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Abstract

The trie is a sort of digital tree. Ideally, to achieve balance, the trie should grow from
an unbiased source generating keys of bits with equal likelihoods. In practice, the lack
of bias is not always guaranteed. We investigate the distance between randomly selected
pairs of nodes among the keys in a biased trie. This research complements that of
Christophi and Mahmoud (2005); however, the results and some of the methodology
are strikingly different. Analytical techniques are still useful for moments calculation.
Both mean and variance are of polynomial order. It is demonstrated that the standardized
distance approaches a normal limiting random variable. This is proved by the contraction
method, whereby the limit distribution is shown to approach the fixed-point solution of a
distributional equation in the Wasserstein metric space.
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1. Introduction

We study the distances between distinct pairs of keys in random binary tries (a sort of
digital tree). The mean and variance are derived by analytical methods involving the use of
poissonization, as a mathematical transform, and depoissonization, as an asymptotic inverse
transform. Although the chief interest lies in studying the random tree for a fixed population
of n keys, the recurrence equations involved are rather unwieldy. If a Poisson-distributed
number of keys is assumed instead, the functional equations involved can asymptotically be
solved by the Mellin transform and its inverse. It can then be justified that the solution is a
good approximation (with quantifiable small errors) for the fixed-population problem when the
Poisson parameter, taken to be n, tends to infinity. The complexity of such a Mellin approach
increases considerably for higher moments, which prompts us to consider a shortcut approach
via the contraction method to determine the limit distribution.

The standard data model for tries is an unbiased Bernoulli probability distribution. What
will become of these results if the Bernoulli model is biased? This question is of prime practical
value, because our assumption about a perfect key generator may not be totally realistic, owing
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to industrial tolerance as well as ageing of equipment. Specifically, we assume a Bernoulli
probability model on data (not necessarily unbiased). Keys of infinite precision are obtained
from a memoryless source that emits independent bits, with P(bit = 1) = p and P(bit = 0) =
q = 1 − p. We say the Bernoulli model (or the trie) is unbiased if p = q = 1

2 ; otherwise, it is
biased.

Let �n be the distance between two randomly chosen keys in a random trie. Two of our
results concern the mean and variance, and the periodic fluctuations therein:

E[�n] = 2

hp

ln n + o(ln n),

var[�n] = 2σ 2
p ln n + o(ln n),

where hp and σ 2
p = (pq/h3

p)(ln p − ln q)2 are constants (hp := −p ln p − q ln q is the
data entropy) and the o-terms contain ignorable oscillating functions. We write the asymptotic
variance in doubled form to make explicit the fact that asymptotically �n is a convolution of
two random variables, each of which is the depth of a randomly chosen key in a random trie.
Furthermore, if the trie is biased then

�n − (2/hp) ln n√
ln n

d−→ N (0, 2σ 2
p),

where ‘
d−→’ denotes convergence in distribution.

Curiously, in a random unbiased trie, when p = q the factor σ 2
p becomes 0; the lower-order

terms dominate, realizing a significantly different behavior. In this case, we recover the results
of Christophi and Mahmoud (2005), who went into more details of the o-term.

In random unbiased tries, no scaling factors exist such that the scaled distance has a nontrivial
limit distribution. In the biased case there is a Gaussian limit distribution, which we prove by
showing that the distance between the distribution functions of �∗

n := (�n − E[�n]) ln−1/2 n

and some limit, �∗, diminishes to 0 in the Wasserstein metric space, and the distribution of �∗
is the fixed-point solution of a distributional equation that can be explicitly solved.

The main results have been sketched. The rest of the paper is organized in sections, as follows.
In Section 2 the definition of a trie is given. At the end of Section 2, the notation used throughout
is explained. In Section 3 we show how the moments can be derived by a Mellin-poissonization–
inverse Mellin-depoissonization program. In Subsection 3.1 a functional equation for the
moment generating function is set up, and its Mellin transform is computed. From this functional
equation, the mean is derived in Subsection 3.2, and the variance is derived in Subsection 3.3.
A Gaussian limit distribution is derived by the contraction method in Section 4, where we also
add a few words on the origin of the method, its use, and references to it.

2. Tries

The trie is a data structure for digital data, or data represented by their decomposition into
digits. Digital data are prevalent in science and technology. They have numerous applications
in computer files, telecommunication signals, DNA, etc. The trie was proposed independently
by De La Briandais (1959) and Fredkin (1960) for information retrieval.

A binary trie is a digital tree consisting of internal nodes that each have one or two children
and leaf nodes that hold data (keys). The binary trie evolves according to the following
algorithm. The trie is ‘fed’ with n keys. If n = 0 then nothing needs to be done; the insertion
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algorithm terminates. If n = 1 then a leaf is allocated for the single key given. If n ≥ 2 then
an internal node is specified as a root of the tree; keys with 0 as their most significant bit go to
the left-hand subtree, and keys with 1 as their most significant bit go to the right-hand subtree.
The insertion algorithm is applied recursively in the subtrees, but at level � the (� + 1)th most
significant bit of the key is used for branching. When the algorithm halts, each key resides in
a leaf by itself. The root-to-leaf paths in the trie correspond to minimal prefixes sufficient to
distinguish the keys.

Let �n be the distance (i.e. the number of tree edges) between two randomly selected keys in
a random trie of size n, where all

(
n
2

)
pairs of keys are equally likely to appear. The recurrence

equations for �n will involve δn, the depth of a randomly selected key in a random trie of size
n, with random meaning that all keys are equally likely to be chosen.

The introduction of some additional notation will facilitate our exposition. The notation
‘

d=’ will mean equality in distribution, whereas ‘
d−→’ will denote convergence in distribution.

Likewise, ‘
p−→’ and ‘

a.s.−−→’ will respectively denote convergence in probability and almost-sure
convergence. A tilded variable will refer to an independent probabilistic copy of an untilded
random variable having the same distribution. For example, Ỹ will mean a random variable
independent of Y , with Ỹ

d= Y .
The Bernoulli random variable with success probability p will be denoted by Ber(p).

Similarly, the binomial random variable arising on n independent trials, with success rate p per
trial, will be denoted by Bin(n, p), and the normal distribution with mean µ and variance σ 2

will be denoted by N (µ, σ 2). The notation ‖X‖r will be used for the Lr -norm of any generic
random variable X, and the notation oLr (g(n)) used to symbolize a function with Lr -norm that
is negligible in comparison with g(n).

The Mellin transform of a function f (x) is
∫ ∞

0
f (x)xs−1 ds,

and will be denoted by f ∗(s). The Mellin transform usually exists in vertical strips in the
complex s-plane of the form

a < Re s < b,

for real numbers a and b, a < b. We shall denote this strip by 〈a, b〉. The function f (x) can
be recovered from its transform using the line integral

f (x) = 1

2π i

∫ c+i∞

c−i∞
f ∗(s)x−s ds,

for any c ∈ (a, b). The Mellin transform was surveyed in the context of the analysis of
algorithms in Flajolet et al. (1995), Flajolet and Sedgewick (1995), and Szpankowski (2001,
pp. 398–405).

3. Moments of the random distance

Let Ln and Rn respectively denote the number of keys residing in the left- and right-hand
subtrees (with Ln + Rn = n). In view of the Bernoulli model, Ln

d= Bin(n, q). Owing to the
independence of the keys and the bits within, the recursion of the insertion algorithm preserves
the probabilistic structure in the subtrees of the trie.

Given Ln, �n can be �Ln with probability
(
Ln

2

)
/
(
n
2

)
when both keys come from the left-

hand subtree, �̃Rn with probability
(
Rn

2

)
/
(
n
2

)
when both keys come from the right-hand subtree,
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or (δLn + 1) + (δ̃Rn + 1) with probability LnRn/
(
n
2

)
when the two keys come from different

subtrees. Hence, we have the conditional distribution

�n | Ln =

⎧⎪⎪⎨
⎪⎪⎩

�Ln with probability
(
Ln

2

)
/
(
n
2

)
,

�̃Rn with probability
(
Rn

2

)
/
(
n
2

)
,

(δLn + 1) + (δ̃Rn + 1) with probability LnRn/
(
n
2

)
,

(1)

with boundary condition �0 = �1 = δ0 = δ1 = 0.
We note that �Ln and �̃Rn are dependent through the dependency of Ln and Rn, but that,

given the value of Ln (and, hence, Rn), they are conditionally independent; the same applies to
δLn and δ̃Rn . Hence, �̃i is independent of �j for all i and j ; likewise, δ̃i is independent of δj

for all i and j .

3.1. Functional equations

To establish a functional equation for the distribution of �n, we need a functional equation
for δn. The asymptotic distribution of δn was found independently in Pittel (1986) and Jacquet
and Régnier (1987) for memoryless sources; Jacquet and Szpankowski (1991) extended the
results to Markovian sources. We specifically need the formulation via functional equations as
elegantly surveyed in Szpankowski (2001, p. 448).

We begin by deriving a functional equation for the moment generating function �n from the
basic conditional recurrence (1),

E[e�nt | Ln] = e�Ln t

(
Ln

2

)
(
n
2

) + e�̃Rn t

(
Rn

2

)
(
n
2

) + exp{[(δLn + 1) + (δ̃Rn + 1)]t}LnRn(
n
2

) ,

with an unconditional expectation
(

n

2

)
φ�n(t) :=

(
n

2

)
E[e�nt ]

= E

[(
Ln

2

)
e�Ln t

]
+ E

[(
Rn

2

)
e�Rn t

]
+ e2t E[LnRne(δLn+δ̃Rn )t ]. (2)

The recurrence is not easy to solve. However, a poissonized version of the problem is amenable
to solution via the Mellin transform. Consequently, suppose that instead of there being a fixed n,
the number of keys to be stored in the tree is first determined by a random draw from a Poisson
distribution with parameter z. Let Nz be such a random number.

In a step toward poissonization, we multiply both sides of (2) by zn and sum over all
possible n. We do the calculations on the right-hand side by conditioning on Ln, and obtain

∞∑
n=0

znφ�n(t)
(
n
2

)
n! =

∞∑
n=0

n∑
�=0

(pz)�φ��
(t)

(
�
2

)
�!

(qz)n−�

(n − �)!

+
∞∑

n=0

n∑
�=0

(qz)n−�φ�n−�
(t)

(n − �)!
(pz)�

(
�
2

)
�!

+ e2t
∞∑

n=0

n∑
�=0

(pz)��

�! φδ�
(t)

(qz)n−�(n − �)

(n − �)! φδn−�
(t),
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where φδj
(t) := E[eδj t ]. To complete the poissonization we introduce the bivariate generating

function �(t, z) = e−z
∑∞

n=0

(
n
2

)
φ�n(t)z

n/n!, such that

�(t, z) = E

[(
Nz

2

)
φ�Nz

(t)

]
,

as can be seen by conditioning on Nz.
Direct work with �(t, z) gives rise to a technical difficulty in using the Mellin transform.

To ensure the existence of the transform, we shift �(t, z) down by e2t z2/2, and define

P(t, z) = �(t, z) − e2t z
2

2
.

We can now express the recurrence in the form

P(t, z) = P(t, pz) + P(t, qz) + e2t [(Q(t, pz) + pz)(Q(t, qz) + qz)] − e2tpqz2, (3)

where Q(t, z) is the shifted, poissonized function E[NzeδNzt ] − z for the random depth.

3.2. The mean

The moments can be derived in a systematic manner by techniques, such as poissonization
and depoissonization (see Jacquet and Szpankowski (1998) or Szpankowski (2001, p. 465)),
and singularity analysis and Mellin transformation (see Flajolet et al. (1995)), belonging to the
tool-kit of analysis of algorithms.

The kth derivative of (3) yields a functional equation for the (shifted, poissonized) kth
moment of �n. The first derivative gives

A(z) := ∂

∂t
P (t, z)

∣∣∣∣
t=0

= E

[(
Nz

2

)
�Nz

]
− z2.

Thus,
A(z) = A(pz) + A(qz) + pza(qz) + qza(pz),

where a(z) := (∂/∂t)Q(t, z)|t=0 = E[NzδNz ]. The Mellin transform of A(z) is

A∗(s) = (qp−1−s + pq−1−s)a∗(s + 1)

1 − p−s − q−s
,

where a∗(s) is the Mellin transform of a(z), which can be found in a number of reference
sources. (It was developed in Szpankowski (2001, p. 448) via a shortcut argument that avoids
recurrence and uses poissonization as a paradigm.) These references give

a∗(s) = − 	(s + 1)

1 − p−s − q−s
.

Upon substituting this into A∗(s), we obtain the Mellin transform

A∗(s) = − (pq−(s+1) + qp−(s+1))	(s + 2)

(1 − p−s − qs)(1 − p−(s+1) − q−(s+1))
,

existing in 〈−3, −2〉.
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The poissonized average is retrieved by the inversion

A(z) = 1

2π i

∫ −5/2+i∞

−5/2−i∞
A∗(s)z−s ds.

We evaluate this integral using ‘the method of closing the box’(see Szpankowski (2001, p. 408)).
It starts from a rectangular contour integral connecting the points − 5

2 ± iM and θ ± iM . The
sides are chosen so that no poles are crossed, with M large and θ an arbitrary positive real
number. Then we argue that as M → ∞ this contour integral reduces to the required integral
for the inverse Mellin transform, plus an error arising from integration on the side joining the
points θ±i∞ (the other two integrals on the top and bottom sides vanish, in view of the presence
of the gamma function). The contour integral itself is evaluated via the residues of the poles in
the infinite rectangle (strip). The conclusion is

A(z) = −
∑
poles

residues of poles in

〈
−5

2
, θ

〉
+ o(z−θ ). (4)

This leaves us with residue calculations at the poles of the gamma function and the roots of
the equation

(1 − p−s − q−s)(1 − p−(s+1) − q−(s+1)) = 0.

Inside the strip, the gamma function has a singularity at −2, and the equation

1 − p−(s+1) − q−(s+1) = 0

has roots both at s0 = −2 and, for ln p/ ln q = r/m, where gcd(r, m) = 1 for integers r and
m, at sk = −2 + 2π ikm/ ln q for k = ±1, ±2, . . . . Thus, the transform A∗(s) has a double
pole at s0 and, for ln p/ ln q rational, has simple poles at sk for each nonzero k. The roots of
the equation 1 − p−s − q−s = 0 are at −1 and, for ln p/ ln q = r/m, where gcd(r, m) = 1 for
integers r and m, at −1 + 2π imj/ ln q for j = 0, ±1, ±2, . . . . These contribute O(z) terms
that can be subsumed in the error because ultimately we have to divide by z2.

Although θ can be taken to be arbitrarily large, we shall fix its value just past all the poles
at −0.99, because eventually we depoissonize and this operation gives an o(n2) error term
anyway. By collecting contributions of the residues of the poles in the strip and substituting
them into (4), we arrive at

A(z) = E

[(
N(z)

2

)
�N(z)

]
− z2

= 1

2pqh2
p

[2pqhpz2 ln z

+ (2pqhpγ + (ln2 q − ln2 p)p3 + (2 ln p ln q − 3 ln2 q)p2

+ (3 ln2 q − 2 ln p ln q)p − ln2 q + 2pqh2
p)z2]

+ 2z2β(z) + o(z2),

where γ is Euler’s constant and β(·) is the function

β(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1

2hp

∞∑
k=−∞
k 
=0

	

(
2π ikm

ln q

)
z−2π ikm/ ln q if ln p/ ln q is rational,

0 otherwise.

(5)
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In all cases, |β(z)| is a small function for the typical values of p staying away from 0 and 1.
For instance, when r/m = 1

2 , we have p2 = q or p = 1
2 (

√
5 − 1) ≈ 0.618, and |β(z)| ≤

0.18 × 10−8, uniformly in z.
The O(z2 ln z)-term of A(z) satisfies the conditions for depoissonization (see Theorem 10

of Jacquet and Szpankowski (1998)). The main result of this section follows, substituting n

for z. This introduces a negligible o(1) error in the average. The final result can be considerably
simplified by straightforward algebraic manipulation.

Proposition 1. In a trie of n random keys following the Bernoulli model, the average distance
between two randomly selected keys is

E[�n] = 2

hp

ln n + 2γ

hp

+ 2 − 1

pqh2
p

(p3 ln2 p + 2pq ln p ln q + q3 ln2 q)

+ 4β(n) + o(1),

where β(n) is the oscillating function given in (5).

3.3. The variance

The second derivative of (3) gives rise to a functional equation for the second moment of
�n. There are an enormous number of details, and we shall only sketch the calculation. By
taking the second derivative we obtain

B(z) := ∂2

∂2t
P (t, z)|t=0 = E

[(
Nz

2

)
�2

Nz

]
− 2z2.

This gives

B(z) = B(pz) + B(qz) + 4pzA(qz) + 4qzA(pz) + pzb(qz) + qzb(pz) + 2a(pz)a(qz),

with b(z) = (∂2/∂2t)Q(t, z)|t=0 = E[Nzδ
2
Nz

]. We write

B(z) = B(pz) + B(qz) + 4pza(qz) + 4qza(pz) + pzb(qz) + qzb(pz)

+ 2

(
a(pz) − pz ln(pz)

hp

)(
a(qz) − qz ln(qz)

hp

)

+ 2a(pz)
qz ln(qz)

hp

+ 2a(qz)
pz ln(pz)

hp

− 2pqz2 ln(pz) ln(qz)

h2
p

.

To aid in symmetrizing the equation with respect to the roles of p and q, we write the term
−2pqz2 ln(pz) ln(qz)/h2

p as −f (z) + f (pz) + f (qz), where

f (z) = z2 ln2 z

h2
p

+
(

p2 ln p + q2 ln q

pqh2
p

+ ln(pq)

h2
p

)
z2 ln z

+
(

p2 ln2 p + q2 ln2 q

2pqh2
p

+
(

p2 ln p + q2 ln q

pqh2
p

+ ln(pq)

h2
p

)
p2 ln p + q2 ln q

2pq

+ ln p ln q

h2
p

)
z2.
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The function f (z) looks like an asymptotic expansion of some function, F(z), that has a Mellin
transform in the strip 〈−3, −2〉 and satisfies F ∗(s) = λ(s)	(s) for a function λ(·) of simple
form. Indeed, w(z) = f (z) − F(z) is a regular function of order O(z), and the term

2

(
a(pz) − pz ln(pz)

hp

)(
a(qz) − qz ln(qz)

hp

)
+ w(pz) + w(qz) − w(z)

is O(z2).
Let B(z) + F(z) = B1(z) + B2(z), where

B1(z) = B1(pz) + B1(qz) + 4pza(qz) + 4qza(pz) + pzb(qz) + qzb(pz)

+ 2
pz ln(pz)

hp

a(qz) + 2
qz ln(qz)

hp

a(pz),

B2(z) = B2(pz) + B2(qz) + 2

(
a(pz) − pz ln(pz)

hp

)(
a(qz) − qz ln(qz)

hp

)

− w(z) + w(pz) + w(qz).

Lemma 1. In the cone Sθ = {z ∈ C : | arg(z)| < θ}, 0 ≤ θ < π/2, we have

B2(z) = O(z2) as z → ∞.

Proof. We prove this lemma by induction in vertical sections of the cone. Write B2(z) as

B2(z) = B2(pz) + B2(qz) + ρ(z),

where ρ(z) = O(z2). Thus, there is a value, z0 > 1, such that |ρ(z)| ≤ K|z|2 for all
|z| ≥ z0. Let ν1 = min(p, q), ν2 = max(p, q), and z′

0 = z0/ν1. For positive integer m,
let Dm = {z : Re(z) ∈ [z′

0, z
′
0ν

−m
2 ]}. Let us add D0 = {z : Re(z) ∈ [z0, z

′
0]}. We chose the

starting section so that the bound for |ρ(z)| is already in effect in D0 and beyond.
Whenever z ∈ Dm+1 − Dm, both pz and qz fall in D0 ∪ Dm. Let c = supz∈D0∪D1

|B2(z)|.
We start the induction at m = 1, where we already have

B2(z) ≤ c < c|z|2.
Let us take α = max(c/ν2

1 , 2c + K, K/(1 − p2 − q2)). In D1, we have |B2(z)| ≤ α|z|2.
Assume that |B2(z)| ≤ α|z|2 in Dm, for m ≥ 1. Suppose now that z ∈ Dm+1 − Dm. The
maximal value of pq is 1

4 , and K ≤ K/(2pq). The functional equation for B2(z) gives us

|B2(z)| ≤ max(c, αp2|z|2) + max(c, αq2|z|2) + K|z|2
≤ αp2|z|2 + αq2|z|2 + α(1 − p2 − q2)|z|2
= α|z|2,

completing the induction in all the sections.

The Mellin transform of B1(z) is

B∗
1 (s) = 2

[(
2 + ln p − ln q

hp

)
pq−(s+1) +

(
2 + ln q − ln p

hp

)
qp−(s+1)

]

× a∗(s + 1)

1 − p−s − q−s

+
(

qp−(s+1) + pq−(s+1)

1 − p−s − q−s

)(
b∗(s + 1) + 2

hp

d

ds
a∗(s + 1)

)
.
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By inverting this Mellin transform and residue computation, we obtain

E

[(
Nz

2

)
�2

Nz

]
= 2

h2
p

z2 ln2 z

−
[

3

pqh3
p

(q4 ln2 q + 2pq ln p ln q(1 − pq) + p4 ln2 p)

− 4γ

h2
p

+ p2 ln p + q2 ln q

pqh2
p

+ ln(pq)

h2
p

− 8
β(z)

hp

]
z2 ln z

+ O(z2).

Again, the conditions for depoissonization are met. The complicated expressions above can be
simplified using straightforward algebra to the expression in the following statement.

Theorem 1. In a trie of n random keys following the Bernoulli model, the variance of the
distance between two randomly selected keys is

var[�n] = 2

(
pq

h3
p

(ln(p) − ln(q))2
)

ln n + O(1).

Note that the case p = q presents a degeneracy, which was handled in Christophi and
Mahmoud (2005).

Corollary 1. As n → ∞, �n/ ln n
p−→ 2/hp.

Proof. By Chebyshev’s inequality, we have

P(|�n − E[�n]| > ε E[�n]) ≤ var[�n]
ε2 E2[�n]

.

The orders of magnitude found in Proposition 1 and Theorem 1 yield

P

(∣∣∣∣ �n

E[�n] − 1

∣∣∣∣ > ε

)
= O

(
1

ln n

)
.

We thus have
�n

E[�n]
p−→ 1,

which can be combined with the convergence E[�n]/ ln n → 2/hp to give the statement of
the corollary.

4. Limit distributions

In principle, one can continue pumping higher moments by the methods utilized for the mean
and variance, and aspire to determine limit distributions by a method of recursive moments (see
Chern et al. (2002), for example). However, as was already mentioned, the explosive complexity
is forbidding. The contraction method offers a shortcut. A solution is guessed based on some
heuristics in the structure of the problem, and then the guess is verified by showing convergence
of the distribution function of �∗

n := (�n −E[�n]) ln−1/2 n to that of the guessed limit in some
metric space. Recently, the Wasserstein and Zolotarev metrics have been popularized in the
context of the contraction method.
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The contraction method was introduced by Rösler (1991). Rachev and Rüschendorf (1995)
added several useful extensions. Recently general contraction theorems and multivariate
extensions were added by Rösler (2001), Neininger (2001), and Neininger and Rüschendorf
(2004). Rösler and Rüschendorf (2001) provides a valuable survey.

We start from the recursive representation (1), written in the form

�n = �LnIn + �̃RnJn + (δLn + δ̃Rn + 2)Kn,

where In is the indicator of the event that both keys are chosen from the left-hand subtree, Jn is
the indicator of the event that both keys are chosen from the right-hand subtree, and Kn is the
indicator of the event that the keys are chosen from different subtrees. The indicators are inserted
to truncate an irrelevant choice; they are of course mutually exclusive (In + Jn +Kn ≡ 1). For
n ≥ 2, we can reorganize the above relation as

�n − E[�n]√
ln n

d= �Ln − E[�Ln ]√
ln Ln

In

√
ln Ln

ln n
+ �̃Rn − E[�̃Rn ]√

ln Rn

Jn

√
ln Rn

ln n

+ Y ∗
n Kn + 1√

ln n
(E[�Ln ]In + E[�̃Rn ]Jn

+ (E[δLn ] + E[δ̃Rn ] + 2)Kn − E[�n]),

where

Y ∗
n := δLn − E[δLn ]√

ln Ln

√
ln Ln

ln n
+ δ̃Rn − E[δ̃Rn ]√

ln Rn

√
ln Rn

ln n
.

This equation can be written in terms of the normed variables as

�∗
n = �∗

Ln
In

√
ln Ln

ln n
+ �̃∗

Rn
Jn

√
ln Rn

ln n
+ Y ∗

n Kn + Gn, (6)

where

Gn := 1

ln n
(E[�Ln ]In + E[�̃Rn ]Jn + (E[δLn ] + E[δ̃Rn ] + 2)Kn − E[�n]).

We first find the limit of this equation heuristically and then confirm it by an inductive proof
in the Wasserstein metric space. The additive terms in the representation (6) are dependent. For
instance, �Ln and �̃Rn are dependent through Ln and Rn (though these copies are conditionally
independent when Ln and Rn are given). Also In, Jn, and Kn are dependent, etc. However, the
fact that the binomial distribution of Ln is sharply concentrated around its average, namely

Ln

n

a.s.−−→ q,
Rn

n

a.s.−−→ p, (7)

loosens the dependence. As an immediate consequence of (7) we have the convergence

√
ln Ln

ln n

a.s.−−→ 1,

√
ln Rn

ln n

a.s.−−→ 1. (8)

If �∗
n converges to a limit then so do �∗

Ln
and �̃∗

Rn
, because both Ln and Rn grow to infinity

almost surely, and these limits would be eventually independent. The limit variable, δ∗, of
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(δn − E[δn]) ln−1/2 n is known to be N (0, σ 2
p) for biased tries (it does not exist in unbiased

tries); see Pittel (1986). So, by the same token as before, (δLn − E[�Ln ]) ln−1/2 Ln and
(δ̃Rn − E[�̃Rn ]) ln−1/2 Rn, although dependent, would eventually be independent copies of
N (0, σ 2

p).
Each of the indicators In, Jn, and Kn is a conditional Bernoulli random variable. For

instance, for any n ≥ 2,

In = Ber

(
Ln(Ln − 1)

n(n − 1)

)
,

which is to be interpreted as Ber(�(� − 1)/(n(n − 1))), whenever Ln = �. Also, the indicators
(In, Jn, Kn) tend to a vector, (I, J, K), of three jointly distributed Bernoulli random variables
on the nonzero vertices of the unit simplex in three dimensions, with marginals

In
a.s.−−→ I = Ber(q2), (9)

Jn
a.s.−−→ J = Ber(p2), (10)

Kn
a.s.−−→ K = Ber(2pq). (11)

Lemma 2. As n → ∞, Gn → 0.

Proof. By utilizing Proposition 1, we can bound the term E[�Ln ] by conditioning as follows:

E[�Ln ] =
n∑

�=0

E[��]
(

n

�

)
p�qn−�

=
n∑

�=2

(
n

�

)
p�qn−�

(
2

hp

ln � + O(1)

)

≤
(

2

hp

ln n + O(1)

) n∑
�=2

(
n

�

)
p�qn−�

<
2

hp

ln n + O(1).

Likewise, by conditioning the known result about the asymptotic mean random depth from
Pittel (1986) (see also Jacquet and Régnier (1987) and Jacquet and Szpankowski (1991)), we
have E[δLn ] < (1/hp) ln n+O(1). By symmetry, similar bounds hold in the right-hand subtree
for the terms E[�Rn ] and E[δRn ].

So, now we can represent Gn as

Gn = 1√
ln n

([
2

hp

ln n + O(1)

]
In +

[
2

hp

ln n + O(1)

]
Jn

+
([

1

hp

ln n + O(1)

]
+

[
1

hp

ln n + O(1)

]
+ 2

)
Kn

−
(

2

hp

ln n + O(1)

))

= 1√
ln n

(
2

hp

(In + Jn + Kn) ln n − 2

hp

ln n + O(1)

)

= O

(
1√
ln n

)
.
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According to the form of (6) and the convergence relations (7)–(11) and Lemma 2, if �∗
n

converges to a limit, say �∗, then the limit satisfies the distributional equation

�∗ d= �∗I + �̃∗J + Y ∗K, (12)

where Y ∗ d= δ∗ + δ̃∗ and (�∗, �̃∗, Y ∗) is independent of (I, J, K).
Let F ∗

n be the distribution function of �∗
n, and let F ∗ be the distribution function of �∗.

To actually prove that a limit for �∗
n exists in distribution, and satisfies the fixed-point limit

equation (12), it suffices to show that the second-order distance

d2(F
∗
n , F ∗) = inf ‖Vn − W‖2

converges to 0 as n → ∞; the infimum in this definition is taken over all pairs (Vn, W) of
random variables with respective distribution functions F ∗

n and F ∗.
The L2-norm ‖Vn − W‖2 = √

E[(Vn − W)2], for any particular pair (Vn, W), gives an
upper bound on d2(F

∗
n , F ∗). In particular, we have

d2
2 (F ∗

n , F ∗) ≤ bn := E[(�∗
n − �∗)2].

Lemma 3. As n → ∞, bn → 0.

Proof. In (6) we can replace several factors by their limit plus an asymptotically negligible
corrective term. For example, the difference |In−I |m is always bounded (by 1) for any index m,
and the convergence in (9) implies convergence in Lm; consequently, we have In

√
ln Ln/ ln n =

I + oL1(1). By subtracting (12) from (6) we obtain

bn := E[(�∗
Ln

− �∗)I + (�̃∗
Rn

− �̃∗)J + (Y ∗
n − Y ∗)K + Gn + oL1(1)]

:= E[(V1 + V2 + V3 + Gn + oL1(1))2]. (13)

Upon squaring the five additive terms in the latter equation, fifteen terms appear. The terms
E[V 2

1 ] and E[V 2
2 ] define a recurrence for bn, as follows. The limiting indicator I is independent

of Ln, as the latter depends on only finitely many keys. We find that

E[V 2
1 ] = E[(�∗

Ln
− �∗)2I ]

= E[I ]
n∑

�=0

E[(�∗
Ln

− �∗)2 | Ln = �] P(Ln = �)

= q2
n∑

�=0

E[(�� − �∗)2]
(

n

�

)
pn−�q�

= q2
n∑

�=0

(
n

�

)
b�p

n−�q�

and, similarly,

E[V 2
2 ] = p2

n∑
r=0

(
n

r

)
brp

rqn−r .

The three terms 2 E[V1V2], 2 E[V1V3], and 2 E[V2V3] are exactly 0, because they contain
cross-products of mutually exclusive indicators; for example,

E[V1V2] = E[(�∗
Ln

− �∗)I (�̃∗
Rn

− �̃∗)J ] = 0
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as IJ ≡ 0. All the other terms combined contribute only O(ln−1/2 n), due to the exact centering
of the random variables and the smallness of the corrections, for example. We illustrate the
calculations for only one of the terms,

2 E[V3Gn] = 2 E[(Y ∗
n − Y ∗)KGn].

By the Cauchy–Schwarz inequality and the fact that K ≤ 1, we have

E[(Y ∗
n − Y ∗)GnK] ≤

√
E[G2

n]
√

E[(Y ∗
n − Y ∗)2].

The proof of Lemma 2 gives O(1/ ln n) as an upper bound for E[G2
n]. Furthermore,√

E[(Y ∗
n − Y ∗)2]

is o(1), as shown, for example, in Jacquet and Szpankowski (1991).
We rewrite (13) using our results for the fifteen terms in the expansion:

bn = q2
n∑

�=0

(
n

�

)
b�p

n−�q� + p2
n∑

r=0

(
n

r

)
brp

rqn−r + O

(
1√
ln n

)

= 1

1 − pn+2 − qn+2

(n−1∑
�=0

(
n

�

)
b�p

n−�q�+2 +
n−1∑
r=0

(
n

r

)
brp

r+2qn−r

)

+ O

(
1√
ln n

)
.

We can show by induction that bn → 0. Indeed, d2(F
∗
n , F ∗) ≤ bn → 0 as n → ∞. The

convergence d2(F
∗
n , F ∗) → 0 verifies the convergence �∗

n

d−→ �∗.

Theorem 2. In a trie of n random keys following the biased Bernoulli model, the distance, �n,
between two randomly selected keys satisfies

�n − (2/hp) ln n√
ln n

d−→ N (0, 2σ 2
p).

Proof. The limiting random variable �∗ has a distribution that satisfies the distributional
equation (12). Let φX(t) be the characteristic function of a generic random variable X.
Conditioning on M = (I, J, K), we find the representation

φ�∗(t) = E[et (I�∗+J �̃∗+Y ∗K)]
= E[et (I�∗+J �̃∗+Y ∗K) | M = (1, 0, 0)] P(M = (1, 0, 0))

+ E[et (I�∗+J �̃∗+Y ∗K) | M = (0, 1, 0)] P(M = (0, 1, 0))

+ E[et (I�∗+J �̃∗+Y ∗K) | M = (0, 0, 1)] P(M = (0, 0, 1))

= q2φ�∗(t) + p2φ�∗(t) + 2pqφY ∗(t).

Thus,
φ�∗(t) = φY ∗(t).

Since Y ∗ = δ∗ + δ̃∗ and both δ∗ and δ̃∗ are independent copies of the limit of the normalized
random depth, which is known to be N (0, σ 2

p) (see Pittel (1986), for example), we therefore
have Y ∗ d= N (0, 2σ 2

p).
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