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SUMMARY

Disease prioritization is motivated by the need to ensure that limited resources are targeted at the
most important problems to achieve the greatest benefit in improving and maintaining human
and animal health. Studies have prioritized a range of disease types, for example, zoonotic and
foodborne diseases, using a range of criteria that describe potential disease impacts. This review
describes the progression of disease prioritization methodology from ad hoc techniques to
decision science methods (including multi-criteria decision analysis, conjoint analysis and
probabilistic inversion), and describes how these methods aid defensible resource allocation. We
discuss decision science in the context of disease prioritization to then review the development
of disease prioritization studies. Structuring the prioritization and assessing decision-makers’
preferences through value trade-offs between criteria within the decision context are identified
as key factors that ensure transparency and reproducibility. Future directions for disease
prioritization include the development of validation techniques, guidelines for model selection
and neuroeconomics to gain a deeper understanding of decision-making.
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INTRODUCTION

Prioritization in any context is used to establish the
most attractive alternative, or group of alternatives,
as a decision aid for resource allocation. In human
and animal health, resources need to be allocated to
preventive activities such as biosecurity, vaccination,
public education and routine health screening, early
warning of disease incursions through surveillance,
and instigation of control measures in the case of a
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disease incursion, among other needs. The choices
for resource allocation are effectively limitless; better
understanding of epidemiology and pathophysiology
have both increased the potential choices for disease
prevention and control, and expanding human popu-
lations, increased trade and travel, and the emergence
and re-emergence of pathogens are further increasing
options for resource allocation. However, resources
are constrained by finite capital, as well as by the
availability of people and the time required to deliver
effective prevention and control methods or to under-
take research. Therefore, disease prioritization in an-
imal and human health is motivated by the need to
ensure that the allocation of limited resources is
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targeted to achieve the greatest benefit in improving
and maintaining human and animal health.

Defining disease importance is difficult. Diseases
can have social, economic and environmental impacts,
and most diseases cause a variety of impacts that span
these broad categories. In addition, impacts vary in
scale and are often intangible, and the perception of
importance of each impact varies between decision-
makers [1]. Economic impacts include the cost of
prevention and control and lost productivity due to
disease and its perceived risk (e.g. SARS was esti-
mated to cost between US$ 30-100 billion across
many sectors, but particularly travel and tourism
[2]). Social costs include impacts on individuals and
communities — both through the psychological and
social impacts of disease burden and loss —and also
through altered lifescapes as was seen in the UK
foot-and-mouth-disease (FMD) outbreak in 2001 [3].
Environmental impacts include altered ecological
balance due to changes in species distribution and
abundance [4]. These areas of impact also overlap —
for example, economic impacts can lead to social
impacts — which further complicate comparison of dis-
ease impacts. To determine the most important dis-
eases for resource allocation, prioritization should
not only define and compare the impact of diseases,
but also the importance of those impacts to relevant
stakeholders, of which there can be multiple groups.
In addition, the prioritization process must be trans-
parent and reproducible — and therefore auditable —
and provide valid and robust results to direct decision-
makers in the development of defensible animal and
human health policy [5]. Disease prioritization is
therefore a complex decision process; the overall ob-
jective is important — we want maximum benefit to an-
imal and human health — and there are multiple, and
often conflicting, criteria that not only have different
scales or are intangible, but also differ in value
depending on the perceptions of the decision-maker.

Methods from the discipline of decision science
have been used extensively to aid complex decision-
making in fields such as information technology and
engineering, but have had relatively limited appli-
cation in health sciences [6]. However, multi-criteria
decision analysis (MCDA), a family of methods
from decision science, has been recently used for dis-
ease prioritization [7-9]. MCDA methods are valu-
able tools for decision-making in animal and human
health, because they account for varying scales and
perceptions of impacts using a structured, transparent
approach, and aim to give consistent, reproducible
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results. This review describes the development of dis-
ease prioritization as a methodology by illustrating
its progression towards methods from the discipline
of decision science, particularly MCDA. As a foun-
dation, the requirements of disease prioritization in
the context of decision theory are discussed. This is
followed by an overview of decision analysis and
MCDA relevant to disease prioritization. The devel-
opment of disease prioritization applications from ad
hoc methods to a standardized format is then
reviewed. Finally, recent developments and how they
aid defensible resource allocation, as well as future
directions in disease prioritization are examined.

DECISION THEORY AND THE
REQUIREMENTS OF DISEASE
PRIORITIZATION

Decision theory forms the basis of decision science
and can be divided into three areas: normative, de-
scriptive, and prescriptive [10]. Each of these divisions
has important implications for disease prioritization.
First, the results of prioritization studies must be de-
fensible, which requires that the method is transparent
and logical. This relates to normative decision theory,
the basis of which is rational choice. For a decision to
be considered rational, an individual should prioritize
the disease that maximizes their ‘expected utility’ [11].
‘Utility’ is a measure of disease importance compris-
ing both the scale and value of impacts to that individ-
ual (we note here that for disease we can also refer to
this as ‘dis-utility’), and ‘expected’ refers to the indivi-
dual’s estimate of the probability of occurrence of the
disease. Normative decisions comply with a set of
logical rules, or axioms (Table 1) and can be described
by a utility function [12, 13]. Equation (1) shows an
example of a utility function in which an individual’s
expected utility (U) for disease (i) is described as a
function of the sum of all the values of the possible
overall impacts of the disease (possible disease states,
u;) and the probability of occurrence of each of those
possible disease states (p;). The axioms that describe
rational choice — in particular, completeness and tran-
sitivity — have traditionally been used as the ‘gold
standard’ to define rational choice, against which deci-
sions are judged as logical; normative decision theory
is the dominant underlying theory in decision science,
particularly in economics [14]. In the context of dis-
ease prioritization actions need to be defensible,
particularly in the face of disease events, when ques-
tions are asked such as, ‘given the impact of this
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Table 1. Axioms of rational choice associated with normative decision theory, and their relevance to disease

prioritization

Axiom of

rational choice Description

Relevance to disease prioritization

Completeness

Transitivity

preferred to Z

Monotonicity If x=(xp, x2, ., X0), =01, V25 -

Slx, ), then U(xy, y2) > U(xy, y1)
Independence
preferable to pY + (1 — p)Z

Continuity
exists a unique p € (0, 1) such that the

A preference ordering is complete if, and only if, for
any two outcomes X and Y, an individual prefers X’
to ¥, Y to X or is indifferent between the two

For any three outcomes X, Y, Z, if X is preferred to
Y, and Y is preferred to Z, then X must be

., Yo, and U=

If p €(0,1) and X, Y, Z are alternatives, X is
preferable to Y if, and only if, pX+ (1 —p)Z is

If X is preferred to Y and Y is preferred to Z, there

This axiom is important for decision structuring.
The decision analyst must know enough about
each disease to formulate a complete preference
ordering

This axiom is important in assessing whether results
are logical. The decision-maker cannot have
circular (intransitive) preferences. For example, if
disease A is low priority compared to disease B and
disease C is low priority compared to B, disease 4
cannot be lower priority than disease C

The value of a criterion must increase as the scale of
measurement of the criterion increases, because the
value of disease impact cannot be reduced as the
amount of impact increases

If a new disease is introduced into the prioritization,
the order of previously prioritized diseases should
not alter

This axiom has limited use in disease prioritization
using multi-attribute value theory-based methods

decision-maker is indifferent between the lottery

pX +(1-p)Z and Y with certainty

event, were the actions justified and should resources
have been directed differently?” Using a decision-aid
based on normative theory — therefore complying
with the axioms of rational choice — gives rational
results, inherently confirming that decisions were logi-
cal and that the process was transparent and therefore,
auditable [15].

U= pjuj. o))
j=1

The second requirement of disease prioritization is
that the results should be valid, meaning that they
should accurately reflect the priorities of the decision-
makers. Normative decision theory would be sufficient
to validly describe priorities if decision-makers gener-
ally made normatively rational decisions by consider-
ing the overall utility of each disease. However, it has
been demonstrated that decision-makers systemati-
cally violate the axioms of rational choice, and conse-
quently their decisions cannot be validly described
with a utility function [16-20]. Normative decision
models are static and isolated in their decision context;
their inability to account for temporal and complex
social constraints can result in apparently irrational
choices. Moreover, differences in the way the brain
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reacts to various types of information (e.g. risk and
ambiguity) as well as differing decision-making heuris-
tics can also affect choice [21, 22]. For example, Hsu
et al. [23] demonstrated that aversion to choice
under ambiguity (epistemic uncertainty) generally
overrides choice with stated probabilities and suggest
that there is a neural basis for choice. Einhorn [24]
proposed that in some contexts, people use simplifying
heuristics to make decisions instead of considering
the overall utility of each alternative. Making sense
of the apparently illogical choices that humans make
is the field of descriptive (or behavioural) decision the-
ory. An example of a descriptive theory of decision-
making is prospect theory, developed by Tversky
and Kahneman [16, 25] to account for the psychologi-
cal effects of framing, loss aversion and anchoring on
rational decision-making. Complying with descriptive
decision theory is not just important to produce valid
results in prioritization, it is also important for design-
ing decision support frameworks to ensure that
decision-makers’ preferences are represented as accu-
rately as possible. However, in all decision processes
there is a conflict between descriptive and normative
decision theory in producing valid results that are
also rational, and therefore, defensible.
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Prescriptive decision theory attempts to connect the
mathematical ideals of normative theory with the psy-
chology of descriptive theory. Throughout the last
century many prescriptive theories have been sug-
gested, ranging from ones that follow mainly norma-
tive rules —such as von Neumann & Morgenstern’s
[13] game theory that accounted for strategic interac-
tion (including social constraints) in decision making —
to others that relax or vary the definitions of the
axioms of rational choice to account for choice con-
sistent with descriptive theory. Examples include
Simon’s [26] concept of bounded rationality to ac-
count for constraints in decision-making and models
developed by Einhorn [24] to describe choice using
simplified decision-making heuristics. Recently, it
has been suggested that full understanding of decision
processes will only be reached through understanding
the biological basis of decision-making, and that
consequently, the fields of economics, psychology
and neuroscience are converging to achieve this goal
in a new branch of decision theory called neuroeco-
nomics [27, 28]. Until such a state of understanding
is reached, there needs to be a balance in achieving
validity and rational defensibility through current
methods; decision-makers should be aware of this
limitation in all decision contexts, not just disease
prioritization. The next section gives an overview of
available techniques for decision analysis, which aim
to convert decision theory into practical decision-
making.

DECISION ANALYSIS

Decision analysis is applied prescriptive decision the-
ory [29]. Formal methods for complex decision analy-
sis include decision-trees, monetary-based methods
(e.g. cost-benefit analysis), and MCDA [30]. MCDA
comprises a large group of methods that provide a
framework to compare alternatives with diverse and
often intangible impacts (broader than monetary-
based techniques) by incorporating value judgements
on multiple, conflicting criteria with incommensurate
scales [31]. Consequently, MCDA has become popu-
lar for disease prioritization [7-9] and we focus on
MCDA in this section.

MCDA methods can be divided into multi-attribute
decision-making (MADM) and multi-objective
decision-making (MODM) [31]. MODM methods
are designed to find optimal criterion values for
decision problems in which a solution is required
from a range of continuous objectives [32]. They are
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commonly used in fields such as engineering and en-
vironmental science, in which resource allocation
might be based on finding the optimal combination
of a range of resources that have constraints (e.g.
cost and site size for hazardous waste disposal [33,
34]). By contrast, MADM methods are used to rank
or group alternatives from a finite set of discrete de-
cision alternatives based on comparisons between cri-
teria; therefore, MADM methods are suited to disease
prioritization. Diseases are the decision alternatives,
and disease attributes that describe disecase impacts —
such as incidence or severity of clinical signs — are the
criteria on which prioritization is based.

Normative rationality dominates prescriptive de-
cision theory, including MADM. This logical ap-
proach is achieved by systematic structuring of the
decision problem, and is described in detail by von
Winterfeld [35] and Keeney [36]. Figure 1 shows a rep-
resentation of the steps of decision analysis for disease
prioritization, modified from Keeney [36]. In the case
of MADM, the underlying structure of the decision
process is the performance matrix (Fig. 2) created in
steps 1 and 2 of decision structuring (Fig. 1) [30, 31].
Diseases for prioritization are identified, criteria by
which the disease impacts can be described are selec-
ted, and criterion measurements are collected for
each disease. For example, the criterion ‘case-fatality
rate in humans’ might be estimated to be 30% for
Japanese encephalitis [8]. Criterion weights are de-
scribed separately by evaluating the trade-offs that
decision-makers’ are prepared to make between cri-
teria [37]. For example, the weight of the criterion
‘case-fatality rate in humans’ could be 0.75, following
evaluation of ‘case-fatality rate in humans’ in the con-
text of all other criteria relevant to the prioritization.
Criterion weights are not disease-specific. The weights
allow comparison of criteria with incommensurable
scales, and have previously been described as ‘scaling
constants’ [38]. Objective measurements for the cri-
teria for each disease are then aggregated with cri-
terion weights according to the MADM method.
Separation of objective measurements of criteria
from their subjective weights gives transparency and
reproducibility to the process, and also can remove
cognitive bias that decision-makers might have when
directly evaluating the importance of diseases.

Although all MADM methods follow this struc-
tured approach, there are different techniques to
evaluate decision-makers’ preferences and aggregate
information, and choosing the most appropriate
MADM method is not straightforward —in fact
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Step 1: Step 2: Step 3: Step 4:
Assess possible Determine Evaluate and
Structure the . B
impact of preferences (values) compare disease
decision problem diseases of decision—-makers priorities
Generate list Determlhe magnltude
of criteria and
of diseases likelihood of
for prioritization disease impacts
P (Criterion measurements)
A
A Y
Y

Specify criteria

Structure and Aggregate data (steps 2

quantify values + 3), evaluate results,

Y

that describe

disease impact

of decision—-makers conduct sensitivity

(Criterion weights) analysis

Fig. 1. Schematic representation of the steps of decision analysis for disease prioritization. (Modified from Keeney [36].)

Criteria
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w1 W3 W3 Wy
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Dm dmi1 dmz dm3 dmn

D=1....m: c=1,..,.n w=1,...,

ming

Fig. 2. Performance matrix for disease prioritization. D, Disease identity, C, criterion; w, weight for criterion; a,
measurement for each criterion for each disease. (Modified from Brookes et al. [8].)

making a decision about which decision-making
model to use is known as the decision-makers’ para-
dox [39, 40]. Axioms of rational choice are relevant
throughout the decision process shown in Figure 1;
steps 1 and 2 require that at least two decision alterna-
tives can be defined for which decision-makers can
state preferences (axiom of completeness), and steps
3 and 4 maintain that decision-makers preferences
should be transitive, monotonic, and independent of
irrelevant alternatives. Compliance with normative
axioms at steps 3 and 4 is relaxed for methods that fol-
low descriptive theory. The aim in selecting a MADM
method should be to match the expected heuristics
of the decision-makers, and the most appropriate
MCDA method will give the best compromise be-
tween normatively rational and descriptively valid
results. However, in practice the selection of a
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MADM method is often based on the decision ana-
lyst’s familiarity with techniques, the time available,
and the perceived complexity of the decision problem
[40]. MADM methods include elementary methods
(pros-and-cons analysis, maximax and maximin
methods, conjunctive and disjunctive methods, lexico-
graphic methods), outranking methods and multi-
attribute utility theory (MAUT) or multi-attribute
value theory (MAVT) based methods.

Elementary methods reflect simple heuristics using
a descriptive approach to decision-making, such as
those suggested by Dieckmann et al., Payne et al.,
and Einhorn [21, 22, 24]. They are non-compensatory
in that the primary criterion of concern cannot be out-
weighed by combinations of other criteria, and the
criteria are not weighted. For example, when using
lexicographic methods, one criterion is chosen as
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more important than all the others and initial ordering
is based on this primary criterion. Subsequent order-
ing of choices depends on a secondary criterion, and
so on, until all the alternatives have been separated
and ordered. Outranking methods are also predomi-
nantly descriptive, and are considered to be a more soph-
isticated extension of elementary methods because they
evaluate preferences of decision-makers to assign
weights to criteria, reflecting more complex heuristics;
there are many methods within this group — also termed
the ‘European’ or ‘French school’ of decision analysis —
such as ELECTRE (Eliminating Choice and Translating
Reality [41]) and PROMETHEE (Preference Ranking
Organization Method for Enrichment Evaluations [42]).
The MAUT and MAVT group of MADM methods
follow a normative approach. MAUT methods for use
in decision analysis were developed by Keeney &
Raiffa [43] and aggregate information according to a
utility function [described in equation (1)]. MAVT
methods are a simplification of MAUT methods in
that they do not explicitly incorporate decision-
makers’ estimates of the probability of occurrence
of all possible outcomes of an alternative. MAVT
methods have been most commonly used for disease
prioritization; subjective weights and objective mea-
surements for the criteria are aggregated for each dis-
ease according to a value function. An example of a
weighted-sum value function is given [equation (2)]
in which the value (D) of a disease (i) is a function
of the sum of the weights (w) for the criteria combined
with criterion measurements (c;) for each disease.
Examples of the use of MAVT methods include prior-
itization of emerging zoonoses in The Netherlands [9],
zoonoses and diseases of food-producing animals [44],
ranking emerging threats in the UK [7] and prioritiza-
tion of exotic diseases of pigs in Australia [8]. These
methods are considered to be compensatory; diseases
are ordered or grouped according to their overall util-
ity, and disease x can be prioritized over disease y
based on the aggregated utility or value of different
combinations of criteria.

n
Di = Z W;Cij. (2)
j=1

Elementary, outranking and MAUT or MAVT
methods are not rigid categories. The analytical hier-
archy process (AHP) is sometimes categorized as a
MAUT method, but because it is based on measure-
ment theory it falls outside the three main groups
[45]. The AHP is implemented in terms of evaluations
of weights through direct pairwise comparison of
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criteria on a Likert-type scale of relative importance.
This method has recently been used in a Japanese
study to prioritize zoonoses [46]. Other methods,
such as EVAMIX (EVAlutions with MIXed data),
have been developed to include both outranking and
MAUT/MAVT methods; EVAMIX was used by
Mourits et al. [47] to evaluate control strategies for
classical swine fever in the European Union.

Currently, there are no guidelines for selection of
MADM methods for decision analysis in any field;
there is a need to develop procedures to select methods
appropriate to the decision context that most accurately
reflect decision-makers’ priorities. Until procedures
are developed, one of the most important requirements
for decision analysis is development of methods to
assess the validity of results, particularly when using
normative-based methods such as MAUT or MAVT.
This step is not included in Keeney’s original paper on
decision structuring [36], but is mentioned in his later
work on evaluating decision-makers’ trade-offs [37].
Normative axioms dominate prescriptive theories, and
validation to assess the accuracy of results will give an in-
dication of how confident the analyst can be that sub-
sequent recommendations reflect the decision-makers’
values. Current methods used for validation are dis-
cussed in the section on future directions for disease
prioritization.

THE DEVELOPMENT OF DISEASE
PRIORITIZATION

This section examines the evolution of disease priori-
tization in the context of decision analysis. Discase
prioritization is already a complex decision problem
because the highest priority disease depends on com-
parison of multiple disease impacts, but complexity
increases further because there are usually many
decision-makers who represent groups of individuals
with potentially diverse objectives [1]. For example,
one group might value environmental impacts more
than economic costs, or countries or regions might
have different values for the social impacts of disease;
measuring the utility or value of these impacts across
such diverse groups can result in a central measure
that is not representative of any group preferences
[48]. This makes assigning utility or value to disease
impacts more difficult. Initially, disease prioritization
was implemented by simply considering the scale of
disease impacts without their utility or value to
decision-makers. In a prioritization of diseases in
Ghana [49], the metric ‘healthy days of life lost’ was
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calculated using objective measurements of disease
impact in terms of severity, the average age at disease
onset and death, the duration and the level of dis-
ability caused by the disease, disease incidence and
case-fatality rate. As well as prioritizing diseases by
impact on healthy days of life lost, this metric was
used to assess the benefits of various health improve-
ment procedures, to select those that could save the
greatest number of healthy days of life relative to the
cost of the procedure. Following this study, disease
prioritization moved in two directions: further devel-
opment of metrics to quantify disease burden [e.g. dis-
ability adjusted life years (DALYs), used by the World
Health Organisation (http://www.who.int/healthinfo/
global_burden_disease/metrics_daly/en/)], and devel-
opment of an approach for disease prioritization
structured according to decision-science methodology
to reflect the value of disease to those directing the
prioritization.

Disease prioritization to incorporate the value of
disease impact to those directing the prioritization
has developed at regional, national and industry
levels. Initially, studies were not structured to separate
disease criterion measurements and criterion weights.
A Canadian study initiated in 1987 prioritized com-
municable diseases for national surveillance using a
point scoring system in which decision-makers directly
scored each disease against ordinal scales of severity
for each criterion [50]. Similar scoring systems were
also used in the 1990s to establish priorities for com-
municable disease surveillance in Europe [51] and re-
source allocation in England [52], as well as for
prioritization of non-foodborne zoonoses in France
[53] and communicable diseases for surveillance in a
repeat of the original 1987 Canadian study [54].
Carter et al. [55] had noted that a rational system
was needed for disease prioritization, and Rushdy &
O’Mahony [52] stated that prioritization should be
an ‘open process of communication and consultation’.
The overall benefit of these early studies was to intro-
duce disease prioritization as a systematic process
to direct resources through consultation between
decision-makers.

In a commentary in The Lancet, Giesecke [5] noted
that transparency was one of the main challenges in
disease prioritization. Subsequently, prioritization
studies introduced concepts from decision analysis to
improve transparency by separating criterion mea-
surements from criterion weights. Examples include
three European studies: prioritization of foodborne
zoonoses by Cardoen et al. [56], communicable
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disease prioritization by Balabanova et al. [57]
(initiated by Krause et al. [58] and reviewed by
Gilsdorf & Krause [59]), and animal and zoonotic dis-
eases by Humblet er al. [44]. As well as incorporating
problem structuring, each of these studies aggregated
information based on MAVT using a linear weighted
sum value to give a score for each disease. Overall, this
led to improved transparency by clearly separating
decision-makers’ subjective opinions regarding the
value of criteria from measurements for individual dis-
eases, as well as reducing opportunity for cognitive
bias that can arise when directly valuing discases.

In addition to structuring prioritization studies to
separate criterion measurements and weights, it is es-
sential to evaluate decision-makers preferences to
validly reflect their priorities (step 3, Fig. 1). In a re-
view of common mistakes made during this step,
Keeney [37] highlighted the importance of evaluating
preferences by asking decision-makers to make trade-
offs between criteria, as well as describing some of the
difficulties encountered at this stage. In particular, it
was noted that not knowing the context of the trade-
off (the scale and potential range of consequences)
can lead to incorrect value judgements, potentially
making the decision analysis results invalid. This is
consistent with Steele et al. [60], who showed the im-
portance of integrating the scale of criterion measure-
ments with value judgements of the criteria; the
authors demonstrated that the order of alternatives
could be changed by simply changing the scale of cri-
terion measurements while values judgements were
held constant. Some aspects of the importance of cor-
rectly evaluating decision-makers’ preferences (as well
as other challenges associated with disease prioritiza-
tion) are also described by Del Rio Vilas et al. [38].
Ultimately, the results of decision analyses are valid
only through good fortune if decision-makers’ prefer-
ences are elicited independently of scale and context;
without validation, the accuracy of the results of
these prioritizations cannot be assessed.

In a study to develop a framework for prioritization
of emerging threats and vulnerabilities for the
Department for the Environment, Food and Rural
Affairs (Defra) in the UK, Del Rio Vilas et al. [7]
further advanced prioritization in health settings by
using established decision analysis methods to both
structure the prioritization and also evaluate trade-
offs. Normative rationality was provided by the
MADM structure of the prioritization that separated
disease measurements from decision-makers’ values
for criteria, and aggregated information using a linear
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weighted sum model based on MAVT. Swing-
weighting was used to quantify disease experts’ subjec-
tive preferences for the importance of criteria. This is
an established method to directly weight criteria [61],
and ensured that trade-offs were evaluated within the
context of the decision problem and the scale of the
criteria. Swing-weighting has been used previously in
animal health for prioritization of control measures
for contingency planning for an FMD incursion
[62]. Evaluation of decision-makers’ preferences in
this way is more likely to accurately reflect decision-
makers’ preferences and the results are more likely
to be repeatable within the same group. MADM
based prioritizations using swing-weighting are suited
to small groups of decision-makers in the way that the
Delphi technique is suited to small group expert-
opinion elicitation. While the methods for traditional
MCDA are repeatable within groups and reproducible
across groups, reproducibility of results across groups
are dependent on the selection of decision-makers in
the context of the disease prioritization.

Both of these previous studies used linear weighted
sum models to represent decision-maker heuristics
[equation (2)] [7, 62]. This model is commonly used
because MAUT- or MAVT-based models with depen-
dent or nonlinear preferences between criteria are
complex to implement [30]. Although the linear
weighted sum model is straightforward, an assump-
tion of independent preferences between criteria is es-
sential, which is restrictive and might not validly
describe decision-makers’ heuristics; recent disease
prioritization studies have used techniques to circum-
vent this assumption. These studies used probabilistic
inversion [8, 9, 48] and conjoint analysis [63, 64] to in-
directly derive criterion weights. Decision-makers
ranked groups of constructed disease scenarios that
were designed to force trade-offs between different cri-
teria. Variation in decision-makers’ preferences was
modelled and the studies using conjoint analysis quan-
tified this variation to allow generalization of the
results to the wider population; further development
is required to allow this with probabilistic inversion.
Each study assessed whether decision-makers’ heuris-
tics were normatively rational by checking that
choices were transitive [8, 48], and maximized utility
[63, 64]. Also, the online surveys used to elicit prefer-
ences for criteria presented realistic disease scenarios
using non-technical terminology, which enabled par-
ticipation of decision-makers who were not disease
experts [8, 48, 63, 64]. The main advantage of these
methods is that they enable out-of-sample validation
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in which the fitted model can be used to predict
decision-makers’ rankings of a set of disease scenarios
other than those used to fit the model [65]. Assessing
the validity of models allows assessment of the accu-
racy of predictions, and further aids defensible re-
source allocation in addition to the systematic,
transparent and reproducible methodology provided
by decision analysis. A disadvantage of probabilistic
inversion and conjoint analysis is that they rely on
statistical methods to produce valid results and there-
fore, depending on model complexity, potentially re-
quire large numbers of participants, making them
unsuitable for use in small-group decision-making.

FUTURE DIRECTIONS FOR DISEASE
PRIORITIZATION

To date, out-of-sample validation has shown that dis-
ease prioritization models have variable validity
[9, 48, 65-67]. It is unclear whether limited validation
occurs because validation methods are inadequate, or
whether the models are poor representations of
decision-makers’ heuristics; it is difficult to develop
validation methods given this structural uncertainty.
Currently, MADM methods are selected on an em-
pirical basis, and most disease prioritizations have
used MAVT-based methods with a linear weighted
sum model. There is a requirement to develop system-
atic science-based processes to select models for prior-
itization to improve our ability to accurately describe
decision-makers’ heuristics, and concurrently allow
development of validation techniques, particularly
for disease prioritizations such as MAUT-/MAVT-
based methods which are currently not validated. At
a minimum, validation provides an indication of the
accuracy of model predictions. Concurrent develop-
ment of model selection and validation should result
in more predictive models that are therefore more
valuable decision tools.

Sources of variability in disease prioritization
results include heterogeneity in decision-makers’
values, as well as uncertainty and variability asso-
ciated with disease impacts. In the case of MAUT
methods, there is also variation in the decision-
makers’ expected probability of occurrence of disease.
Sensitivity analysis can be used to examine the robust-
ness of prioritization results to variability in inputs.
Similar to other methods for disease investigation
(such as risk analysis and disease modelling), prioriti-
zation is subject to the same challenges in uncertainty
and variability in disease measurements. Uncertainty
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and variability associated with disease impacts has
been accommodated in disease prioritizations by
including multiple disease scenarios or ranges of un-
certainty or variability across levels of criterion mea-
surements. Disease measurements can change over
time, and should be updated as new information
arises, especially if the results from the prioritization
are highly sensitive to variation in criterion measure-
ments. However, unlike other methods for disease inves-
tigation, prioritization results are dependent on, and
can also be sensitive to, decision-makers subjective
values. Subjective values are likely to be dynamic within
individuals — changing as experiences change — and het-
erogenous throughout groups of decision-makers, par-
ticularly if the scope of the decision problem is wide.
Scope in this context has two sources: the breadth of
the problem (e.g. prioritization of diseases affecting
more than one species has broader scope) and the diver-
sity of the decision-makers (e.g. a prioritization study
that includes multiple groups of stakeholders also has
broader scope). Variation in decision-makers’ prefer-
ences has been modelled using conjoint analysis and
probabilistic inversion [8, 9, 63, 64]. In a study in which
pig producers prioritized both zoonoses and diseases
that only affect livestock it was found that producers pre-
ferences were divided by these disease types and that each
group of stakeholders’ preferences were better repre-
sented using a model specific to each group [48].
Although the feasibility of representing multiple stake-
holder groups is dependent on the prioritization context,
decision-makers should be aware of the challenges asso-
ciated with increasing the scope of disease prioritiza-
tions —it is possible to produce results that are not
representative of any stakeholder group or disease type
[8]. In addition, decision-makers’ preferences should be
re-assessed periodically to ensure that preferences are
current. What constitutes an adequate time-frame for
re-assessment is again dependent on the prioritization
context. Doherty et al. [54] repeated a prioritization of
diseases in Canada after a period of 10 years and found
changes in priorities [50] — appropriate time-frames will
become clearer as disease prioritizations become more
commonly used and repeated.

The final potential source of variability, the prob-
ability of disease occurrence, has not been explicitly
modelled in disease prioritizations that have been struc-
tured according to decision analysis methods. Utility
functions, by their definition, include a measure of prob-
ability through evaluation of decision-makers’ expected
probability of occurrence of either individual or grouped
criteria, or the overall probability of occurrence of the

https://doi.org/10.1017/50950268815000801 Published online by Cambridge University Press

2919

decision alternative [43]. However, in the context of
disease prioritization, utility functions (MAUT-
based methods) have been simplified to value func-
tions (MAVT-based methods) in which the outcome
is simply a measure of impact for a particular disease.
If MAUT methods are to be developed for disease
prioritization it is essential that the sources of vari-
ation are explicitly modelled, for example by produc-
ing a two- or three-dimensional output. The results of
prioritization are potentially misleading if the prob-
ability of occurrence, uncertainty of impacts and vari-
ation in decision-makers’ preferences are not
differentiated. Ultimately, however, disease prioritiza-
tion is a decision aid that must provide decision-
makers with a foundation from which they can
make informed, defensible choices. Given the many
pathways by which a disease can occur, and the asso-
ciated probabilities of each step of a pathway, adding
complexity through inclusion of the probability of
disease occurrence as a utility model is unlikely to
aid communication between decision analysts and
decision-makers. Human and animal health have
well established methods for risk assessment — for
example the framework for import risk analysis for
animals and animal products [68]. Prioritization can
be considered the first step in a chain of investigations
that use a range of methods (e.g. risk analysis and dis-
ease modelling) to identify the highest impact diseases
that have a perceived high probability of occurrence
given those impacts, for which resource allocation
will make a valuable contribution in reducing the
actual or potential disease burden. Whether for exotic
or endemic diseases, resource allocation needs to
achieve the greatest benefit in reduction of potential
or existing disease burden. This requires a secondary
process beyond prioritization. MODM methods can
ensure that resources are allocated to the optimum
combination of prevention and mitigation strategies
given the potential benefits and constraints — such as
economic cost, welfare implications, and time and
human resources required for implementation — of
each strategy [30]. There is potential to add MODM
to the range of tools available for decision-making
in the context of disease prioritization.

CONCLUSION

MADM methods from decision analysis have gradu-
ally been applied to disease prioritization with the ob-
jective of improved transparency of method and
validity of results. The key points in applying these
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methods are structuring the prioritization to separate
objective measurements from subjective values for
the disease criteria, and assessing decision-makers’
preferences through value trade-offs between criteria
within the decision context. Ideally, prioritization
results should be both rational and valid. However,
normative and descriptive decision theories conflict
and there is a balance in prescriptive decision analysis
in achieving rationality and validity. Currently, select-
ing an appropriate MADM method is as much art as
science, and generally prioritization at regional,
national and industry levels has taken a normative ap-
proach, using MAVT based on a linear weighted sum
models for aggregation of information. This approach
is logical and consistent, and provides results that are
rational, and therefore auditable and defensible.
Recently, weighting of criteria using probabilistic in-
version has enabled validation of results to provide
an indication of the accuracy of predictions, and con-
joint analysis has enabled assessment of the reproduci-
bility of results across similarly representative samples
from the same group of stakeholders. However,
further research to select the most appropriate
MADM method and aggregating function is required
and decision-makers should be aware of the limita-
tions of prioritization in validly reflecting decision-
makers’ heuristics. Structuring prioritization studies
to separate objective disease measurements from sub-
jective values of disease impacts is a step that is now
consistently applied. However, evaluating preferences
by assessing the trade-offs that decision-makers are
prepared to make between criteria is not consistently
undertaken. It should be noted that criterion weights
are not direct measures of importance of criteria and
cannot be evaluated as such — evaluation of criterion
weights within the decision context is required to
scale incommensurate criteria to their relative com-
parative values and produce a valid overall disease
score. It is an essential step and should not be seen
as adding unnecessary complexity to the process.
Although MADM methods might be more difficult
to explain to decision-makers in the short term, they
are likely to become more accepted through use,
and — of greater importance — decision-makers can be
more confident that subsequent resource allocation
reflects current disease priorities.
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