Table 2. Patient Outcomes

	No ID Consult (N=32)	ID Consult (N=195)	Overall (N=227)	p-value
Clearance blood cultures				< 0.001
Unknown	1	2	3	
No	5 (16.1%)	2 (1%)	7 (3.1%)	
Yes	26 (83.9%)	191 (99%)	217 (96.9%)	
Transthoracic echocardiogram				0.014
Unknown	0	1	1	
No	14 (43.8%)	45 (23.20%)	59 (26.11%)	
Yes	18 (56.2%)	149 (76.80%)	167 (73.89%)	
Transesophageal echocardiogram				0.005
Unknown	0	2	2	
No	32 (100%)	154 (79.8%)	186 (82.7%)	
Yes	0	39 (20.2%)	39 (17.3%)	
Antibiotic-related adverse event				0.550
Unknown	0	8	8	
No	31 (96.9%)	183 (97.9%)	214 (97.7%)	
Yes	1 (3.12%)	4 (2.1%)	5 (2.3%)	
In-hospital death				0.651
No	27 (84.4%)	158 (81%)	185 (81.5%)	
Yes	5 (15.6%)	37 (19%)	42 (18.5%)	
30-day mortality				0.643
Unknown	5	38	43	
No	25 (92.6%)	149 (94.9%)	174 (94.6%)	
Yes	2 (7.4%)	8 (5.1%)	10 (5.4%)	
30-day readmission				0.402
Unknown	6	47	53	
No	21 (80.8%)	108 (73%)	129 (74.1%)	
Yes	5 (19.2%)	40 (27%)	45 (25.9%)	
Median duration of therapy – endocarditis (range)	N/A	42 (3-59)	42 (3-59)	N/A
Median duration of therapy – no endocarditis (range)	14 (5-24)	14 (0-55)	14 (0-55)	0.444

(Table 2). There were no significant differences in in-hospital mortality, 30-day mortality, 30-day re-admission rate, or duration of anti-Enterococcal antibiotics. **Conclusions:** These results support the conclusion that patients with Enterococcal bacteremia who received IDC were more likely to be managed according to currently recommended standards of care. In this cohort, IDC did not have a statistically significant association with differences in mortality, re-admission rate, or antibiotic duration. Patients with Enterococcal bacteremia are likely to benefit from IDC, especially as they frequently have significant life-limiting co-morbidities complicating their care. **References:** Vogel M, Schmitz RP, Hagel S, Pletz MW, Gagelmann N, Scherag A, Schlattmann P, Brunkhorst FM. Infectious disease consultation for Staphylococcus aureus bacteremia - A systematic review and meta-analysis. J Infect. 2016 Jan;72(1):19-28. doi: 10.1016/j.jinf.2015.09.037. Epub 2015 Oct 9. PMID: 26453841.

Antimicrobial Stewardship & Healthcare Epidemiology 2025;5(Suppl. S2):s53-s54

doi:10.1017/ash.2025.258

Presentation Type:

Poster Presentation

Subject Category: Antibiotic Stewardship

Parental Perceptions of Penicillin Allergy Labels: Findings from a Multisite Survey at Two Pediatric Primary Locations

Elizabeth Monsees¹, Mary Lou Manning², Rana El Feghaly³, Eileen Carter⁴, Cliff O'Callahan⁵, Sharon Hwang⁶, Tara Schmidt⁷ and Monika Pogorzelska-Maziarz⁷

¹Children's Mercy Hospital; ²Thomas Jefferson University; ³Children's Mercy Kansas City; ⁴University of Connecticut School of Nursing; ⁵Middlesex Health and University of Connecticut; ⁶Nemours Children's Hospital and ⁷Villanova University

Background: In children, penicillin allergy labels (PALs) are pervasive and persistent, despite linkage to suboptimal antibiotic selection with higher risk of side effects, increased length of hospitalization, and increased risk of harm throughout life. Up to 10% of children are labeled with PALs, yet

over 95% tolerate the medication when tested. Parents might not always know that PALs are over-reported or incorrectly diagnosed. We aimed to examine parent and guardian perceptions of PALs and their attitudes towards delabeling. Method: We invited all English and Spanish-speaking parents of children presenting to two pediatric primary care locations in the northeast U.S to participate in an online, investigator-developed survey. Survey recruitment was passive, with parents discovering the survey through English and Spanish posters in the waiting and examination rooms. The survey included an initial screening question to identify whether a penicillin allergy was present. If the parent answered "yes," they were instructed to proceed with survey completion. The survey consisted of 32 questions (7 reaction history, 9 perceptions, 5 provider interaction, 4 general knowledge, 6 demographics and one open-ended). We used descriptive statistics to analyze the data. Result: After screening, we received 54 completed responses. Most respondents had a college degree or higher (75%). When asked about the reaction, the majority occurred in those ≤ 2 years of life (55%); the predominant symptom reported was rash (92%). Twenty-nine percent of patients were evaluated in an urgent care or emergency room. Parents reported being very concerned by the reaction to penicillin (79%). When asked if their child would have a reaction if re-prescribed penicillin, none disagreed. Only 38% did not think allergies were permanent. Most families had not been offered penicillin testing (82%), although 67% expressed interest in the testing process, and 64% planned to inquire about testing following our survey. The majority (89%) would not agree to removing PALs without testing, citing fear that the child would have an allergic reaction if given penicillin (60%) and needing more information (25%) as the reasons for lack of agreement with PAL removal without testing. Conclusion: Among this highly educated population, parents expressed concerns at the initial reaction, perceived the reaction would reoccur with future penicillin use, and stated interest in testing, but were reluctant to delabel from history alone. Parents are untapped partners in delabeling; interventions are necessary to enhance parental understanding of the impact of PALs and the potential for delabeling with low-risk allergies.

Antimicrobial Stewardship & Healthcare Epidemiology 2025;5(Suppl. S2):s54

doi:10.1017/ash.2025.259

Presentation Type:

Poster Presentation

Subject Category: Antibiotic Stewardship

Implementing a Comprehensive Antimicrobial Stewardship Program in a Global Healthcare Organization: A Phased Approach to Sustainable OI

Yiwei Ng¹ and Keith Lim²
¹IHH Healthcare and ²IHH Healthcare

Background: Antimicrobial resistance (AMR) is a pressing global public health issue, and the limited development of new antibiotics necessitates robust Antimicrobial Stewardship Programs (ASP). As a global healthcare leader, IHH Healthcare successfully implemented ASP across 80 hospitals in seven countries (Singapore, Malaysia, India, Brunei, Hong Kong, China, and Turkey), aligned with the Centre for Disease Control and Prevention (CDC) Hospital ASP Core Elements, World Health Organization, and national guidelines. Method: A three-phase ASP strategy was developed following a crosswalk analysis of ASP practices across the seven countries (See Table 1): Phase 1 (2023): ASP committee establishment, terms of reference, and adoption of evidence-based guidelines. Phase 2 (2024): Guideline compliance audits, antibiogram development, resistance pattern monitoring, post-prescription audits, therapy optimization, and education. Phase 3 (2025): Antimicrobial preauthorization, infection-based interventions, and antimicrobial timeouts within 48-72 hours of initiation. Quarterly ASP meetings facilitated progress tracking and shared learning. Key metrics included guideline adherence, resistance trends, and antimicrobial utilization. Results: By 2023, all countries have established ASP committees and adopted guidelines for infections and surgical prophylaxis (see Table 2). In 2024, Phase 2 implementation (see Table 3) showed that: Guideline compliance: Regular audits monitored antimicrobial use for

Crosswalk Analysis of ASP practices across 7 countries in IHH Healthcare

	Hong Kong GHK	Brunei GJPMC	Singapore IHH SG	Malaysia IHH MY	China GCOD	India IN (Gleneagles)	Turkey (Acibadem)
Hospital Leadership Commitment	Υ	N	Υ	Υ	Y	Υ	Υ
Accountability	Υ	N	Υ	Υ	Υ	Υ	Υ
Tracking	Υ	Υ	Υ	Υ	Υ	Y	Υ
Reporting	Υ	N	Υ	Υ	Υ	Υ	Υ
Prospective audit and feedback	Υ	N	Υ	Υ	N	Υ	Υ
Preauthorization	N	N	N	N	Υ	Υ	Υ
Treatment Guidelines	Υ	N	Y	Υ	Y	Υ	Υ

Crosswalk Analysis of ASP practices across 7 countries in IHH Healthcare

	Hong Kong GHK	Brunei GJPMC	Singapore IHH SG	Malaysia IHH MY	China GCOD	India IN (Gleneagles)	
Interventions for CAP, UTI, skin infections	Υ	N	Y	N	Υ	Υ	Y
Interventions for Sepsis	Υ	N	N	N	Υ	Υ	Υ
Interventions for S. aureus infection	Υ	N	N	N	Υ	Υ	Υ
Stopping unnecessary antimicrobial in new CDI	Υ	N	N	N	Υ	Υ	Υ
Culture-proven invasive infections	Υ	N	N	N	Υ	Υ	Υ
Review of OPAT	Υ	N	N	N	N	Υ	N
Policy for antimicrobial prescribing documentation	Υ	N	Υ	Υ	Υ	Υ	Y

Crosswalk Analysis of ASP practices across 7 countries in IHH Healthcare

	Hong Kong GHK	Brunei GJPMC	Singapore IHH SG	Malaysia IHH MY	China GCOD	India IN (Gleneagles)	Turkey (Acibadem)
Antimicrobial timeout	Υ	N	Υ	N	N	Υ	N
Proper assessment of penicillin allergies	Υ	N	N	N	N	Υ	N
Pharmacy-based de- escalation strategies	Υ	N	N	N	N	Υ	N
Documentation of indications for antimicrobials	N	N	Υ	N	Υ	Υ	N
Automatic changes from IV to oral antimicrobial	N	N	N	N	N	N	N
Dose adjustments	Υ	N	Υ	Υ	Υ	Υ	Υ
Dose optimization	Υ	N	Υ	Υ	Υ	Υ	Υ

Crosswalk A	nalysis o	f ASP pr	actices a	cross 7 d	countries	in IHH H	ealthcare
		Brunei GJPMC	Singapore IHH SG		China GCOD		
Duplicative therapy alert	Hong Kong GHK	Brunei GJPMC	Singapore IHH SG	Malaysia IHH MY	China GCOD	India IN (Gleneagles)	Turkey (Acibadem)
Time-sensitive automatic stop orders	Υ	N	N	N	N	N	Υ
Detection/prevention of antimicrobial-related drug-drug interactions	Υ	N	Υ	Υ	Υ	Υ	Υ
Microbiology-led interventions e.g. susceptibility testing	Υ	N	Υ	N	Υ	Υ	Y
Education to prescribers and relevant staff	Υ	N	Υ	Υ	Υ	Υ	Υ
Education as part of prospective audit	Υ	N	N	N	Υ	Υ	N
Education to e.g. patients	Υ	N	Υ	Υ	Υ	Υ	Y
Overall	90%	3%	63%	47%	73%	93%	73%

2023 Targets (Phase 1 implementation)

2023 Targets (Phase 1 implementation)		2024 Target	Hong Kong GHK	Brunei GJPMC	Singapore IHH SG	Malaysia IHH MY	China GCOD	India IN (Gleneagles)	Turkey (Acibadem)	Hong Kong GHK
Phase 1A: Country ASP Committee Set Up	Each country shall set up an Antimicrobial Stewardship (AMS) committee in accordance with the terms of reference, with an appropriate healthcare professional as the leader to coordinate the AMS programme	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 1B: Guideline Adoption	Each facility shall have up-to-date guidelines for common infections and common procedures, based on international/national evidence-based guidelines and local/national susceptibility patterns, and reviewed regularly. Guidelines should target common infections (Top 3 – Treatment), and target common procedures (Top 3 – Surgical Antimicrobial Prophylaxis) specific to the country.	100%	100%	100%	100%	100%	100%	100%	100%	100%

2024 Targets (Phase 2 implementation)

2024 Targets (Phase 2 implem	entation)	2024 Target	Hong Kong GHK	Brunei GJPMC	Singapore IHH SG	Malaysia IHH MY	China GCOD	India IN (Gleneagles)	Turkey (Acibadem)	Hong Kong GHK
Phase 2A Guideline Monitoring: Compliance to guidelines shall be monitored through audits, and may include appropriateness of antimicrobial use, as well as quantity and types of antimicrobial use.	Le vidence of compliance to guidelines (Phase 1B) is monitored through regular audits, and may include appropriateness of antimicrobial use, as well as quantity, shortest effective duration, types of antimicrobial use.	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 2A Education: Education of patient and Healthcar	 Patient education materials: E.g. Given to patients/caregivers on antimicrobials; Information provided to patients/caregivers on discharge when discharged to complete an antibiotic regimen. StaffHOP: Regular continuing education 	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 2B Post prescription audits & feedback: There is regular evaluation and sharing on antimicrobial use in place.	1. Hospital/Country-level policy/protocol for post-Rx audits and feedback with the following:	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 2B Antibiogram: Aggregat antibiogram is developed and updated regularly	interventions to targeted stakeholders 1. Hospital/Country policy/protocol for developing, updating and using antibiogram 2. E vidence of monitoring resistance patterns	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 2B Monitoring of key resistance organisms; Hospital acquired infections; Monitoring of key resistance organisms and hospital acquired infections, relevant to the country/healthcare facility.	Hospital/Country policy/protocol for monitoring key resistance organisms. Hospital-acquired infections with the following: List of definition of KRO and HAI Process of monitoring of KRO and HAIs 2. Regular reporting of monitoring and interventions to targeted stakeholders	100%	100%	100%	100%	100%	100%	100%	100%	100%
	ii. Hospital/County/evel policy/probool that requires prescribes to document in the medical record or during order entry a dose and indication for all antibiotics orders. 2. Protocol for IV to PO antibiotics to improve outcomes and/or reduce cost. 3. Evidence that the impact of actions is being monitored through Days of Therapy (DOTs) or Defined Daily Dose (DDDs). 4. Dose optimization (pharmacokinetospharmacokynamics) to optimize the treatment of organisms with reduced susceptibility (e.g. for aminoglycoside). 5. Regular reporting of therapy optimization interventions to targeted stakeholders.	100%	100%	100%	100%	100%	100%	100%	100%	100%

2025 Targets (Phase 3 implementation)

Initiative		Target
	✓ Ensure that a system or process is in place for preauthorization of certain antimicrobials, with criteria clearly defined and documented. 1. Implement a designated individual or team responsible for reviewing and approving preauthorization requests. 2. Establish clear guidelines or criteria for when preauthorization is required (e.g. specific antimicrobials, indications, duration). 3. Document the criteria for preauthorization in a written policy or guideline accessible to healthcare providers, updated regularly as needed.	
reauthorization: Measures for the reauthorization of certain antimicrobials all be in place.	✓ Confirm that healthcare providers are aware of and adhere to the preauthorization process. 1. Provide education and training sessions for healthcare providers on the preauthorization process, including how to submit requests and criteria for approval. 2. Implement reminders or prompts within electronic medical record systems to encourage compliance with preauthorization requirements.	100%
	✓ Regularly monitor preauthorization requests and approvals to ensure compliance and effectiveness. 1. Establish a system for tracking preauthorization requests, approvals, denials, and reasons for denial. 2. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria and identify areas for improvement. 3. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria and identify areas for improvement. 4. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria and identify areas for improvement. 4. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria and identify areas for improvement. 4. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria and identify areas for improvement. 4. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria and identify areas for improvement. 4. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria and identify areas for improvement. 4. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria and identify areas for improvement. 4. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria. 4. Conduct regular audits or reviews of preauthorization activities to assess compliance with established criteria and identify a review of the preauthorization activities are represented and the preauthorization activities are represented and the review of the	
nfection based intervention: nterventions tailor therapy to culture esults for infections such as Community acquired Pneumonia, Urinary Tract	Establish protocols or guidelines for tailoring antimicrobial therapy based on culture results for specific infections (e.g., Community Acquired Pneumonia, Urinary Tract Infection, Skin and Soft Tissue Infection, Sepsis, C. difficile Infection, Staphylococcus Aureus Infection). Develop evidence-based treatment algorithms or protocols for common infections, considering local antimicrobial resistance patterns and guidelines (refer to Table 1 of CDC Core Elements - Key opportunities to improve antibiotic use). Include recommendations for initial empiric therapy and subsequent modifications based on culture and susceptibility results.	100%
Infection, Skin and Soft Tissue Infection, Sepsis, C. difficile Infection, Staphylococcus Aureus Infection, should be put in place.	✓ Ensure that healthcare providers are educated on the protocols and guidelines for infection-based interventions. 1. Provide training sessions or educational materials on the use of infection-based intervention protocols to relevant healthcare providers, including physicians, nurses, and pharmacists.	
	✓ Monitor adherence to infection-based intervention protocols and assess their impact on patient outcomes. 1. Track adherence to treatment protocols through chart reviews, electronic medical record audits, or quality improvement initiatives. 1. Track adherence to treatment protocols through chart reviews, electronic medical record audits, or quality improvement initiatives. 1. Track adherence to infection-based intervention protocols and assess their impact on patient outcomes. 2. Track adherence to treatment protocols through chart reviews, electronic medical record audits, or quality improvement initiatives. 3. Track adherence to treatment protocols through chart reviews, electronic medical record audits, or quality improvement initiatives. 4. Track adherence to treatment protocols through chart reviews, electronic medical record audits, or quality improvement initiatives. 4. Track adherence to treatment protocols through chart reviews, electronic medical record audits, or quality improvement initiatives. 4. Track adherence to treatment protocols through chart reviews, electronic medical record audits, or quality improvement initiatives. 4. Track adherence to treatment protocols through chart reviews, electronic medical record audits and the protocols are record and the protocols and the protocols and the protocols are record and the protocols and the protocols are record and the protocols are record and the protocols and the protocols are record and the protocols and the protocols are record and the protocols a	
Antimicrobial Timeouts: Review of antimicrobials should be prompted within 48-72 hours of therapy to review the appropriateness of antimicrobial	# Establish a protocol for conducting antimicrobial timeouts within 48-72 hours of therapy initiation. 1. Develop a standardised process for reviewing antimicrobial therapy within the specified timeframe, including who conducts the review, what information is evaluated, and how decisions are documented. 2. Define criteria for determining whether antimicrobial therapy should be continued, modified, or discontinued based on clinical response and microbiological data.	100%
election.	✓ Regularly review antimicrobial timeouts to evaluate the appropriateness of antimicrobial selection and optimize therapy as needed. 1. Establish a schedule for periodic review and analysis of antimicrobial timeout data, such as quarterly meetings to targeted stakeholders	

appropriateness, quantity, duration, and type, achieving full compliance across facilities. Education: Comprehensive initiatives included patient education on completing antibiotic regimens and continuous education for healthcare professionals. Post-prescription audits: Standardized protocols ensured systematic audits, with findings and targeted interventions shared with stakeholders. Antibiogram and resistance monitoring: Standardized antibiogram protocols monitored resistance patterns,

guiding treatment decisions and policy updates. A framework for tracking key resistance organisms and hospital-acquired infections was also established. Therapy optimization: Policies required prescribers to document antibiotic doses and indications, while IV-to-oral conversion protocols reduced costs and improved outcomes. Metrics like Days of Therapy and Defined Daily Doses measured impact, with dose optimization improving treatment for resistant organisms. Conclusion: IHH

Healthcare is the first large international group to adopt and implement the U.S. CDC ASP elements across its network of foreign hospitals. By utilizing a phased approach, we have ensured consistent and effective implementation across diverse healthcare settings. To date, all 80 hospitals have successfully completed Phase 2 of the program and are on track to achieve Phase 3 milestones by 2025 (see Table 4). Early outcomes from this initiative underscore the significant value of standardized ASPs in enhancing patient safety, reducing AMR and fostering sustainable quality improvement.

Antimicrobial Stewardship & Healthcare Epidemiology 2025;5(Suppl. S2):s54-s58 doi:10.1017/ash.2025.260

Presentation Type:

Poster Presentation

Subject Category: Antibiotic Stewardship

Mapping Microbial Resistance: Unveiling Regional Patterns through Atlanta's Antibiogram Development

Melat Endashaw¹, Trinh Vu², Sujit Suchindran³ and Edo McGee⁴ ¹Emory University Hospital Midtown; ²Emory University Hospital Midtown; ³Emory University School of Medicine and ⁴Philadelphia College of Osteopathic Medicine, School of Pharmacy

Background: Multidrug resistance remains one of the top global health threats and has been rising over recent decades, jeopardizing patient outcomes and increasing healthcare costs. This underscores an urgent need to design tools to optimize antibiotic prescribing to target these pathogens. Antibiograms are an essential antimicrobial stewardship tool used to provide guidance for empiric antimicrobial selection and information on local resistance. However, facility-level antibiograms are limited to individual institutions and do not reflect regional variations in resistance. Previous studies have demonstrated the feasibility and importance of generating regional antibiograms to better inform regional infection prevention and spearhead antimicrobial stewardship initiatives. Regional antibiograms also offer a valuable resource for community hospitals and health

Table 1: Characteristics of Contributing Flagship Hospital of each Healthcare System (Hospital A, Health system E, Health system F

Characteristics (n=3)	n (%)
Hospital bed size	
> 500	3 (100.0)
Patient population	0 (400.0)
Adults Pediatrics	3 (100.0)
Obstetrics	2 (66.7)
Special patient populations	2 (00.7)
Bone marrow transplant	1 (33.3)
Burn	1 (33.3)
Cystic fibrosis	2 (66.7)
Neonatal ICU	2 (66.7)
Oncology/hematology	3 (100.0)
Solid organ transplant	2 (66.7)
Trauma	1 (33.3)
Specialized ID services available	3 (100.0)
Primary professional(s) responsible for generating	
antibiograms	
Microbiologist	3 (100.0)
Epidemiologist	1 (33.3)
ID physiciann	1 (33.3)
Non-ID physician	1 (33.3)
ID pharmacist	1 (33.3)
Frequency of generating new antibiograms	
Every year	3 (100.0)
Months of culture data used to generate	
antibiograms 12 months*	3 (100.0)
Specimen sources used to compile data	3 (100.0)
for antibiogram	
Blood	3 (100.0)
Cerebrospinal fluid	3 (100.0)
Pleural fluid/bronchoalveolar lavage	3 (100.0)
Sputum	3 (100.0)
Urine	3 (100.0)
Wound	2 (66.7)
Stratify antibiograms by sample site (i.e.,	1 (33.3)
separate urine antibiogram)	1 (33.3)
Stratify antibiograms by hospital location	2 (66.7)
(ICU, general wards, ED, etc.)	
Inclusion of ED isolates	1 (33.3)
Inclusion of first only isolates	3 (100.0)
Susceptibility platform used	
MicroScan	1 (33.3)
Vitek	2 (66.7)
Fungal antibiogram available	1 (33.3)
Using breakpoints established by Clinical and Laboratory Standards Institute	3 (100.0)
Which edition of the CLSI M100 are you	30th Edition 2020 (66.7)
using for breakpoints?	25th Edition 2015 (33.3)
•	Yes, on a case-by-case basis (33.3)
Do you routinely adopt new/revised CLSI breakpoints?	Yes, update once per year (33.3)
preakpoints r	Yes, update with every revision (33.3)

¹ hospital pools 24 months of data to obtain > 30 isolates

Table 2: Non-Susceptible Rates for Targeted Resistant Pathogens

Pathogen Combination	Antibiotic	Susceptibility Rate	Non-Susceptibility Rates
Staphylococcus aureus	Oxacillin	54.9%	MRSA: 45.1%
Enterococcus faecalis	V	95.8%	VRE: 15.8%
Enterococcus faecium	Vancomycin	31.0%	(557/3525)
Acinetobacter		53.3%	
baumannii/complex Citrobacter freundii		71.7%	
Citrobacter koseri		99.6%	
Enterobacter cloacae		74.8%	
Escherichia coli		90.0%	
Klebsiella aerogenes		78.0%	Ceftriaxone-
Klebsiella oxytoca	Ceftriaxone	88.8%	Resistant: 11.3%
Klebsiella pneumoniae		89.1%	(2957/26163)
Morganella morganii		84.0%	
Proteus mirabilis		97.3%	
Proteus vulgaris		50.0%	
Providencia group		90.8%	
Serratia marcescens		85.8%	
Acinetobacter baumannii/complex	Meropenem	86.8%	CR-AB: 13.2% (52/395)
Citrobacter freundii		94.5%	
Citrobacter koseri		100.0%	
Enterobacter cloacae		97.3%	
Escherichia coli		99.5%	
Klebsiella aerogenes		92.7%	
Klebsiella oxytoca	M	99.8%	CR-E: 1.1%
Klebsiella pneumoniae	Meropenem	98.9%	(275/26004)
Morganella morganii		96.7%	
Proteus mirabilis		100.0%	
Proteus vulgaris		50.0%	
Providencia group		97.1%	
Serratia marcescens		97.2%	
Pseudomonas aeruginosa	Meropenem	86.7%	CR-PA: 13.3%

Table 3: Carbapenem-Resistance Rates in Hospitals with Restrictive vs Non-Restrictive Antimicrobial

Carbapenem- Resistant Species	Restrictive Hospitals (n=8)	Non-Restrictive Hospitals (n=2)	p-value
CR-AB	13.3% 52/391	0% 0/4	-
CR-E	1.1% 246/22912	1.0% 30/3092	0.602
CR-PA	11.6% 259/2242	19.6% 118/602	<0.001

Antimicrobial								
Gram Positive Organism	Ampicillin	Oxacillin	Vancomycin	Linezolid	Daptomycin	Clindamycin	SMZ-TMP	
Staphylococcus aureus		54.9% 3638/6625	99.9% 6620/6625	99.9% 6094/6098	99.6% 6072/6098	70.6% 4305/6098	94.2% 6242/6625	
Enterococcus faecalis	99.2% 2872/2896		95.8% 2773/2896	98.5% 2852/2896	99.6% 2883/2896	-		
Enterococcus faecium	14.6% 92/629		31.0% 195/629	97.3% 612/629	96.7% 466/482			

Figure 1: Gram-Positive Isolate Analysis

Gram Negative Organism	Antimicrobial															
	Ampieilin	AmpiSulb	Piptazo	Cefazolin	Ceffriazone	Ceftazidime	Cefepime	Ertapenem	Meropenem	Gentamicin	Tobramycin	Amikacin	Ciprofloxacin	Levofloxacin	SMZ/TMP	Tetracycline
Acinetobacter		81.6%	71.3%		53.3%	71.0%	74.6%		86.8%	81.3%	87.1%	100.0%	75.8%	74.6%	75.2%	82.25
baumannii/complex		191/234	181/254 82.7%	0%	90/169	137/193	129/173	95.8%	343/395	247/304	344/395	50/50 100.0%	257/339	144/193	297/396 82.7%	139/1
Citrobacter freundii	-	-	330/399	076	286/399	289/399	377/399	230(240	377/399	360/399	371/399	399/399	216/240	295/323	330/399	159/1
Citrobacter koseri		-	99.6% 243/244	95.0% 123/130	99.6% 243/244	100.0%	100.0%	100.0%	100.0%	100.0% 243/243	99.5%	100.0%	100.0% 244/244	100.0%	99.6% 243/244	98.2
Enterobacter cloacae/complex			78.1% 825/ 1056	0% 0/328	74.8% 790/ 1056	75.4% 796/ 1056	92.0% 971/ 1056	98.0% 726/756	97.3% 1027/ 1056	95.5% 1009/ 1056	94.7% 1000/ 1056	100.0% 1056/ 1056	92.1% 631/685	91.8% 715/779	99.3% 954/ 1066	85.8° 411.4
Escherichia coli	47.9% 5749/ 12000	55.3% 7844/ 14191	97.1% 14646/ 15078	82.7% 12470/ 15078	90.0% 13564/ 15078	91.0% 13720/ 15078	92.2% 13898/ 15078	99.4% 12843/ 12920	99.5% 14998/ 15078	90.6% 13662/ 15078	91.0% 13720/ 15078	99.4% 14996/ 15083	77.4% 9283/ 12000	74.5% 7993/ 10725	72.5% 10927 /15078	73.8° 6320 856
Kiebsiella aeropenes		-	80.2% 564/703	-	78.0% 548/703	78.9% 555/703	94.2% 662/703	91.5% 270/295	95.4% 671/703	94.4% 627/664	93.7% 659/703	98.3% 690/703	93.3% 443/475	97.8%	95.0% 668/703	92.57
Klebsiella oxytoca		56.7% 301/531	89.8% 513/571	38.8% 198/510	88.8% 501/571	92.1% 525/570	96.1% 549/571	100.0% 344/344	99.8% 570/571	92.6% 529/571	91.2%	100.0% 571/571	93.0% 281/302	95.7% 464485	90.4% 516/571	91.1
Klebsiella pneumonize	-	77.1% 3460/ 4488	92.9% 4483/ 4825	84.6% 4083/ 4825	89.1% 4300/ 4825	90.0% 4322/ 4825	91.7% 4423/ 4825	99.1% 3780/ 3815	98.9% 4774/ 4825	93.0% 4489/ 4825	93.0% 4485/ 4825	99.5% 4801/ 4825	92.0% 3217/ 3498	92.2% 3306/ 3582	85.2% 4113/ 4825	80.1° 206° 257
Morganella morganii			93.1% 256/275		84.0% 231/275	80.0% 220/275	92.7% 255/275	96.4% 240/249	96.7% 266/275	82.5% 227/275	90.5%	98.9% 272/275	74.3% 185/249	80.7% 121/150	66.9% 184/275	
Proteus mirabilis	83.9% 1309/ 1561	92.6% 1689/ 1823	98.7% 1929/ 1955	91.2% 1785/ 1958	97.3% 1892/ 1945	97.2% 1901/ 1955	97.9% 1913/ 1965	100.0% 1564/ 1564	100.0% 1952/ 1955	95.0% 1857/ 1955	95.3% 1863/ 1955	99.6% 1947/ 1955	80.5% 1150/ 1429	81.4% 1004/ 1234	82.0% 1579/ 1925	
Proteus vulgaris		78.0% 39/50	100.0% 50/50		50.0% 25/50	50.0% 25/50	100.0% 50/50	50.0% 25/50	50.0% 25/50	50.0% 25/50	50.0% 25/50	50.0% 25/50	98.0% 49/50	50.0% 25/50	98.0% 49/50	-
Providencia group		33.3% 23/69	93.1% 162/174		90.8% 158/174	81.0% 141/174	96.6% 168/174	97.1% 169/174	97.1% 169/174	53.4% 93/174	52.9% 92/174	100.0% 174/174	62,1% 108/174	78.3% 54/69	74.7% 130/174	
Pseudomonas aeruginosa			81.4% 2316/ 2844	-	-	81.7% 2323/ 2844	80.4% 2279/ 2834	-	86.7% 2467/ 2844	87.7% 2486/ 2834	95.7% 2712/2 834	95.3% 2701/ 2834	80.4% 1388/ 1726	74.5% 1555/ 2087	-	
Serratia marcescens		-	61.3% 146/238	0% 0/211	85.8% 578/674	86.6% 584/674	96.7% 652/674	96.3% 445/462	97.2% 655/674	97.2% 655/674	86.0% 580/674	99.9% 673/674	92.3% 385/417	95.9% 444/463	98.1% 661/674	22.2 10/4
Stenotrophomonas maltophilia		-	-			58.5% 152/260		-	-		-		-	86.5% 225/260	92.8%	-

Figure 2: Gram-Negative Isolate Analysis

centers with lower pathogen prevalence and limited access to infectious diseases-trained personnel. This study aims to curate a regional antibiogram to analyze and understand antimicrobial susceptibility and resistance patterns of targeted pathogens across Metro Atlanta. Methods: This descriptive study aimed to evaluate antibiograms from multiple hospitals across the Atlanta metropolitan area. In September 2019, flagship hospitals of five different health-systems within metro Atlanta were surveyed using a