ON EXPONENTIAL SUMS OVER AN
ALGEBRAIC NUMBER FIELD

LOO-KENG HUA

1. Introduction

LET K be an algebraic field of degree # over the rational field, and let b be the
ground ideal (differente) of the field. Let

f(x) = akxk—l—. . + aixX + ao

be a polynomial of the kth degree with coefficients in the field K, and let a be
the fractional ideal generated by ax, ..., a1, that is, a =(ag, ..., ai).
Suppose ad = 1/q, where t and q are two relatively prime integral ideals, and

S(x), ) = S(fx)) = S(g) = X ertrt@),

x mod q

where x runs over a complete residue system, mod q. It is the aim of the paper
to prove the following:

THEOREM 1. For any given ¢ > 0, we have
S(f(x), ) = O(N(q)™/**e)
where the constant implied by the symbol O depends only on k, n and e.

As usual, we use tr(a)and N(q) to denote the trace of a number a and the
norm of an ideal q of K respectively.

This is a generalization of a theorem of the author’s [1] over the rational
field. The method used here is simpler and quite different from the original one.

1. A theorem on congruences

THEOREM 2. Let p be a prime ideal and let s(x) be a polynomial with integral
coefficients, mod . Let a be a root of multiplicity m of the congruence

s(x) = 0 (mod p).

Let \ be an integer, divisible by p but not by p?, and let u be the greatest integer such
that p* divides all the coefficients of s(Ax + a) — s(a). Let

Hx) = A% (s(\x + a) — s(a)) (mod )
be a polynomial with integral coefficients. Then u & m, and the congruence
t(x) = 0 (mod p)
has at most m solutions.
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Proof. Without loss of generality, we may assume that a = 0. Then
s(x) = x™ s1(x) + s2(x), 51(0) # 0 (mod p)

where s2(x) is a polvnomial of degree less than m and all its coefficients are
divisible by p. Now we have

s(hx) = Amx™s1(\x) + s2(Ax).

Since the coefficient of x™ is equal to A™s;(0) which is not divisible by p™*1, we
have u < m.

Since A"%s(A\x) is congruent to a polynomial of degree not exceeding m,
mod p, the theorem follows.

Remark. u is independent of the choice of A\. In fact, let ' be another
integer having the same property, then we have an integer 7 such that

A = N7 (mod p*™), p + 7.
Then
s + a) — s(a) = s\ (rx) + a) — s(a) (mod p*+1)

3. Several lemmas concerning algebraic numbers

Let g be an ideal, fractional or integral, and a be an integral ideal. It is
clear that gll ga.

Now we divide the elements of g into residue classes according to the modulus
ga. The number of different classes is known to be N(a). We take an element
from each class; the set so formed is called a complete residue system of g,

mod ga.
The definition of the ground ideal b can be stated in the following way:

971 is the aggregate of all numbers £ of K
such that

ezwi tr ((a) — 1

for all integers a of K. Consequently, if 8 belongs to (qd)™ and a;=a2(mod q),
then

e2mitr (Ba) —  p2mitr (Bay)

This asserts that the sum S(f(x), q), which was defined at the beginning of the
paper, is independent of the choice of the residue system, mod q.

THEOREM 3. Let q be an integral ideal. As & runs over a complete residue
system of (qd)™!, mod d™, we have, for integral a,

; N(@) ifq]a,
2xitr (fa) —
Xe { 0 if q+a.

Proof. 1f q| a, then £a belongs to dL. Then et ®® = 1 for all £ Hence,
we have the first conclusion.
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If g+ a, there is an element &, which belongs to (bg)™?, but §a does not belong
to 7L In fact, if for all & belonging to (bg)™! we have £,a belonging to »™2,
then we have

b1 | a(bg)™L

Consequently q| a. This is impossible. By the definition of ™ there is an
integer v such that
e21‘itl’ (7£0a) ;é 1.

Since v §o belongs to (bg)™?, we can write y§o= £1.. Then

Z e21ri tr(ta) — z e21ritr ((t+&)a)
13 £
— e21ri tr (¢ ) . Z e21ri tr(¢ a).
£
Thus we have the second conclusion of our theorem.

4. Proof of the theorem for q = p

In case q is a prime ideal p, the exponential sum considered here reduces to
a type of exponential sum over a finite field which has been discussed before {2].
But the author could not find an easy way to establish an explicit relationship
between the exponential sums considered here and those over a finite field.
Also, for the sake of completeness, the following proof is included here. The
method is an adaptation of one due to Mordell [3].

THEOREM 4. We have
| S(fx), p) | S E N(p)—VE,

Proof. Without loss of generality, we may assume that a; does not belong
to 7%, for otherwise

S(f@), ») = SFE) — awx®, p),

since e2*itr (%2 = 1 for all integral x. Thus we now assume that a; belongs
to (pd)~* but not to . The theorem is trivial for N(p) < k™, since

| SG@), Il € Np) < BN EVE
Now we assume N(p) > k" and consequently p+%.! We have
1
S 2k — ’ S(f(\ 2k
| S(@)| NI =D srs »ediy | SGOx + w)|
where A runs over a reduced residue system, mod p. Write

FOx + p) = Bx*+ ... + By,

where
(1) Br = ap\® (mod $71),
2) Br—1 = kapd¥ 7 4 ap_\F? (mod b7,
and so on.
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For fixed B, Bi—1, - . . belonging to (pdb)~?, the number of integers X\ and u
does not exceed k. In fact, (1) asserts that 8, — az\* belongs to ™. (8 and az
belong to (pd)™™.) There is an integer 7 belonging to pd but not to p. Conse-
quently ra; and 78 are integers and p+ 7ax; the congruence 78; = rai\*
(mod p) has evidently at most % solutions. For a fixed A, the same argument
proves that p is uniquely determined by (2), since » } k.

Therefore, we have

%

Tk v ..T
N(p) (N(p)— 1) 8 !

where each B runs over a complete residue system of (pd)™2, mod b~

2k
SBwx* +. ..+ Bx) | ,

S(f(x), »)

We have
k 2= 3. .. LY et ()
R L SRR L) Ml T R e e
= N(n)*M,
where
¥ =Brlx+... -l: o= yF— o= ®) B P L T — R
— .= ykk_l)-l". ..+ Bl(x1+. ot Xy — Yi—...— yk),
and, by Theorem 3, M is equal to the number of solutions of the system of
congruences
"+, .t xt =yt L L+ 9t mod yp, 1< 2 < k.

By a theorem on symmetric functions, we deduce immediately
X—-—x)...X—xp)=X —3)...(X — y), mod p,

since p + 2! Then we have that xi,..., x; are a permutation of yy,..., ¥
and then
M < EIN(p)*:.
Consequently, we have
2k BB
S(f(x), v) ) §
( N(p)(N(p)—1)

< 2k EIN(p)2k—2
$ ksz(p)zk—z

N(p)**

and the theorem follows.

5. Proof of the theorem for q¢ = p!

THEOREM 5. If q = Y, and  is a prime ideal, then
(1) \ S(f(x), DZ)I < RHIN(ph-VE,
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Proof. Let
b = (kak, (k - 1)ak_1, “ e ey 20,2, al).

Evidently al b. Let ¢ be the highest exponent of p dividing ba™™. Let m be
the number of solutions, multiplicities being counted, of the congruence

2 f'(x) = 0 (mod p*177)
as x runs over a complete residue system, mod p. (We have m < & — 1.)

Evidently, (1) is a conseqeunce of the sharper result

3) | S(f(x), | € k2" max (1, m) N(ph—v*,
If ¢ 2 1, then p’ divides at least one of the integers &, 2 — 1,..., 1. Then
N®) S k7
that is
“ OR

Suppose that I < 2(¢ + 1). For¢ = 0, we have / = 1 and (3) follows from
Theorem 4. If ¢ 2 1, then, by (4)

i S(f(x)v pl)l < N(p)l < (N(p))l(l—l/k) (N(p))(ﬂ"‘l)/k
N(p)la—1/k) pne+1/0/k

/

N IN

E2n . N(p) 1a—1/k)

Therefore (3) is true for I < 2t 4+ 1. Now we assume that > 2(¢ + 1) and
that (3) is true for smaller /.

Let u1, ..., ur be the distinct roots of (2) with multiplicities m,, . . ., m,
respectively. Then mi+. ..+ m,= m. Evidently

S(fx) = X eritr (J(@) — S > e2ritr U@) = TS,
x uxEv (fnodp) v

say, where » runs over a complete residue system, mod p. If v is not one of the
u's then, letting
x =y + N7,

where X is an integer belonging to p but not to p%, we have

S, = > > g2mitr (F () + N1z 11 ()
ymodpl —¢—1 5 modpt+1
¥ = (mod p)
=3 e2ritr (F() s e2mitr Nt Lz f1.(y))
z mod pf +1
=0

by Theorem 3, since p**17 + f/(y).
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Therefore
| SGw) | < sz;:l xmog_‘;l_l e2rite (Fu, + )
_ él xmoﬂzﬂ_l e2mitr (g + ) = £u))
5) = X NG SGG +0) = ), B,

where ¢, is defined in the following way: Let ¢ be the ideal generated by the
coefficients of

f@) = flus + 3) — flus).

Evidently a divides ¢, and o, is the highest power of p dividing ca™. Also, if
1< o, we use the conventional meaning

S(flus +3) — flus), p77%) = p'7s.

Now we are going to prove that

(6) 1< 6,< k.
If (6) is not true, then p~***+1 divides all the coefficients of f(o; + ) — f(c,);
that is
(r)
piHEh f ('P‘s) N, 1<,<2
7!
Consequently
p—l+1 f(r) (/J'S)
rt
which is equal to a, plus a linear combination of ay, . .., a,—;1 with integral
coefficients. Thus we deduce successively p~|az, p~Hapy, ..., p=it|qy,

This contradicts q = p.
From (5) and (6), we have, for / 2 max (sy,. .., o),

| SG@, ) | S E NP | SG6), v
s$=
By the hypothesis of induction, we have
r
\S(f(x), pl)l LB Y ND)osVRp N(p) e a=1/k)
s=1

= k2" N(p)l(l'—l/lc) .
In case ! £ max (o1, . .., o,), we have I < k and, by (5)

I S(f(x)) l <r pit < m pl(l—l/k).
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We have (3) and consequently (1). (Notice that if 3 m, = 0, the method
s=1
shows that S(f(x)) = 0,if I 2 2(t + 1).)

THEOREM 6. If (q1, q2) = 1 and f (0) = 0, then there are polynomials fi(x)
and fa(x) each of degree k such that

S(f(x), a192) = S(fr(x), a1) S(fa(x), q2).
Proof. We can find two integers A\; and A; such that

(A1, q102) = G2, (N2, 01G2) = qu.
Putting
X = AMy2 + Neyy,

then, as y; and y. run over, complete residue systems mod ¢ and mod g
respectively, x runs over a complete residue system, mod q1q.. Then

S(f(x), qa2) = 2 2 e2mitr (FOvuy+ Mup)
yymod (; ¥pmod (,

— 3 e2mitr (fOu) > e2mitr (f ()
¥y mod (], ¥y mod

= S(fi(x), q1)) S(fa(x), q2)

where fi(x) = f(Asx) and fo(x) = f(A1x). Now we have to verify that the ideal
generated by the coefficients of fi(x) can be expressed as t(dq:)™!, where t, g
are relatively prime integral ideals, but this is quite evident.

6. Proof of Theorem 1
Let q = pi . .opks.
Then we have, by repeated application of Theorem 6,

S(f), ) = H S(fix), pi) .

By Theorem 5, we have

| SG@), | € T Bt N(ptiy—v/k

i=1

< %: (1 4 1,)@ntnlog k/log 2 N(pi’i)(l‘l/")

=1
= d(q)(zn+1)log k/log 2 N(q)x—q/k
O(N(q)x-—l/ k+e)

where d(q) denotes the number of divisors of q.
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Remarks. The previous method is practically an algorithm; more precisely,
for a given polynomial, if we know the value of S(f(x), »"), I < 2t + 1, then
we can find the value of S(f(x), »%).
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