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POSITIVITY NOTIONS FOR HOLOMORPHIC
LINE BUNDLES OVER COMPACT RIEMANN SURFACES

JOSHUA H. RABINOWITZ

Since the early 1950's, when Kodaira "discovered" positive line

bundles, the notion of positivity has undergone a continuous

evolution. This paper is intended as an introduction to the

study of positivity notions. More specifically, I consider the

simplest case - line bundles over compact Riemann surfaces - and

compare five positivity notions for such bundles. The results

obtained are certainly not new; they are, in fact, known in much

greater generality. However, by restricting to the dimension one

case, I am able to make use of Riemann surface techniques to

significantly simplify the proofs. In fact, this article should

be easily understood by anyone familiar with the contents of

Gunning's Lectures on Riemann surfaces.

0.

The notion of a positive line bundle over a compact complex manifold

was originally introduced by Kodaira in the early 1950's to obtain his

famous characterization of projective manifolds (see [7], [8], [9]). Since

that time, the notion of positivity has undergone a continuous evolution.

Positive line bundles turned out to have many nice properties each of which

had a natural generalization to vector bundles. The resulting definitions,

however, were not always equivalent for bundles of fiber dimension greater

than one (see [//], [4]). Grauert, in [2], introduced the notion of weak

negativity and was thus able to extend Kodaira's results to normal complex
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6 Joshua H. Rabinowitz

spaces. Moreover, this notion extended to linear fiber spaces and thus, by

duality, implied the first positivity notion for coherent sheaves. More

recent work has centered on coherent sheaves and linear fiber spaces ([7],

[3], [72], [73], [74]) although there do remain some open questions in the

locally-free case.

The object of this paper is to study the various existing positivity

notions in the simplest of all cases, line bundles over compact Riemann

surfaces. Here the various definitions are, for the most part, equivalent.

However, proving these equivalences does require some relatively high-

powered machinery. More specifically, use is made of the Serre Duality

Theorem, the Riemann-Roch Theorem, results from Kahler geometry, and

Remmert's holomorphic reduction theory. Thus, even this simple case

provides a serious introduction to the notions and methods of the study of

positivity.

We shall give four different definitions for positivity and prove that

they are all equivalent. A general outline of the notions and the methods

employed in proving equivalence is given in the following diagram (of.

141):

cohomological positivity

algebro-geometric

Riemann-Roch Theorem Serre Duality

numerical positivity (= positive Chern class)

topological

Kahler Identities Trivial

positive curvature

differential geometric

Trivial Holomorphic Reduction Theory

weak positivity

function theoretic

We also consider the notion of ampleness and prove that

very ample ** positive

positive =* sufficiently high powers are very ample.

In §1, we recall some basic facts about line bundles over compact
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Line bundles over Riemann surfaces 7

Riemann surfaces. The primary reference here is [5]. In §2, we prove the

equivalence of cohomological and numerical positivity and that positivity

implies cohomological positivity. Then, in §3, we recall some basic

properties of compact Kahler manifolds and proceed to show that numerical

positivity implies positivity. §1+ is devoted to a discussion of ampleness

and its relation to positivity. Finally, in §5, we consider Grauert's

notion of weak positivity.

1.

Let M be a compact Riemann surface and 8 the sheaf of holomorphic

functions on M . Let 9* be the sheaf of nowhere vanishing holomorphic

functions on M . Then (see [5]), H (M, 9*) is the group of equivalence

classes of holomorphic line bundles over M . If £ € « (W, 9*) , then £

is represented by data of nowhere vanishing holomorphic functions {£ „}

with £ag£gY
 = **ay •

 A section of £ consists of functions {/af with

fa = £ag/g i
 we may speak of continuous C , holomorphic, and meromorphic

sections. A metric of £ is given by data of C -functions {r } with

T > 0 and P = l5gal ^g • U^nJ induces a pointwise inner product on

sections by the formula ^ f , 9 ^ = fn^ndn which is well-defined since

a<K W V C S T B ^ J
 =

 ^ O B ^ V B
 =

 V B ^ B -̂  The curvature form °f the

metric (r | is the globally defined (l, l)-form

0 = 33 log(rj = -33 log(rj

which is well-defined since £ag is holomorphic.

Consider the commutative diagram (with exact rows) of sheaves over

M •

0 -

where Z is the constant sheaf of integers and C the sheaf of
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C -functions on M . This induces a commutative diagram in cohomology

^(w.e*) -£-*• H2{M,Z)

I 1
H1(M,C*) - g* #2(M,Z) .

For £ € ̂ ( M , 6") , e(£) € ff2(M, Z) is called the Chern class of £ ;

as the diagram indicates, c(£) depends only on the smooth structure of

the line bundle. Let C be the constant sheaf of complex numbers. Then

the sheaf inclusion Z •+• 4; induces a map H (M, Z) •* H (M, C) . We have:

PROPOSITION ([5], p. 100). Let £ = {£ag} (. H1(M, 9*) . Let {rj

be a metric on £ with curvature form 0 . Then, under the de Kham

isomorphism, (i/2-n)d represents the image in H (M, C) of the Chern

class of £ . That is,

- If, £ 9 = h \\M ~
2

Note. Since dimJtf = 2 , H (M, C) s C . In the abave proposition,

we have used the explicit isomorphism given by integration of forms.

Proof of proposition. The proof is a simple diagram chase; see [5]

for details.

Let / = {f } be a global meromorphic cross-section of £ and let

p € M . By the order of / a t p , denoted V (/) , we mean the order at

p of the meromorphic function f . Since f = £ ofo with £

cx ot ctp p otp

holomorphic and non-vanishing, this definition is clearly independent of
the choice of a . Furthermore, since M is compact, v (/) = 0 for al l
but a finite number of points of M (unless, of course, / is t r iv ia l ) .

PROPOSITION ( [ 5 ] , p . 103). Let £ = {^} € ^(M, 9*) and let

f = {fa}
 De any non-trivial meromorphic cross-section of £ . Then
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L ine bund les over Riemann s u r f a c e s 9

Proof. Let {p.} be the set of points where f has non-zero order.

Choose a covering, {ll } , of M such that for each p . there exists an
01 1r

open set V. with p. Z V. c U but such that V. n U = 0 for
If

a ^ a. . Let / = {/ } with / meromorphic in U and / = E o/p •

Then \f | is C and non-vanishing in U - {(U p.) n y } . Thus
CO

may be altered in the various V. to yield data of C positive
1*

functions {g } such that g = |£ RI gR and g = |f | ingj such that ga = |Cag|

Wa - {L
u ̂ J n ^ 1 • I* follows that 0a = K6c.l gn so ^g. } defines

a metric in £ and hence

1 so \9~a}

Now outside of U ̂  we have l o g ^ J = log I / J 2 ] = log ( / J + log(7J

and f is holomorphic. Thus

COROLLARY. If e(£) < 0 , then V[M, 9(0) = H°[M, 9(C)) = 0 .

Proof. The order of a holomorphic cross-section is non-negative.

2.

We have seen that for £ € IT(M, 9*) , e(£) = 1 1 -^-0 where 0 is
JJW2TT

the curvature form of any metric on £ . It follows that a sufficient

condition for e(£) > 0 is that C carry on a metric whose curvature form

0 has the property that iQ is positive at every point of M . This
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suggests the following defini t ions.

DEFINITION. A ( 1 , l)-form w on a compact Riemann surface M i s

positive if , for every point p i M , there exis ts a coordinate

neighbourhood (£/, z) of p such that OJ16/ = icpdz A dz with <p > 0

throughout U .

DEFINITION. A l ine bundle £ over a compact Riemann surface M i s

called positive i f there exis ts a metric on E, with curvature form 0

such that iO i s a posi t ive different ia l form.

DEFINITION. A l ine bundle £ over a compact Riemann surface M i s
o

called numerically positive i f e(£) € # (M, Z) = Z i s posi t ive.

THEOREM. Let M be a compact Riemann surface and £ € F^M, 9") .

If £, is positive then e(£) > 0 ; that is to say, positivity implies

numerical positivity.

Proof. Let {[U , z )} be an open covering of U such that

iO\U = if dz A dz . Let p be a par t i t ion of unity subordinate to

{Uj . Then iQ = i £ P a V* 3
a
 A ^ i , .

Thus

27r J J n or o r a ''a-'
a

We note that it is not at all obvious that numerical positivity implies

positivity.

DEFINITION. A line bundle C over a compact Riemann surface M is

called cohomologically positive if for any line bundle n over M there

exists an integer m = m[c(r\)) such that

lr{M, e(c"n)) = 0 for all n 5 m and all k > 0 .

Note. The usual definition of cohomological positivity (see, for
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example [4]) is stronger in that n is allowed to be any coherent sheaf

and weaker in that m is allowed to depend on r\ itself rather than its

Chern class (even when n is invertible). The two notions are equivalent.

THEOREM. Let M be a compact Riemann surface and £ € IT(M, 9*) .

Then £ is cohomologically positive if and only if £ is numerically

positive.

COROLLARY. Positivity implies cohomological positivity.

Proof of theorem. If u is any line bundle over M , then there is a

fine resolution of 9(u) :

0 - 9(u) - E°>°(u) - ^ E0'1^) - ^ 0

where fr '''(u) is the sheaf of smooth (p, q)-forms on M with

coefficients in u . It follows that for any u , H(M, 9 ( U ) ) = 0 for

all k 2 2 . Furthermore, by the Serre Duality Theorem,

^{M, e(y)) =H°{M, Q[KV-
X))

where K is the canonical bundle over M . (9(#) = 9 ' equals the sheaf

of abelian differentials.)

Suppose now that £ is numerically positive. By the above remarks,

it suffices to show that for any line bundle n over M there is an

integer m such that H°[M, Q (K^T)'1}) = 0 for all n 2: m . Now

c[KE,~nr)~1) = e{K) - nc{Z,) - c(r\) . Since c(C) > 0 , it is clear that,

for sufficiently large n , c(KE,~ n~ ) < 0 and hence

H [M, 0(#C 1 )) = 0 . (Actually we can compute the smallest possible

value for m since we know by the Riemann-Roch Theorem that c{K) = 2g - 2

where g is the genus of M .)

Conversely, suppose that e(£) S O . We will show that, in this case,

£ is not cohomologically positive by exhibiting a line bundle n such

that H \M, 9(£| nj) has positive dimension for arbitrarily large values of

n . Recall that if u € HX{M, 6*) then

9())] () 1 - g ;
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this is the Riemann-Roch Theorem. By Serre Duality, this becomes

Introducing the notation y(o) = dim. [H [hi, 6(O")1] , we may rewrite this

Y(U) - Y{KV~ ) = "(u) + 1 - g .

In particular, letting u = £ r| , we have

= na{E,) + e(n) + I - g

£ c(n) + 1 - g

since e(?) £ 0 . Thus

It follows that if ri is chosen so that c(r|) < g - 1 then

for all n > 0 . (We note that line bundles of all Chern classes exist.

In fact if d € H (M, V) is any holomorphic divisor on M and r\ is the

corresponding line bundle then c(ri) = -(order of d) .)

Note. We have shown that if e^u"1) < 0 then H [M, 6 ( U ) ) = 0 for

all k 2: 1 . Thus, if uK~ has positive Chern class then

!T[M, 6(u)) = 0 for all k > 1 . Kodaira's Vanishing Theorem (see, for

example [76]) says that if UK~ is positive then H{M, 6 ( U ) ) = 0 for

all k 2 1 . Thus, we have proven the Kodaira Theorem for Riemann surfaces

under the (a priori) weaker condition that only the Chern class be

positive.

3.

We now proceed to show that c(£) > 0 implies that £ is positive.

This, in conjunction with our previous results, will establish the

equivalence of positivity, numerical positivity, and cohomological

positivity. We shall make use of the fact that every Riemann surface is,
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in fact, a Kahler manifold (see, for example, P 6 ] , p. 212). We recall the

following important property of Kahler manifolds:

PROPOSITION ([75], p. 72; H O ] , p. 130). Let M be a compact

Kahler manifold and let <p be a purely imaginary (<p = -cp) exact

(l, l)-form on M . Then there is a smooth real-valued function g on M

such that cp = ddg .

We shall need the following lemma.

LEMMA (of. C5], p. 102). Let M be a compact Riemann surface. Then

there exists a positive differential form on M . [Note that any such form

is necessarily closed since dim_W = 2 .)

Proof. Let R be the sheaf of smooth real-valued functions on M ,

and R* the sheaf of smooth positive functions. Clearly exp : R -*• R* is

a sheaf isomorphism; since R is fine, this implies

^{M, R*) = ip-(M, R) = 0 .

Let {[U, s J} be a system of coordinate charts for M . Let

i 12
na3 = ! 8 2 C / 8 3 B ' ' t h e n ^OB^SY = naY s o na6 i s a c o cy c l e a n d ' t v t h e

above, a coboundary. Thus there exist positive functions [r } such that

' t h a t is' r6 = "a^a = ^ ^ " ' a ' L e t

= iradza A

on £/a n UQ . Thus {^J defines a global (l, l)-form Y and Y is

positive by construction.

Note. ¥ is just the fundamental form of an Hermitian metric on the

holomorphic tangent bundle of M .

THEOREM. Let M be a compact Riemann surface and C £ H^(M, Q*)

If c(£) > 0 , then £, is positive.

Proof. Let ¥ be a positive differential form on M . Then
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-1
. Then a > 0 so aX i s a

>M

metric on E, and 0 its curvature form. Then I] (£/2TT)0 - aW = 0 ;

certainly If f > 0 . Let a = 4M
llM U'M -1

positive form and, by construction, at = e(£) . Let {r } be any
I'M a

fl (i
1>M

that is, (-i/2Tr)0 - at represents the 0 cohomology class in a (M, C)

and is therefore exact. Let fl = -Pniat so that tJJ is positive and

(i/2w)Q = af . Then fi - 0 is exact and thus, by the proposition, there

is a real-valued function g such that (2 - 0 = 33<? . Let 0 = e r

Then logjaj = -? + log(rQ) and

-33" log(rQ) = 33g - 33 logfrj = 3lg + 0 = JJ .

Thus {o } is a metric on £ whose curvature form fi has the property

that iQ is positive; E, is positive.

4.

We have seen that if e(£) < 0 then y(O = dim_[ff°(M, 8(C)jJ = 0 .

However Y(£) = 0 is not a satisfactory notion of negativity. Although

e(£) < 0 does imply Y(£) = 0 , it is possible for y(O to be zero even

if c(C) - 0 . As an example, consider any line bundle £, which is

trivial as a differentiable line bundle but not as a holomorphic line

bundle. Then e(£) = 0 . If £ had a holomorphic section, then it would

have to be nowhere vanishing and that would imply that £ is

holomorphically trivial. Thus Y(£) = 0 even though c(£) = 0 . It is

true, however, that if £ is "sufficiently" positive then £ must have

non-trivial sections. Indeed, by the Biemann-Rich Theorem,

Y U ) > c(C) + 1 - g so if c(5) > s then y(O 2 1 •

The above remarks lead us to the consideration of line bundles with

"many" sections. For £ € H1(M, 6*) and p € M , we denote by £| the

fiber at p of E, . F(£) will, as usual, denote the complex vector space

of global holomorphic cross-sections of £ and T (£) the subspace of
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T(C) consisting of those-sections that vanish at p . Let {(y
a>

 2
a)} b e

a system of coordinate charts for M . Then the canonical bundle, K , has

transition functions { âg} where k^ = dz^/dz^ ; K is just the

holomorphic cotangent bundle. For each p € M , we introduce a map

A : r (£) -* (£X)| as follows: V * T (£) is given by data of

holomorphic functions {/ } with / (p) = 0 and / = Cag/o • Consider

the data {*fa/*
z
a\p} • We h a v e

since /g(p) = 0 . Thus *p({/a}) = {3^a/
32

olp} i s a well-defined element

of (yO | . (An element of (£#)| is given by data of complex constants

{aj with aa= CaB(p)(32B/92alpJa6 .)

DEFINITION. A line bundle E, over a compact Riemann surface M is

called very ample if

(i) the global sections of £ generate al l i t s fibers; that'

i s , for each p € M there is an exact sequence

0 - rp(£) - r(?) - 5 |p -* 0 , and

(ii) that map X : T ( 0 -»• (C )̂ I is surjective for each

p € W .

THEOREM, iet M be a compact Riemann surface and £ € ^(W, 9*) .-

(1) if £ is uerj/ ample then £ is positive;

(2) if %. is positive then there is an integer n such that

t/ is very ample for all m t n .

Proof, (l) If £ is ample and p € M , then, by condition ( i i ) ,

there is a section of £ vanishing at p . I t follows that c(£) 5 1 so

that £ is numerically positive and hence positive.

(2) Suppose £ is positive and hence cohomologically positive. Let
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p £ M and choose a system {[ll , z )} of coordinate charts for M such

;that p € U but p $ f for a # a . Let <y be a meromorphic

function in U with a single simple pole at p and, for a + a. , let

g be any nowhere vanishing holomorphic function in U . Let r\ be the

line bundle with transition functions {T\ .} where n R = g lg~ • The

data {g } satisfy g = T\ ft^_ and thus define a global meromorphic

cross-section of n • Thus e(n ) = -1 and n has a global meromorphic

section with one simple pole at p . For any m , we have exact sequences:

( I )

2o - t^ - * . f% (p)

The map ip : g n -»• Ĉ  is defined as follows. A local section of ffn

consists of data of holomorphic functions {/ } with

Then cp ({/ }) is given by the data {/ Ig } . (We are actually

contracting with the point bundle n~ = n* •) *F is defined analogously.

The last sheaf in each sequence is defined by the sequence as the quotient

of the first two. Now these sequences lead to exact sequences in

cohomology:

(II)

LEMMA. (a) r f ^ n ] = r [f] .
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Proof of lemma. (a) f € F £ 1 is given by data {/" } with

/ a = ^ a e f p • *(/) i s S i v e n by t h e d a t a {^o
/sa^ a n d t h u s

cp(/)(p) = 0 . On the other hand, if fa = ^f& with fa(p) = 0 , then

fa is holomorphic for al l a and thus defines a section of t, n

CW ft € F \g"\. A is given by data {hj, ifH such that

f^p) - 0 . / J - ^ Y n e ^ , and * a - /J/ffg = ^ g h 6 . (The data

define a section of £Tn over U such that fe - <P n / f = ^"O^Q •)

Since /^(p) = 0 , we have ftQ(p) = C^g(p)hg(p) so that {feQ(p)} defines

a section of C I

(a) Proceed as in (b) , considering {'Sh /9s | } .

Incorporating the lemma into the exact sequences ( I I ) , we get exact

sequences

for each p . By the cohomological positivity of E, , there is an integer

n = nlc(n ) , c h such that

= o

for all m 2 n . But c(n ) = -1 , e n = -2 for all p ; thus, the

integer n may be chosen simultaneously for all p . This completes the

proof.
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5.

In this final section, we consider Grauert's notion of weak positivity

and his proof of the equivalence of positivity and weak positivity for line

bundles, (it is not known whether weak positivity implies positivity for

bundles of fiber dimension greater than one.) In previous sections, we

have seen that restricting attention to Riemann surfaces led to simplified

proofs of the equivalence of various positivity notions. In this case,

however, we have no such simplification to offer. We content ourselves,

therefore, with a brief synopsis of Grauert's argument.

Let M be a complex manifold, D c M an open subset, and <p a

twice-differentiable real-valued function in D . We denote by H the

complex Hessian of <p ; H is an Hermitian form on TM\D where TM is

the holomorphic tangent bundle of M . In terms of local coordinates

(s , ..., s ) on M , H = Y. (3 <p/8z -3s -}dz. ® dz . . For the remainder

of this section, it is useful to think of a line bundle over M as a

particular geometric object L lying over M rather than an element of

H1(M, 9*) .

DEFINITION. Let M be a complex manifold and D a relatively

compact subdomain of M with ^-boundary. D is called strongly

pseudoconvex if there is an ^-neighbourhood W of 3D and a real-valued

C -function cp on W such that:

(i) W n D = {p € W | <p(p) < 0} ;

(ii) (ciip) t 0 for all p e W ;

( i i i ) H is positive definite on a l l T M for a l l p € W .

PROPOSITION. Let M be a compact Riemann surface, L •* M a

holomorphic line bundle, and {r } a metric in L . Let p be the

square-norm function on L induced by {r } ; that is

Then {r^} has negative curvature if and only if the unit-disc bundle
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U = {£ € L | p(£) < l} is strongly pseudoconvex.

Proof. Suppose first that {r } has negative curvature, that is

-31 l o g ( r j < 0 and hence 33 log (r ) > 0 . Since 1/ = (C U | p(C) < l l

,it suffices to show that 33p is positive definite. Now

3"3p = 33elogP = 3 (el o g p3 log p) = p (3 log p A I log p) + p33 log p .

Thus

p ^ l p

= 3 log PA 3 log p + 33 log p

= (3 log £a + 3 log pj A [3 log I a + 1 log r>J + 3l log r>a

A

+ 33" log ra .

Now the term in brackets is easily seen to be positive semidefinite. Since

33 log P is, by assumption, positive definite, it follows that

p 33p and hence 33p is positive definite.

Conversely, suppose that

U = U €«L I p(C) < 1) = (C € L I log p(O < 0}

is strongly pseudoconvex. Then log p(£) is a "defining function" for a

strongly pseudoconvex domain; it follows (see [6], p. 262) that

33 log p = 33 log P is positive definite.

DEFINITION. A line bundle L over a compact Riemann surface M is

called weakly negative if its zero-section has a strongly pseudoconvex

neighbourhood. L is called weakly positive if L*- = L~ is weakly

negative.

THEOREM. Let M be a compact Riemann surface and L •* M a

holomorphic line bundle. If L is positive then L is weakly positive.

Proof. If L is positive then L* is negative and hence, by the

proposition, the unit disc bundle in L* is strongly pseudoconvex. Thus

L* is weakly negative and L is weakly positive.
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DEFINITION (see [2]). Let X be a reduced complex space and A a

compact analytic set in X . A is called exceptional if there is a

reduced complex space Y , a point p € Y , and a surjective holomorphic

map it : X -*• I such that TT(A) = p and ir : X-A -*• Y-{p] is a

biholomorphism.

We quote the following basic result of Grauert without proof (this is

where the hoiomorphic reduction theory comes in):

PROPOSITION (Grauert, [2]). Let M be a compact complex manifold

and L •*• M a weakly negative line bundle. Then the zero-section of L is

an exceptional analytic set in L .

THEOREM (Grauert, [2], p. 3*0. Let M be a compact Riemann surface

(or, more generally, a compact complex manifold) and L -*• M a holomorphic

line bundle. If L is weakly positive then L is positive.

Proof. Let Q be the zero-section of L* and let v : L* •*• Y be

such that IT : Q •* p £ Y and TT|L* - Q is a biholomorphism. Let V be a

neighbourhood of p = ir(Q) in Y and let cp : V •* <Dn be an embedding of

V into tn with cp(p) = 0 € Cn . Finally, let p(z) = £ 3.7. be the
Ir Is

u s u a l norm in C and l e t p = p o c p o i r : i T (V) •*• R . Then 99p i s

p o s i t i v e d e f i n i t e off of Q and Q = {E, € v~ {V) \ p(£) = o} . Now de f ine

'o

This i s well-defined in T = fl <3WJ[TT1( V)] . By differentiat ing under the
0

integral, we see that 99p is positive definite off of Q . Furthermore,

p is invariant under the action e . Choosing n sufficiently small we

can arrange that {£ 6 T \ p(£) < n} cc T and defines a disc bundle in L

which is strongly pseudoconvex. It follows that the metric whose unit disc

bundle is this disc bundle has negative curvature; the theorem is proven.

https://doi.org/10.1017/S0004972700006870 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006870


Line bundles over Riemann surfaces 21

References

[7] Klaus Fritzsche, "Pseudoconvexity properties of complements of

analytic subvarieties", Math. Ann. 230 (1977), 107-122.

[2] Hans Grauert, "Uber Modifikationen und exzeptionelle analytische

Mengen", Math. Ann. 146 (1962), 331-368.

[3] Hans Grauert und Oswald Riemenschneider, "Verschwindungssatze fur

analytische Kohomologiegruppen auf komplexen Raumen", Invent.

Math. 11 (1970), 263-292.

[4] Phillip A. Griffiths, "Hermitian differential geometry, Chern

classes, and positive vector bundles", Global analysis, 185-251

(University of Tokyo Press, Tokyo, 1969).

[5] R.C. Gunning, Lectures on Riemann surfaces (Princeton University

Press, Princeton, New Jersey, 1966).

[6] Robert C. Gunning, Hugo Rossi, Analytic functions of several complex

variables (Prentice-Hall, Englewood Cliffs, New Jersey, 1965).

[7] K. Kodaira, "On cohomology groups of compact analytic varieties with

coefficients in some analytic faisceaux", Proc. Nat. Acad. Sci.

USA 39 (1953), 865-868.

[S] K. Kodaira, "On a differential-geometric method in the theory of

analytic stacks", Proc. Nat. Acad. Sci. USA 39 (1953),

1268-1273.

[9] K. Kodaira, "On Kahler varieties of restricted type (An intrinsic

characterization of algebraic varieties)", Ann. of Math. (2) 60

(1951*), 28-U8.

[70] James Morrow, Kunihiko Kodaira, Complex manifolds (Holt, Rinehart

and Winston, New York, London, Sydney, 1971).

[7J] Shigeo Nakano, "On complex analytic vector bundles", J. Math. Soc.

Japan 7 (1955), 1-12.

[J2] Joshua H. Rabinowitz, "Moisezon spaces and positive coherent

sheaves", Proc. Amer. Math. Soc. 71 (1978), 237-2U2.

[7 3] Joshua H. Rabinowitz, "Positivity notions for coherent sheaves over

compact complex spaces", Invent. Math, (to appear).

https://doi.org/10.1017/S0004972700006870 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006870


22 J o s h u a H. R a b i n o w i t z

[74] Oswald Riemenschneider, "Characterizing Moisezon spaces by almost

posi t ive coherent analytic sheaves", Math. Z. 123 (1971),

263-28U.

[7 5] Andre Weil, Introduction a Xetude des varietes kahleriennes, nouvelle

edition corrigee (Hermann, Paris, 1971).

[7 6] R.O. Wel l s , J r . , Differential analysis on complex manifolds

(Prentice-Hall , Englewood Cl i f fs , New Jersey, 1973).

Department of Mathematics,

Univers i ty of I I I i n o i s at Chicago Ci r c l e ,

Chicago,

I I I i no i s 60680,

USA.

https://doi.org/10.1017/S0004972700006870 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006870

