begin by finding a necessary and sufficient condition 
that a subgraph be an articulator or an isthmus. 

If G' is an articulator or an isthmus then G — G is not connected. Let p 
be any point in G and consider G — G + p. If G is an articulator every 
subgraph in the partition of G — G contains a neighbour of p so G — G + p 
is connected. Likewise every point in G — p has a neighbour in G — G and 
so in G — G + p = G — (G — p). Therefore G — G + p is dense as is 
G — G" for every proper subgraph G" of G. If G is an isthmus then G — p 
is completely connected so G — G + p is connected. Every point in G — p 
is a neighbour of p so G — G + p is dense as is G — G" for every proper 
subgraph G" of G. 

Now suppose G is a subgraph which disconnects G but G — G + p is 
connected for every point p in G. Then such a point must have a neighbour 
in every subgraph of the partition of G — G' so G is an articulator if it is 
not completely connected and an isthmus if it is. Thus we have 

THEOREM 3.1. A subgraph G is either an articulator or an isthmus if and only 
if it disconnects G and G — G" is connected {and so dense) for every proper 
subgraph G" of G. 

COROLLARY. An articulator does not properly contain an articulator. An 
articulator does not contain an isthmus and conversely. 
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Let G be an articulator or isthmus and let p be any point in G. Then, by 
Theorem 3.1, G — G' + p is dense and so contains a D-minimal subgraph 
which must contain p since G — G' is not dense. It follows that every point 
in G' is in T. That is 

THEOREM 3.2. All articulators and all isthmuses are contained in Y. 

Let G' be any subgraph which disconnects G. It is either an articulator or 
an isthmus or, by Theorem 3.1, contains a proper subgraph G" which dis­
connects G. By repeating the argument on G" we are eventually led to the 
case when G — p is not connected for a point p. Since such a point p is an 
isthmus we have 

THEOREM 3.3. A subgraph which disconnects G contains an articulator or an 
isthmus. 

We now turn to some of the consequences of m-connectivity and obtain 

THEOREM 3.4. If G is m-connected then 

1. G — Gf is dense for every subgraph G' containing less than m points, and 
conversely. 

2. G contains no k-isthmus for k = I, 2, . . . , m — 1 and no k-articulator for 
k — 2, 3, . . . , m — 1, and conversely. 

3. T contains at least m points as does Y(p) for every point p in G which is 
not D-minimal. 

4. The intersection of any m — 1 D-maximal subgraphs is dense. 

5. An m-articulator of Y is an m-articulator of G. 

6. Either G is completely connected and n = m, or it is not and n > m + 2. 

7. If p is a point in G — Y and a is a point in G(p) then G(q) has more than 
m points. 

Let G be m-connected and G be a subgraph containing less than m points. 
Suppose there is a point p in G without a neighbour in G — G. Then G — G 
+ p = G — (G — p) is not connected contrary to the définition of m-con­
nected. It follows that every point p in G has a neighbour in the connected 
subgraph G — G which is thus dense. The converse is clear and so part 1 
is proved. 

The necessity of part 2 follows from Theorem 3.3 and the sufficiency is clear. 
Since the second half of part 3 follows from Theorem 2.7 we must show 

that T contains at least m points. If G is completely connected then G — Y 
so T is m-connected and thus contains at least m points. If G is not com­
pletely connected it contains at least one point which is not Z>-minimal. 
That point has at least m neighbours in Y so Y contains at least m points. 

Part 4 follows from part 1 and Lemma 2.3. 
Part 5 follows from 
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LEMMA 3.5. An articulator of Y disconnects G. 

In proving this we do not assume that G is w-connected. 
Let T' be an articulator of V and suppose G — Yr is connected. Every 

point in V has a neighbour in Y — Y' and so in G — Y'. Therefore G — V 
is dense and so contains a D-minimal subgraph G'. But G — V — (G — T) 
= Y — Y' is not dense. This implies that G — Y contains some point of G' 
contrary to the definition of Y. It follows that Yf disconnects G. 

Now suppose G is ra-connected and Y' contains m points. By this lemma 
and Theorem 3.3, Yf contains either an articulator or an isthmus. But it 
cannot contain either properly by part 2. Since Yr is not completely connected 
it is an articulator (of G). 

If G is completely connected then n — m. Otherwise there are points p 
and q in G which are not connected so G — p — q disconnects G. It follows 
that m < n — 2 and part 6 is proved. 

If p is a point in G — Y and q is a point in G(p) then if q is not Z>-minimal 
it has at least m neighbours in Y as well as at least one (that is p) in G — Y. 
If q is Z}-minimal then it has n — 1 neighbours. Since G — Y has a point G 
cannot be completely connected so n — 1 > m and part 7 is proved. 

As a partial converse of part 4 we prove 

THEOREM 3.6. If the intersection of any m > 2 D-maximal subgraphs is con­
nected then there are no k-isthmuses or k-articulators for m > k > 2. 

Let G' be a ^-isthmus or ^-articulator with m > k > 2, and let £ be an 
arbitrary point in G'. By Theorem 3.1 we know that G — p is dense and so 
/^maximal. Thus G — G' is the intersection of k < w D-maximal subgraphs 
but is not connected contrary to the hypothesis of the theorem. 

We complete this section with a few isolated results. 

THEOREM 3.7. If G is not completely connected but G{p) is for some point p 
then p is in G — Y. 

Suppose Y' is a Z>-minimal subgraph containing p. If Y' = p then 
G{p) — G — p so G is completely connected contrary to hypothesis. There­
fore r" contains a neighbour q of p. Since every point which is a neighbour 
of p is a neighbour of g we see that r ' — p is dense, again contrary to hypo­
thesis. Thus p is not in any Z)-minimal subgraph. 

THEOREM 3.8. The intersection of all dense subgraphs is exactly the subgraph 
of 1-isthmuses. 

Suppose p is a point contained in all dense subgraphs. Then G — p does not 
contain a dense subgraph and so is not dense. Since p has a neighbour in 
G — p the latter is not connected so p is a 1-isthmus. Conversely, if p is a 
1-isthmus G — p is not dense but G is so that every dense subgraph contains 
P. 
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Added in proof: In order to complete the statements of Theorems 3.1 and 
3.3 we should have proved that if G is not completely connected it contains 
a disconnecting subgraph. This is trivial. For suppose G is not completely 
connected. Then it contains at least three points, at least two of which are 
not neighbours. Then G — p — q disconnects G. 

The authors are indebted to A. J. Hoffman of the General Electric Company 
for his many helpul suggestions. 
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