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Relative Darboux Theorem
for Singular Manifolds and
Local Contact Algebra

Dedicated to the memory of my mother, Valentina Mikhaı̈lovna Borok

M. Zhitomirskii

Abstract. In 1999 V. Arnol’d introduced the local contact algebra: studying the problem of classifica-

tion of singular curves in a contact space, he showed the existence of the ghost of the contact structure

(invariants which are not related to the induced structure on the curve). Our main result implies that

the only reason for existence of the local contact algebra and the ghost is the difference between the

geometric and (defined in this paper) algebraic restriction of a 1-form to a singular submanifold. We

prove that a germ of any subset N of a contact manifold is well defined, up to contactomorphisms, by

the algebraic restriction to N of the contact structure. This is a generalization of the Darboux-Givental’

theorem for smooth submanifolds of a contact manifold. Studying the difference between the geomet-

ric and the algebraic restrictions gives a powerful tool for classification of stratified submanifolds of a

contact manifold. This is illustrated by complete solution of three classification problems, including

a simple explanation of V. Arnold’s results and further classification results for singular curves in a

contact space. We also prove several results on the external geometry of a singular submanifold N in

terms of the algebraic restriction of the contact structure to N. In particular, the algebraic restriction

is zero if and only if N is contained in a smooth Legendrian submanifold of M.

0 Introduction

The main result of the present work, Theorem 2.1 in Section 2, is a generalization of
the Darboux–Givental’ theorem (Section 1) on smooth submanifolds N of a contact
manifold M stating that the (geometric) restriction of the contact structure to N is
the only invariant of the germ of N with respect to the group of contactomorphisms

— diffeomorphisms preserving the contact structure. Theorem 2.1 allows N to have
arbitrarily deep singularities, provided that the geometric restriction to N is replaced
by the algebraic restriction defined in Section 2.

The starting point for the present work was the paper [Ar-1] in which V. Arnol’d
explained the existence of local contact algebra: the problem of classifying singular

curves in a contact space with respect to contactomorphisms is non-trivial even if
the equivalence class with respect to diffeomorphisms is fixed and the geometric re-
striction of the contact structure to the regular part of the curve gives no invariants.
In [Ar-1] V. Arnol’d showed the existence of “ghost” invariants in the classification,
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Darboux Theorem for Singular Manifolds 1315

with respect to contactomorphisms, of integral curves in a contact space diffeomor-
phic to the cusp (t2, t2k+1, 0, . . . , 0) and of non-integral curves diffeomorphic to the

cusp (t2, t3, 0, . . . , 0) and having a fixed order of tangency with the contact structure.
In the introduction to [Ar-1] V. Arnol’d wrote that it would be interesting to describe
the ghost of the contact structure algebraically.

Theorem 2.1 in the present work implies that the only reason for existence of local

contact algebra (and “ghost” invariants) is the difference between the geometric and the
algebraic restriction of a 1-form to a singular submanifold.

Studying this difference gives a powerful tool for classification of singular sub-
manifolds N of a contact manifold M, especially when the dimension of N is small

(for singular curves dim N = 1). This is illustrated by complete solution of three
classification problems, Sections 3–5.

The algebraic restriction of a contact structure to a singular manifold N is related
to the ideal consisting of functions vanishing at points of N , but it also has a geomet-

ric meaning. In Section 2 we give several results showing that the algebraic restriction
of a contact structure to a singular submanifold N ⊂ M allows to describe all sin-
gularities occurring when restricting the contact structure to any smooth submanifold
of M containing N . The main corollary is as follows: the algebraic restriction of the

contact structure to N is zero if and only if N is contained in a smooth Legendrian
submanifold of M.

In Section 3 we apply the results of Section 2 to the problem of classification of
stratified submanifolds N = N1 ∪ N2, where N1 and N2 are smooth 1-dimensional

submanifolds of a contact manifold
(

R
2n+1, (α)

)

with regular intersection at 0. We
give a complete classification of such stratified submanifolds. We prove that if the
contact structure (α) is transversal to one of the strata then its order of tangency with
the other stratum is a complete invariant, and if the contact structure is tangent to

each of the strata then, except the orders of tangency, there is a modulus λ ≥ 0. This
modulus expresses the difference between the algebraic restriction and the geometric
restriction. We also give a complete classification in the case that N1 and N2 are
integral 1-dimensional submanifolds.

In Section 4 we give an explanation, in terms of the algebraic restriction, of the
results of V. Arnol’d in [Ar-1, Section 2] on classification, with respect to contacto-
morphisms, of integral curves in a contact space R

2n+1 diffeomorphic to the curve
A2k : (t2, t2k+1, 0, . . . , 0). Our method allows to give a simple proof of these results

and explain the “ghost” invariants. Also, we construct an invariant µ (multiplic-
ity) taking values in the set {0, 1, . . . , 2k} and distinguishing non-contactomorphic
integral curves diffeomorphic to A2k. The invariant µ is constructed in canonical
(coordinate-free) terms and therefore it can be easily calculated in any coordinate

system.
In Section 5 we study non-integral curves in a contact space R

2n+1 diffeomor-
phic to the cusp (t2, t2k+1, 0, . . . , 0). Within such curves we classify all contact-simple
curves, for any k ≥ 1 and n ≥ 1. The obtained singularity classes are described in

canonical (coordinate-free) terms which gives a possibility to distinguish them in any
local coordinate system.

The case k = 1 was studied by V. Arnol’d in [Ar-1, Section 3]. V. Arnol’d ob-
tained, for the case n ≥ 2, five contact-simple singularities; he denoted them by a0,
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1316 M. Zhitomirskii

b1, c2, e3, f 4 ([Ar-1, Section 3, Theorem 2). Our results for the case k = 1 imply
that in fact there are only four contact-simple singularities: e3 and f 4 are the same

singularity. It follows that there exists a contactomorphism sending f 4 to e3. Such a
contactomorphism is given explicitly.

In Section 6 we prove the main theorems given in Section 2. In Appendix A, we
give an additional explanation why the classification results in the 3-dimensional case

differ from those in the (2n + 1)-dimensional case, n ≥ 2.

A similar method can be developed for local classification of singular submani-
folds of a symplectic manifold. One can define the algebraic restriction of a symplec-

tic structure to a singular submanifold, to explain, in terms of the algebraic restric-
tion, the local symplectic algebra introduced by V. Arnol’d in [Ar-2] and to obtain a
series of new classification results. A work on this topic, jointly with W. Domitrz and
S. Janeczko, will be published elsewhere, but in Appendix B we present the main re-

sult and explain the difference between the contact and the symplectic cases, related
to the relative Poincaré lemma property.

1 Darboux–Givental’ Theorem

This section contains two equivalent formulations of the Darboux–Givental’ theo-
rem, also called the relative Darboux theorem. This is a reduction theorem for the

following equivalent classification problems:

(a) local classification of smooth r-dimensional submanifolds of a fixed contact
manifold with respect to the group of contactomorphisms (diffeomorphisms pre-
serving the contact structure);

(b) local classification of contact structures on an odd-dimensional manifold with
respect to the group of diffeomorphisms preserving a fixed smooth r-dimensional
submanifold.

The classification problems (a) and (b) are equivalent by the classical Darboux
theorem stating that any two contact structures on an odd-dimensional manifold
are locally equivalent. The Darboux–Givental’ theorem reduces these classification
problems to the classification of Pfaff equations on R

r .

Recall that a Pfaff equation on a manifold N is a differential 1-form on N defined
up to multiplication by a non-vanishing function. Equivalently, it is a module of
1-forms on N over the ring of functions generated by a single 1-form.

A Pfaff equation generated by a 1-form α will be denoted by (α). A Pfaff equation
(α1) on a manifold N1 is diffeomorphic to a Pfaff equation (α2) on a manifold N2

if there exists a diffeomorphism Φ : N1 → N2 such that (Φ∗α2) = (α1), that is
Φ

∗α2 = Qα1, where Q is a non-vanishing function.

Any contact structure on a manifold M is a Pfaff equation on M (the contact
1-form is defined up to multiplication by a non-vanishing function). Therefore a
contact structure will be denoted by (α), where α is a contact 1-form.

Definition The geometric restriction of a contact structure (α) on a manifold M to
a smooth submanifold N ⊂ M is a Pfaff equation (β) on N , where β is the restriction
of α to TN .
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Convention In what follows, all objects (manifolds, 1-forms, diffeomorphisms, etc.)
are germs at a fixed point 0, and they belong to a fixed category — either C∞ or real

analytic.

Theorem 1.1 (A. Givental’, see [Ar-Gi]) Let N be a smooth submanifold of an odd-
dimensional manifold M. Any two contact structures on M having the same geometric

restriction to N can be brought one to the other by a diffeomorphism Φ of M such that
Φ(n) = n for any point n ∈ N.

Definition Two subsets of a fixed contact manifold are called contactomorphic if they
can be brought one to the other by a contactomorphism of M.

Theorem 1.2 (Corollary of Theorem 1.1) Two smooth submanifolds N1 and N2 of
the same dimension of a fixed contact manifold

(

M, (α)
)

are contactomorphic if and
only if the geometric restrictions of the contact structure (α) to N1 and N2 can be brought
one to the other by a diffeomorphism φ : N1 → N2.

2 Algebraic Restriction. Main Theorems

Theorem 2.1 The statements of the Theorems 1.1 and 1.2 remain true if N, N1, N2

are arbitrary subsets of M provided that geometric restrictions are replaced by algebraic

restrictions defined below.

The algebraic restriction of a contact structure on M to a subset N of M is related
to the ideal consisting of smooth (analytic) functions vanishing at points of N , and

the bigger is this ideal the more effective is Theorem 2.1. It is the most effective if N
is a stratified submanifold of M of dimension 1. On the other hand, if N is a dense
set then the ideal consists of the zero function only, in this case Theorem 2.1 becomes
a statement like 1 = 1.

Notation Given a subset N ⊂ M denote by Λ
0
N (M) the ideal of smooth (analytic)

functions on M vanishing at any point of N , and by Λ
1
N (M) the module of smooth

(analytic) 1-forms on M vanishing at any point of N .

Definition of Algebraic Restriction of a 1-Form to a Subset Let N be a subset of a
manifold M. Two 1-forms on M will be called N-equivalent if their difference has the

form

(1) µ + dH, µ ∈ Λ
1
N (M), H ∈ Λ

0
N (M).

The class of N-equivalence of a 1-form α on M will be denoted [α]N and called
algebraic restriction of α to N .

Note that the set of 1-forms (1) is a module over the ring of functions (in fact,
QdH = d(QH)−HdQ). If the ideal Λ

0
N (M) is finitely generated,

Λ
0
N (M) = (H1, . . . ,Hp),
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then this module consists of 1-forms of the form

H1θ1 + · · · + Hpθp + f1dH1 + · · · + fpdHp,

where θi are arbitrary 1-forms and fi are arbitrary functions, and it will be denoted
by (H1, . . . ,Hp, dH1, . . . , dHp).

Definition of Algebraic Restriction of a Pfaff Equation or Contact Structure to a

Subset Let (α) be a Pfaff equation on a manifold M, and let N be a subset of M. The
algebraic restriction of (α) to N , denoted [(α)]N , is the algebraic restriction [α]N

defined up to multiplication by a non-vanishing function. If M is a contact manifold
then the algebraic restriction of the contact structure to N is [(α)]N , where α is a
1-form describing the contact structure.

The multiplication of [α]N by a function Q on M is defined by the relation

Q[α]N = [Qα]N .

This definition is correct since the set (1) is a module over the ring of functions.
It is clear that if N is a smooth submanifold of M then the algebraic restriction

of a 1-form α to N can be identified with the geometric restriction: [α]N = [α̃]N

if and only if α|TN = α̃|TN . For singular (stratified) submanifolds N the algebraic
restriction is a stronger invariant than the restriction of α to TNreg , where Nreg is the
regular part of N , see Sections 3–5.

The group of local diffeomorphisms acts in a natural way in the space of algebraic
restrictions.

Definition Let N1 and N2 be subsets of a manifold M. Two algebraic restrictions

[α1]N1
and [α2]N2

of 1-forms α1 and α2 on M are diffeomorphic if there exists a
diffeomorphism Φ of M such that Φ(N1) = N2 and [Φ∗α2]N1

= [α1]N1
. The alge-

braic restrictions [(α1)]N1
and [(α2)]N2

of two Pfaff equations on M are diffeomor-
phic if the algebraic restriction [α1]N1

is diffeomorphic to the algebraic restriction

Q[(α2)]N2
for some non-vanishing function Q.

Note that these definitions include the diffeomorphness of the sets N1 and N2. To
check that the definitions are correct it suffices to note that a diffeomorphism Φ of M
such that Φ(N1) = N2 brings the set (1) with N = N2 to the same set with N = N1.

Theorem 2.1 is proved in Section 6. Though the algebraic restriction of a contact
structure to a subset N is defined in algebraic way, it also has a geometric meaning
— it allows us to describe all singularities of restrictions of the contact structure to
smooth submanifolds containing N . Before formulating a general result, we state its

main corollary.

Definition The algebraic restriction of a contact structure on a manifold M to a
subset N ⊂ M is zero if [(α)]N = [(0)]N , where α is a contact 1-form.

Theorem 2.2 Let M be a contact manifold, and let N ⊂ M be an arbitrary subset. The
following statements are equivalent:
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(i) The algebraic restriction of the contact structure to N is zero;
(ii) N is contained in a smooth Legendrian submanifold of M.

The implication (ii)→ (i) follows from the following obvious statement: if N is

contained in a smooth submanifold S ⊂ M then the algebraic restriction to N of any
Pfaff equation (α) on M can be identified with the algebraic restriction to N of the
geometric restriction of (α) to S. In other words, two Pfaff equations on M have the
same algebraic restriction to N if and only if their geometric restrictions to S have the

same algebraic restrictions to N .

The starting point for the implication (i)→ (ii) is the following theorem stating
that if a subset N of a contact manifold M is contained in two equal-dimensional

smooth submanifolds S1, S2 of M then, though the geometric restrictions of the con-
tact structure to S1, S2 might have different singularities, the algebraic restrictions to
N of these geometric restrictions have the same singularity.

Theorem 2.3 Let N be a subset of a contact manifold M contained in two smooth
equal-dimensional submanifolds S1, S2 ⊂ M. The geometric restrictions of the contact
structure to S1 and S2 have diffeomorphic algebraic restrictions to N.

Proof of Theorem 2.3 It is easy to see that the germs of any two equal-dimensional
smooth submanifolds S1, S2 ⊂ M, not necessarily with regular intersection, can be
brought one to the other by a local diffeomorphism Φ : M → M preserving point-

wise the intersection S1 ∩ S2. Since N ⊂ S1 ∩ S2 then Φ preserves pointwise N and
consequently it brings the contact structure (α) to another contact structure (Φ∗α)
with the same algebraic restriction to N . Therefore the geometric restrictions of (α)
and Φ

∗(α) to S1 have the same algebraic restrictions to N . This is equivalent to the

statement of Theorem 2.3.

Theorem 2.3 suggests that the algebraic restriction of the contact structure to N
accounts for singularities of the geometric restriction of the contact structure to all

smooth submanifolds S containing N . The following Theorem 2.4 says that this is so
if S has minimal possible dimension.

Notation Given a subset N of a manifold M denote by m = m(N) the minimal
dimension of a smooth submanifold of M containing N .

For example, if N is the image of the curve t → (t3, t4, 0, . . . , 0) + o(t5) then
m(N) = 2 since N is diffeomorphic to the image of the plane curve (t3, t4, 0, . . . , 0).
If N is the image of the curve t → (t3, t4, t5, 0, . . . , 0) + o(t5) then m(N) = 3 since N
is diffeomorphic to the image of the space curve (t3, t4, t5, 0, . . . , 0) and not diffeo-

morphic to the image of a plane curve, see [Gi-Ho], [Ar-3].

Theorem 2.4 Let N be a subset of a contact manifold
(

M, (α)
)

, and let S be any

smooth m-dimensional submanifold of M containing N, where m = m(N). Let (β)
be the geometric restriction of the contact structure (α) to S. Let (β̂) be another Pfaff
equation on S. The following statements are equivalent:

(i) The algebraic restriction to N of the Pfaff equations (β) and (β̂) are diffeomorphic;
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(ii) there exists another smooth m-dimensional submanifold Ŝ ⊂ M containing N
such that the geometric restriction of the contact structure to Ŝ is diffeomorphic to

(β̂) via a diffeomorphism Ŝ→ S preserving N.

Theorem 2.4 is proved in Section 6. By this theorem in order to see what singu-
larities appear when restricting the contact structure to smooth m(N)-dimensional
submanifolds containing N it suffices to analyze the restriction to just one such sub-

manifold. The deepest singularity of a Pfaff equation is the Pfaff equation generated
by the zero 1-form. Taking β̂ = 0 in Theorem 2.4 we obtain the implication (i)→ (ii)
in Theorem 2.2. Moreover, we obtain a bit stronger result.

Theorem 2.5 If the contact structure on a (2n + 1)-dimensional manifold M has zero

algebraic restriction to a subset N ⊂ M then m(N) ≤ n and there exists a smooth
isotropic m(N)-dimensional submanifold of M containing N.

Remark The implication (ii)→ (i) in Theorem 2.4 holds without assumption m =

m(N), but the implication (i) → (ii) does not. For example, if N = {0} then any
two 1-forms have the same algebraic restriction to N , whereas not any singularity of
a Pfaff equation on, say, R

2n with 2n = dim M − 1, can be realized as the geometric
restriction of a contact structure to a hypersurface.

We conclude this section with a realization theorem. Let N be a subset of R
2n+1,

and let (α) be a Pfaff equation on R
2n+1. We will say that the algebraic restriction

[(α)]N is realizable by a contact structure if there exists a contact structure (α̃) on
R

2n+1 such that [(α)]N = [(α̃)]N .

Theorem 2.6 Let N be a subset of R
2n+1, and let m = m(N). Let α be a Pfaff equation

on R
2n+1.

(i) If m ≤ n then the algebraic restriction [(α)]N is realizable by a contact structure
on R

2n+1 for any 1-form α.
(ii) Let m ≥ n+1. Take any smooth m-dimensional submanifold S ⊂ R

2n+1 containing

N. The algebraic restriction [(α)]N is realizable by a contact structure on R
2n+1 if

and only if the 1-form β = α|TS satisfies one of the following conditions:

(2.1) β ∧ (dβ)m−n−1(0) 6= 0 or (dβ)m−n(0) 6= 0.

Example Let N ⊂ R
2n+1 be the image of the curve x1 = t2, x2 = t2k+1, x≥3 = 0. Let

α = α1(x)dx1 + · · · + α2n+1(x)dx2n+1. If n ≥ 2 then the algebraic restriction [(α)]N

is realizable by a contact structure. If n = 1 then it is realizable if and only if the 1-

form β = α1(x1, x2, 0, . . . , 0)dx1 +α2(x1, x2, 0, . . . , 0)dx2 satisfies one of conditions:
β(0) 6= 0 or dβ(0) 6= 0.

Proof of Theorem 2.6 By Theorem 2.4 [(α)]N is realizable by a contact structure if
and only if there exists a contact structure whose geometric restriction to S is (β). If
dim S ≤ n then this is true for any Pfaff equation (β) on S, and if dim S > n then this
is true if and only if one of the conditions (2.1) holds, see [Ar-Gi].
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3 The Union of Two Nonsingular Curves

In this section we show how the results of Section 2 work for the classification of
stratified submanifolds N = N1 ∪ N2, where N1 and N2 are smooth 1-dimensional
submanifolds of a contact manifold

(

R
2n+1, (α)

)

with regular intersection at 0. We

give a complete classification of such stratified submanifolds. We prove that if the
contact structure is transversal to one of the strata then its order of tangency with the
other stratum is a complete invariant, and if the contact structure is tangent to each
of the strata then, except of the orders of tangency, there is a modulus λ ≥ 0. This

modulus expresses the difference between the algebraic restriction and the geometric
restriction. We also consider the case that N1 and N2 are integral 1-dimensional sub-
manifolds. In this case our results in Section 2 imply that in the 3-dimensional case

all N = N1 ∪ N2 are contactomorphic, and if n ≥ 2 then N is contactomorphic to
one of two normal forms without parameters; the second one holds if and only if N
is contained in a smooth Legendrian submanifold of R

2n+1.
In suitable local coordinates N is given by the equations

N : uv = w = 0, w = (w1, . . . ,w2n−1).

Two 1-forms on R
2n+1 are N-equivalent if their difference belongs to the module

(uv, udv + vdu,w1, dw1, . . . ,w2n−1, dw2n−1). Therefore

[(α)]N =
[(

a(u, v)du+b(u, v)dv
) ]

N
=

[(

a(u, 0)+µ(v)
)

du+
(

ν(u)+b(0, v)
)

dv
]

N
,

where a(u, v)du+b(u, v)dv is the restriction ofα to the tangent bundle to the 2-mani-

fold w = 0,

µ(v) = a(0, v)− a(0, 0), ν(u) = b(u, 0)− b(0, 0).

Note that

v2du = v(udv + vdu) mod(uv), u2dv = u(udv + vdu) mod(uv)

and consequently

[v2du]N = [u2dv]N = 0.

Note also that [vdu]N = −[udv]N . Therefore

(3.1) [(α)]N =
[(

a(u, 0)du + b(0, v)dv + λvdu
)]

N
, λ ∈ R.

Here the functions a(u, 0) and b(0, v) define uniquely the geometric restriction of α
to the regular part Nreg

= N − {0} of N , and the number λ expresses the difference
between the algebraic and geometric restrictions.

Assume that the contact structure (α) has finite orders of tangency q and p with
the strata N1 and N2. This means that the Taylor series of the functions a(u, 0) and
b(0, v) are not zero, they start with with terms of order q ≥ 0 and p ≥ 0 respectively.
A local diffeomorphism of the form (u, v,w) →

(

φ(u), ψ(v),w
)

preserves N and
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brings the form λvdu to λ̃vdu modulo (uv). It follows that the algebraic restriction
(3.1) is diffeomorphic to

(3.2) [±uqdu± vpdv + λvdu]N , λ ∈ R, 0 ≤ q ≤ p.

To reach the condition q ≤ p one should apply, if necessary, the diffeomorphism

(u, v,w)→ (v, u,w) which preserves N and brings λvdu to −λvdu mod udv + vdu.
Theorem 2.6 implies the following statements on the realizability of the normal

form (3.2):
• if n ≥ 2 then (3.2) is realizable for any values of parameters q, p, λ;

• if n = 1 and q = 0 then (3.2) is realizable for any values of p and λ;
• if n = 1 and q ≥ 1 then (3.2) is realizable if and only if λ 6= 0.
Now one can easily get a complete classification of the algebraic restrictions of

contact structures to N .

Proposition 3.1 If a contact structure (α) on R
2n+1 has finite orders of tangency with

the strata N1, N2 then the algebraic restriction of (α) to N is diffeomorphic to one of the
normal forms

[0, p] : [(du + vpdv)]N , p ≥ 0;

[1, 1] = {[1, 1]λ : [(udu± vdv + λvdu)]N , λ ≥ 0};

[q, p] : [(uqdu± vpdv + δvdu)]N , 1 ≤ q ≤ p ≥ 2, δ ∈ {1, 0}.

In the normal form [1, 1] the parameter λ ≥ 0 is an invariant (the algebraic restrictions
[1, 1]λ and [1, 1]λ̃ are diffeomorphic only if λ = λ̃.) If n ≥ 2 then all given algebraic
restrictions are realizable by a contact structure, if n = 1 — all except [1, 1] with λ = 0
and [q, p] with δ = 0.

The normal form [0, p] corresponds to the case that the contact structure is
transversal to one of the strata N1, N2 and has tangency of order p with the other

stratum. The normal form [1, 1] corresponds to the case that the contact structure
has tangency of order 1 with each of the strata N1, N2, and the normal form [q, p] to
the case that the contact structure has tangency of order ≥ 1 with one of the strata
and of order ≥ 2 with the other stratum. In these normal forms one may replace ±
by + if and only if at least one of the numbers q, p is even.

The normal forms [0, p], [1, 1], and [q, p] can be obtained from the normal form
(3.2) as follows. To get normal form [0, p] one has to reduce the both± to + (chang-
ing, if necessary, u to −u and/or multiplying (3.2) by −1), to divide the obtained

1-form du + vpdv + λvdu by 1 + λv, and to make a suitable change of coordinates of
the form (u, v,w) →

(

u, ψ(v),w
)

which preserves N for any ψ(v). To get normal
forms [1, 1] and [q, p] one has to make a change of coordinates (u, v) → (k1u, k2v)
and to multiply (3.2) by k3, where k1, k2, k2 are suitable non-zero numbers.

The fact that in [1, 1] the parameter λ is an invariant can be easily proved alge-
braically. Another, geometric explanation of this invariant is as follows. Take any
smooth 2-manifold S containing the stratified submanifold N . All such manifolds
have the same tangent space L2 at 0. Let β be the restriction of the contact 1-form to
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TS. One can pass from β to a vector field X via a volume form on S. In the case that
the contact structure is tangent to the strata N1 and N2 it is tangent to S and conse-

quently β(0) = X(0) = 0. The eigenspaces l1, l2 ⊂ L2 of the linear approximation
j1X of X depend on the choice of S: if A is the matrix of j1X for some fixed S then
for any other S the matrix of j1X has the form A + diag(c,−c), c ∈ R. If the contact
structure has tangency of order 1 with each of the strata N1 and N2 then indepen-

dently of the choice of S the eigenspaces l1, l2 either are transversal to the strata N1,
N2 or are not real. We have four lines TN1, TN2, l1, l2 in the 2-plane L2 (or its com-
plexification), but the cross-ratio θ ∈ S1 is not an invariant since l1 and l2 depend
on the choice of S. Nevertheless, we also have the ratio r = λ1/λ2 of the eigenvalues

of X, defined up to transformation r → r−1. All possible changes of S lead to a 1-
parameter group acting in the space of pairs (θ, r). It is easy to see that the orbits of
this action are parameterized by λ ≥ 0 in the normal form [1, 1].

The modulus λ disappears in the normal form [q, p] since in this case one of the

lines l1, l2 coincides with one of the strata N1, N2 independently of the choice of S.
By Theorem 2.1 the obtained classification of the algebraic restrictions to N of

all possible contact structures on R
2n+1 is, de-facto, a classification, with respect to

contactomorphisms, of all stratified submanifolds diffeomorphic to {uv = w = 0}
in any fixed contact space, for example the contact space

(3.3)
(

R
2n+1, (dz − y1dx1 − · · · − yndxn)

)

.

Fix any contact 1-forms α0,p, αλ1,1, αq,p whose algebraic restriction to N are

[0, p], [1, 1]λ, [q, p] respectively. Also fix diffeomorphisms Φ0,p, Φ
λ
1,1, Φq,p from

R
2n+1(x1, y1, . . . , xn, yn, z) to R

2n+1(u, v,w1, . . . ,w2n−1) which bring these contact
1-forms to the contact 1-form (3.3). These diffeomorphisms bring the stratified

submanifold uv = w = 0 to certain stratified submanifolds N0,p, Nλ
1,1, Nq,p. By

Theorem 2.1 we obtain the following classification result.

Corollary 3.2 Let N = N1 ∪N2, where N1 and N2 are 1-dimensional submanifolds of
the contact space (3.3) with regular intersection at 0. Assume that the contact structure

has tangency of finite orders 0 ≤ q ≤ p with the strata N1, N2 (tangency of zero order
means transversality). If q = 0 then N is contactomorphic to N0,p. If q = p = 1 then
N is contactomorphic to Nλ

1,1, where λ is an invariant. If q ≥ 1 and p ≥ 2 then N is
contactomorphic to Nq,p.

If n = 1 (the 3-dimensional case) then one can fix

α0,p = du + vpdv + wdv, Φ0,p : x = −v, y = w, z = u +
vp+1

p + 1
;

αλ1,1 = udu± vdv + λvdu + dw, Φ1,1 : x = −u, y = λv, z = w + u2/2± v2/2;

αq,p = uqdu± vpdv + vdu + dw, Φq,p : x = −u, y = v, z = w +
uq+1

q + 1
±

vp+1

p + 1
.

Simplifying the obtained stratified manifolds N0,p, Nλ
1,1, Nq,p by a scale contac-

tomorphism (x, y, z) → (k1x, k2 y, k1k2z) with suitable non-zero k1, k2 we get the
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following normal forms

(0, p)3 : {(x, y, z) : x(z − xp+1) = y = 0}, p ≥ 0,

(1, 1)λ3 : {(x, y, z) : xy = λz − x2 ± y2
= 0}, λ > 0,

(q, p)3 : {(x, y, z) : xy = z − xq+1 ± y p+1
= 0}, 1 ≤ q ≤ p ≥ 2.

Corollary 3.3 Let N = N1 ∪ N2, where N1 and N2 are 1-dimensional submanifolds
of the contact space

(

R
3, (dz − ydx)

)

with regular intersection at 0. Assume that the
contact structure has tangency of finite order ≥ 0 with each of the strata N1, N2. Then

N is contactomorphic to one of the stratified manifolds (0, p)3, (1, 1)λ3 , (q, p)3. Two
different normal forms are not contactomorphic up to reduction of ± to + in (q, p)3 in
the case that at least one of the numbers q, p is even. In particular, q, p and λ > 0 are
invariants.

In the same way one can obtain similar normal forms in the contact manifold
(3.3) with n ≥ 2 corresponding to the algebraic restrictions [0, p], [1, 1]λ with λ > 0

and [q, p] with δ = 1:

(0, p)≥5 : {x1(z − x
p+1
1 ) = y≥1 = x≥2 = 0}, p ≥ 0;

(1, 1)λ≥5 : {x1 y1 = λz − x2
1 ± y2

1 = x≥2 = y≥2 = 0}, λ > 0;

(q, p)≥5 : {xy = z − x
q+1
1 ± y

p+1
1 = x≥2 = y≥2 = 0}, 1 ≤ q ≤ p ≥ 2;

If the dimension of a contact manifold is ≥ 5 then the case λ = 0 in [1, 1] and
the case δ = 0 in [q, p] are realizable. In these cases the algebraic restrictions can
be realized by the contact 1-forms udu ± vdv + R and uqdu ± vpdv + R, where
R = dw1 + w2du + w3dv + w4dw5 + w6dw7 + · · · + w2n−2dw2n−1. Bringing these

1-forms to the Darboux normal form (3.3) by a diffeomorphism and applying the
same diffeomorphism to the manifold {uv = w1 = · · · = w2n−1 = 0} we obtain the
following normal forms:

(1, 1)0
≥5 : {x1x2 = (z − x2

1 ± x2
2) = x≥3 = y≥1 = 0};

(q, p)0
≥5 : {x1x2 = z − x

q+1
1 ± x

p+1
2 = x≥3 = y≥1 = 0}, 1 ≤ q ≤ p ≥ 2.

Corollary 3.4 Let N = N1 ∪N2, where N1 and N2 are 1-dimensional submanifolds of
the contact space (3.3), n ≥ 2, with regular intersection at 0. Assume that the contact
structure has tangency of finite order ≥ 0 with each of the strata N1, N2. Then N is

contactomorphic to one of the stratified manifolds (0, p)≥5, (1, 1)λ≥5, (1, 1)0
≥5, (q, p)≥5,

(q, p)0
≥5. Two different normal forms are not contactomorphic up to reduction of ± to

+ in (q, p)≥5 and (q, p)0
≥5 in the case that at least one of the numbers q, p is even. In

particular, q, p and λ > 0 are invariants.

The obtained normal forms give a complete classification of stratified submani-
folds of the contact space (3.3) which are the union N = N1 ∪ N2 of two 1-dimen-
sional strata N1,N2 intersecting regularly at 0 and having finite order of tangency

https://doi.org/10.4153/CJM-2005-053-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-053-9


Darboux Theorem for Singular Manifolds 1325

with the contact structure. The latter assumption excludes an infinitely degenerate
case. For any p the singularity N0,p is simple in the following sense: if N is diffeo-

morphic to N0,p and sufficiently close to N0,p then N is contactomorphic to one of
the stratified manifolds of a finite tuple N0,0,N0,1, . . . ,N0,p. All other singularities are
not simple because of the modulus λ in the normal form [1, 1] and the adjaciences
[1, 1]← [q, p] for any q ≥ 1.

Finally, let us consider the case that N = N1 ∪ N2 is an integral submani-
fold, which means that each of the strata N1, N2 is everywhere tangent to the con-
tact structure (α). In terms of normal form (3.1) this means that a(u, 0) ≡ 0,
b(0, v) ≡ 0. Therefore the algebraic restriction of the contact structure to N is equal

to [(α)]N = [(λvdu)]N . In the 3-dimensional case λ 6= 0 by the realization Theo-
rem 2.6, and therefore the algebraic restriction is diffeomorphic to a fixed algebraic
restriction [(vdu)]N . If n ≥ 2 then the case λ = 0 is not excluded, therefore either
the algebraic restriction is diffeomorphic to [(vdu)]N or it is equal to zero. It is clear

that these two cases can be distinguished as follows: in the first case the differential
dα of the contact 1-form α does not annihilate the 2-plane L2 = T0N1 + T0N2, in the
second case it does. Therefore Theorem 2.1, 2.2, and 2.5 imply the following result.

Corollary 3.5 Let N1 and N2 be smooth integral 1-dimensional submanifolds of the
contact space

(

R
2n+1, (α)

)

, α = dz−y1dx1−· · ·−yndxn, with regular intersection at 0.
In the 3-dimensional case the stratified submanifold N = N1 ∪ N2 is contactomorphic

to the submanifold N∗
3 = {(x, y, z) : xy = z = 0}. If n ≥ 2 then N is contactomorphic

to one of the submanifolds

N∗
≥5 = {x1 y1 = z = x≥2 = y≥2 = 0}, N∗∗

≥5 = {x1x2 = z = x≥3 = y≥1 = 0}.

The set N is contained in a smooth isotropic 2-dimensional submanifold (or, equiva-
lently, in a smooth Legendrian submanifold) if and only if N is contactomorphic to N∗∗

≥5.
This is so if and only if dα annihilates the 2-plane L2 = T0N1 + T0N2.

4 Integral Curves Diffeomorphic to A2k

In what follows by a curve in a contact space
(

R
2n+1, (α)

)

we will understand a
map γ : (R, 0) → (R

2n+1, 0). Two curves are diffeomorphic if their images can be

brought one to the other by a local diffeomorphism, and contactomorphic if they
can be brought one to the other by a local contactomorphism. A curve γ is called
integral if γ∗α = 0, i.e., the vector γ̇(t) is tangent to the contact hyperplane at γ(t)
for all t . By Theorems 1.1 and 1.2 all nonsingular (immersed) integral curves are

contactomorphic.
In [Ar-1, Section 2] V. Arnol’d classified, with respect to contactomorphisms, all

integral curves diffeomorphic to the curve

A2k : x1 = t2, x2 = t2k+1, x≥3 = 0.

It turned out that the classification is nontrivial, though the geometric restriction
of the contact structure to the regular part of any integral curve gives no invariants
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and the equivalence class with respect to diffeomorphisms is fixed. V. Arnol’d proved
that if n ≥ 2 then there are, up to contactomorphisms, exactly 2k + 1 integral curves

diffeomorphic to A2k; if n = 1 then all integral curves diffeomorphic to A2k are
contactomorphic. In this section we give a simple proof of this result using the alge-
braic restrictions and Theorem 2.1. Results of Section 2 also allow us to construct an
invariant µ (multiplicity) taking values in the set {0, 1, . . . , 2k} and distinguishing

non-contactomorphic integral curves diffeomorphic to A2k. The invariant µ can be
easily calculated in any coordinate system.

In what follows the notation A2k will be used both for the curve and its image. If
the algebraic restriction to A2k of a 1-form α is zero then A∗

2kα = 0. The inverse is

not true. Take the 1-form

(4.1) θ = (2k + 1)x2dx1 − 2x1dx2.

It is easy to see that the algebraic restriction of θ to A2k is not zero, though A∗
2kθ = 0.

Proposition 4.1 Let α be any 1-form on R
p(x1, . . . , xp), p ≥ 2, such that A∗

2kα = 0.
Then

[α]A2k
= [(c0 + c1x1 + c2x2

1 + · · · + c2k−1x2k−1
1 )θ]A2k

, c0, c1, . . . , c2k−1 ∈ R,

where θ is the 1-form (4.1). The algebraic restriction of α to A2k is zero if and only if
c0 = · · · = c2k−1 = 0. Consequently, the set of algebraic restrictions to A2k of all 1-forms
α such that A∗

2kα = 0 is a (2k)-dimensional vector space.

It follows that the set of algebraic restrictions to A2k of all Pfaff equations (α) on

R
p(x1, . . . , xp) such that A∗

2kα = 0 consists of (2k + 1) elements

(4.2) [θ]A2k
, [x1θ]A2k

, [x2
1θ]A2k

, . . . , [x2k−1
1 θ]A2k

, [0]A2k
.

Corollary 4.2 The algebraic restriction to A2k of any Pfaff equation (α) on
R

p(x1, . . . , xp), p ≥ 2, such that A∗
2kα = 0 is equal to one of 2k+1 algebraic restrictions

(4.2). These algebraic restrictions are different.

To describe the algebraic restrictions to A2k of all contact structures on R
2n+1 we

use the realization Theorem 2.6. By this theorem any of the algebraic restrictions

(4.2) is realizable by a local contact structure on R
2n+1, n ≥ 2, and only the first of

the algebraic restrictions (4.2) is realizable by a local contact structure on R
3.

Corollary 4.3 The set of algebraic restrictions to A2k of all contact structures on R
2n+1

with respect to which the curve A2k is integral consists of (2k + 1) points (4.2) if n ≥ 2
and of a single point [θ]A2k

if n = 1.

Proof of Proposition 4.1 The curve A2k : x2k+1
1 = x2

2, x≥3 = 0 is contained in a
smooth 2-manifold S : x≥3 = 0, therefore the algebraic restriction of any 1-form α
to A2k can be represented by a 1-form a(x1, x2)dx1 + b(x1, x2)dx2. Let H = x2k+1

1 − x2
2 .
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By the division theorem (see [Ar-Va-Gu]) any function on S has the form g(x1) +
x2h(x1) mod(H), therefore

[α]A2k
=

[(

g1(x1) + x2h1(x1)
)

dx1 +
(

g2(x1) + x2h2(x1)
)

dx2

]

A2k

.

The integrability of A2k implies that

2t
(

g1(t2) + t2k+1h1(t2)
)

+ (2k + 1)t2k
(

g2(t2) + t2k+1h2(t2)
)

≡ 0.

Distinguishing the odd and the even part of this relation, one gets

2g1(x1) = −(2k + 1)x2k
1 h2(x1), (2k + 1)g2(x1) = −2x1h1(x1).

These relations imply that [α]A2k
= [ f (x1)θ + q(x1)dH]A2k

for some functions f (x1)
and q(x1). Since [q(x1)dH]A2k

= [0]A2k
then [α]A2k

= [ f (x1)θ]A2k
.

It remains to show that [ f (x1)θ]A2k
= [0]A2k

if and only if f (x1) = o(x2k−1
1 ). The

relation [ f (x1)θ]A2k
= [0]A2k

means that
(

f (x1)θ+Hγ
)

∧dH = 0 for some 1-form γ.
Since θ∧dH = 2(2k+1)Hdx1∧dx2 it follows that f (x1) belongs to the ideal generated
by the partial derivatives of H. This is so if and only if f (x1) = o(x2k−1

1 ).

The following statement completes the classification of algebraic restrictions.

Proposition 4.4 No two different algebraic restrictions in the set (4.2) are diffeomor-
phic.

This statement is proved below by constructing an invariant distinguishing non-
diffeomorphic algebraic restrictions to A2k of Pfaff equations (α) such that A∗

2kα = 0.

This invariant takes values in the set {0, 1, . . . , 2k}. We call it multiplicity.
Theorem 2.1 allows to transfer the normal forms (4.2) to normal forms for inte-

gral curves diffeomorphic to A2k in any fixed contact space, for example

(4.3)
(

R
2n+1, (α)

)

, α = dz − y1dx1 − · · · − yndxn.

Take any contact 1-forms αi whose algebraic restrictions to A2k are equal to xi
1θ, i =

0, 1, . . . , 2k − 1, and take a contact 1-form α2k with the zero algebraic restriction to
A2k. A diffeomorphism Φi bringing αi to the contact 1-form α in (4.3) brings A2k to
a certain curve Ai

2k. By Theorems 2.1, 2.2 and 2.5 we obtain the following corollary.

Corollary 4.5 Any integral curve γ in the contact space (4.3) which is diffeomorphic to

A2k is contactomorphic to the curve A0
2k if n = 1 and to one and only one of the curves

A0
2k, . . . ,A

2k
2k if n ≥ 2. The image of γ is contained in a smooth isotropic 2-dimensional

submanifold (or, equivalently, in a smooth Legendrian submanifold) if and only if γ is
contactomorphic to A2k

2k.

Example Let n = 2. One can take

αi = xi
1θ + x3dx1 + x4dx2 + dx5, i = 0, . . . , 2k− 1,

α2k = x3dx1 + x4dx2 + dx5.
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These contact 1-forms can be brought to α = dz − y1dx1 − y2dx2 by the diffeomor-
phisms

Φi : (x1, x2, y1, y2, z)→ (x1, x2,−x3 − (2k + 1)xi
1x2,−x4 + 2xi+1

1 , x5),

Φ2k : (x1, x2, y1, y2, z)→ (x1, x2,−x3,−x4, x5).

We obtain:

Ai
2k : x1 = t2, x2 = t2k+1, y1 = −(2k + 1)t2k+2i+1, y2 = 2t2i+2, z = 0,

A2k
2k : x1 = t2, x2 = t2k+1, y1 = y2 = z = 0.

Now we will construct an invariant

µ : Int(A2k,R
2n+1, α)→ {0, 1, . . . , 2k},

where Int(A2k,R
2n+1, α) denotes the set of all integral curves γ in a fixed contact

space
(

R
2n+1, (α)

)

which are diffeomorphic to A2k. Take any smooth 2-manifold S
containing the image of γ. The algebraic restriction of (α) to the image of γ can be

represented by a Pfaff equation (β) on S. Let H be a generator of the ideal consisting
of functions on S vanishing at points of γ. The integrability of γ implies

β ∧ dH = FHΩ,

where Ω is a non-degenerate volume form and F is some function. Let β1, β2 be the
coefficients of β in any coordinate system (x1, x2) on S. Consider the ideal

J =

(

β1, β2, F,
∂H

∂x1

,
∂H

∂x2

)

generated by the coefficients of β, the function F, and the partial derivatives of H.

Consider the factor space R[[x1, x2]]/ J, where R[[x1, x2]] is the ring of all formal se-
ries.

Definition We will say that the number

µ = dim R[[x1, x2]]/ J

is the multiplicity of the curve γ ∈ Int(A2k,R
2n+1, α).

Proposition 4.6 The multiplicity µ of a curve γ ∈ Int(A2k,R
2n+1, α) is an invariant of

the algebraic restriction of the contact structure (α) to the image of γ. It is well-defined:
µ does not depend on the choice of S, a coordinate system on S, a 1-form β representing
the algebraic restriction, a generator H, and a volume form Ω.
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Proof We use Theorem 2.3. It suffices to prove that µ is a well-defined invariant
of the algebraic restriction if S is fixed. Then, by Theorem 2.3, the choice of S is

irrelevant.

The choice of a coordinate system on S is irrelevant because the function F is con-
structed in a coordinate-free way, the ideal generated by the coefficients of β and the

ideal generated by the partial derivatives of H also can be constructed in a coordinate-
free way: the first ideal consists of functions of the form v⌋β, and the second one
consists of functions of the form v⌋dH, where v is an arbitrary vector field.

Multiplication of H by a non-vanishing function does not change the ideal gener-
ated by the partial derivatives of H since H ∈ ( ∂H

∂x1

, ∂H
∂x2

). It changes the function F to

a function F̃ such that F̃ − F ∈ (β1, β2). Therefore the ideal J remains the same, i.e.,
the choice of a generator H is irrelevant.

It is clear that the choice of Ω is also irrelevant and that the ideal J remains the
same under multiplication of β by a non-vanishing function.

It remains to check that the ideal J does not change when replacing β to another
1-form β̃ with the same algebraic restriction to A2k. The latter means that β̃ = β +
Hγ + f dH, where γ is a 1-form and f is a function. Replacing β by β̃ we do not
change the ideal (β1, β2,

∂H
∂x1

, ∂H
∂x2

), and the function F remains the same modulo the

ideal ( ∂H
∂x1

, ∂H
∂x2

). Therefore the ideal J remains the same.

Since the multiplicity of the singularity of the function H = x2k+1
1 − x2

2 is equal

to dim R[[x1, x2]]/( ∂H
∂x1

, ∂H
∂x2

) = 2k then the multiplicity of any algebraic restriction to
A2k does not exceed 2k. It might be equal to any integer ∈ {0, 1, . . . , 2k}.

Example The multiplicity of the algebraic restriction [(xi
1θ)]A2k

is equal to
min(i, 2k), i ≥ 0.

In fact, taking H = x2k+1
1 − x2

2 we have θ ∧ dH = 2(2k + 1)H and consequently
F = xi

1 up to multiplication by a non-vanishing function. Therefore the ideal J is
generated by the functions x2, xi

1, x2k
1 and µ = min(i, 2k).

The multiplicity of the zero algebraic restriction is equal to 2k. The given example
and Proposition 4.6 prove Proposition 4.4. We also obtain the following corollary.

Corollary 4.7

(i) All curves in Int(A2k,R
3, α) are contactomorphic. Any curve in Int(A2k,R

3, α)
has multiplicity 0.

(ii) In the set Int(A2k,R
2n+1, α) with n ≥ 2 there are, up to contactomorphisms, ex-

actly (2k + 1) integral curves. The multiplicity of any such curve takes values in the
set {0, 1, . . . , 2k}. Two curves in Int(A2k,R

2n+1, α) are contactomorphic if and
only if they have the same multiplicity.

(iii) The multiplicity of a curve γ ∈ Int(A2k,R
2n+1, α), n ≥ 2 takes the maximal

possible value 2k if and only if the image of γ is contained in a smooth isotropic
2-dimensional submanifold of the contact space (or, equivalently, in a smooth Leg-
endrian submanifold).
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Example The curves

γs : x1 = t2, x2 = t2k+1, y1 = t2k+2s+1, y≥2 = x≥3 = 0, z = 2κt2k+2s+3, s ≥ 0,

κ = 1/(2k + 2s + 3),

are integral curves in the contact space (4.3). The image of any of these curves is
contained in the smooth 2-manifold

S : y1 = xs
1x2, y≥2 = x≥3 = 0, z = 2κxs+1

1 x2.

The restriction of the contact structure to S is a Pfaff equation of S(x1, x2) generated
by the 1-form β = κxs

1θ, where θ is the 1-form (4.1). The ideal of functions on

S vanishing at points of A2k is generated by H(x1, x2) = x2k+1
1 − x2

2. The function
F = (β ∧ dH)/HΩ is equal to xs

1 up to multiplication by a non-vanishing function.
Therefore the ideal J is generated by x2, xs

1, x2k
1 and the multiplicity of the curve γs is

equal to min(s, 2k).

Corollary 4.8 Any integral curve in the contact space (4.3) of dimension ≥ 5 which

is diffeomorphic to A2k is contactomorphic to one and only one of the curves γs, s ∈
{0, 1, . . . , 2k}.

Remark Another invariant of a curve γ ∈ Int(A2k,R
2n+1, α) is

µ ′
= dim R[[x1, x2]]/

(

β1, β2,
∂H

x1

,
∂H

x2

)

,

where β1, β2 and H are the same as in the definition of the multiplicity µ. It is easy
to see that

µ ′
= min(µ + 1, 2k).

This means that µ ′ distinguishes all curves γ ∈ Int(A2k,R
2n+1, α) such that the al-

gebraic restriction of the contact structure (α) to the image of γ is not zero (i.e.,
integral curves whose image does not belong to a smooth Legendrain submanifold).
Nevertheless, µ ′ does not distinguish curves with multiplicities 2k− 1 and 2k.

Remark The difference 2k − µ shows how far the image of a curve γ ∈
Int(A2k,R

2n+1, α) is from the nearest smooth isotropic 2-manifold, cf. [Ar-1, Sec-
tion 4]. This can be expressed as follows. Let us say that a smooth 2-manifold S is
s-jet-isotropic if the restriction of the contact form to S is a 1-form with zero s-jet.

Theorem 2.4 and results in this section imply that if the multiplicity of γ is equal to
µ < 2k then the image of γ is contained in some smooth µ-jet-isotropic submanifold
and is not contained in any smooth (µ + 1)-jet-isotropic submanifold.

5 Non-Integral Curves Diffeomorphic to A2k

In this section we use results of Section 2 to start the classification of arbitrary curves
γ : R →

(

R
2n+1, (α)

)

which are diffeomorphic to the curve

(5.1) A2k : x1 = t2, x2 = t2k+1, x≥3 = 0.
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We will use the notation (A2k,R
2n+1, α) for the space of all such curves. Note

that the set Int(A2k,R
2n+1, α) considered in Section 4 has infinite codimension in

(A2k,R
2n+1, α).

The case k = 1 was studied by V. Arnol’d in [Ar-1, Section 3]. Theorem 2 in
[Ar-1, Section 3] states that if n ≥ 2 then there are exactly 5 simple singularities in
(A2,R

2n+1, α) called a0, b1, c2, e3, f 4. Our results imply that e3 and f 4 are the same

singularity, i.e., there exists a contactomorphism sending f 4 to e3. Such a contacto-
morphism is constructed explicitly, see example after Corollary 5.4.

In this section we distinguish all simple singularities in (A2k,R
2n+1, α) (for any

k ≥ 1, n ≥ 1) in canonical terms. This involves the order of tangency of a curve

γ ∈ (A2k,R
2n+1, α) with the contact structure, the limit tangent line l1 to γ and the

2-plane L2 ⊂ T0R
2n+1 which is tangent to any smooth 2-dimensional submanifold

containing the image of γ.

Definition A curve γ ∈ (A2k,R
2n+1, α) is simple if there exists l ≥ 0 and curves

γ1, . . . , γp ∈ (A2k,R
2n+1, α) such that any curve γ̃ ∈ (A2k,R

2n+1, α) with the l-jet
sufficiently close to the l-jet of γ is contactomorphic to one of the curves γ1, . . . , γp.

Theorem 5.1 A curve in (A2k,R
2n+1, α) is simple if and only if it has tangency with

the contact structure (α) of order ≤ 3. If n = 1 (resp. n ≥ 2) then there are, up to

contactomorphisms, exactly 3 (resp. 4) simple curves in (A2k,R
2n+1, α).

The order of tangency of any curve γ with any contact structure (α) can be defined
as follows. Take the 1-form γ∗α on R

1. It has the form a(t)dt . The order of tangency
of γ and (α) is equal to r if the Taylor series of a(t) starts with a term of order r. The
zero order of tangency (the case a(0) 6= 0) means transversality. If the function a(t)

has zero Taylor series then the order of tangency is∞ (this is so for integral curves,
and in the analytic category — for integral curves only). For example, the order of
tangency of the curve x = t r1 , y = t r2 , z = t r3 , r1, r2, r3 ≥ 1, with the contact
structure (dz − ydx) is equal to min(r3 − 1, r1 + r2 − 1).

Notation The order of tangency of a curve γ ∈ (A2k,R
2n+1, α) with the contact

structure (α) will be denoted ord = ord(γ, α).
No singular curve, in particular A2k, can be transversal to a contact structure,

therefore ord(A2k, α) ≥ 1. The minimal order of tangency ord(A2k, α) = 1 has
the following geometric meaning. The image of γ ∈ (A2k,R

2n+1, α) is contained in
a smooth 2-dimensional manifold S. Such a manifold is not unique, but all such
manifolds have the same tangent 2-plane at 0. Denote this tangent 2-plane by L2 ⊂
T0R

2n+1. The curve γ has unique limit tangent line at 0 — a 1-dimensional subspace
l1 ⊂ L2. For example, in the coordinates of normal form (5.1) the plane L2 is spanned
by ∂

∂x1

, ∂
∂x2

, and the line l1 is spanned by ∂
∂x1

.
Restrict the contact 1-form α to the plane S = (x1, x2) containing the image of

A2k:

(5.2) α|TS = α1(x1, x2)dx1 + α2(x1, x2)dx2.

Then ord(A2k, α) is the order of zero of the 1-form

(5.3)
(

2tα1(t2, t2k+1) + (2k + 1)t2kα2(t2, t2k+1)
)

dt.
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We see that ord(γ, α) is equal to 1 if and only if α1(0) 6= 0. This is equivalent to the
condition that the contact hyperplane at 0 is transversal to the line l1 = span

(

∂
∂x1

)

.

Therefore ord(γ, α) = 1 if and only if the contact hyperplane at 0 is transversal to the
line l1.

The plane L2 and the line l1 allow to define the singularity classes of curves γ ∈
(A2k,R

2n+1, α) distinguished by the following conditions on a curve γ:

C1. The contact hyperplane at 0 is transversal to the line l1.

C2. The contact hyperplane at 0 contains the line l1, but transversal to the 2-plane L2.
C3. The contact hyperplane at 0 contains the 2-plane L2. The 2-form dα does not

annihilate the 2-plane L2.
C4. The contact hyperplane at 0 contains the plane L2. The 2-form dα annihilates

the 2-plane L2.

These singularity classes are well-defined — the condition dα|L2
6= 0 does not

depend on the choice of α describing a fixed contact structure provided that the

contact hyperplane at 0 contains the 2-plane L2.

If n ≥ 2 then the classes C1, C2, C3, C4 are realizable (not empty), but if n = 1

then only C1, C2, C3 are realizable. In fact, if (α) is a contact structure on R
3 tangent

to a 2-plane L2 ⊂ T0R
3 then L2 = kerα(0) and consequently dα|L2

6= 0, i.e., the case
C4 is impossible.

Theorem 5.2 The three simple singularities of curves γ ∈ (A2k,R
3, α) correspond to

the singularity classes Ci ∩ {ord ≤ 3}, i = 1, 2, 3. The four simple singularities of
curves γ ∈ (A2k,R

2n+1, α), n ≥ 2 correspond to the singularity classes Ci ∩ {ord ≤ 3},
i = 1, 2, 3, 4.

The intersection Ci ∩ {ord ≤ 3} can easily be analyzed using (5.2) and (5.3). As

we already explained, C1 = {ord = 1}, therefore C1 ∩ {ord ≤ 3} = C1. For i ≥ 2
the intersection Ci ∩ {ord ≤ 3} expresses in different terms in the cases k = 1 (the
curve A2) and k ≥ 2 (the curves A4,A6, . . . ).

Let k = 1. The 1-form (5.3) takes the form
(

2tα1(t2, t3) + 3t2α2(t2, t3)
)

dt . The
class C2 corresponds to the case α1(0) = 0, α2(0) 6= 0. In this case ord = 2. The
inverse is also true: if ord(γ, α) = 2 then α1(0) = 0, α2(0) 6= 0, which means that

γ ∈ C2. Therefore C2 = {ord = 2} and consequently C2 ∩ {ord ≤ 3} = C2.

In the case k = 1 we also see that the class C3 ∪ C4 corresponds to the condition

α1(0) = α2(0) = 0, and the class {ord = 3} corresponds to the condition α1(0) =

α2(0) = 0, ∂α1

∂x1

(0) 6= 0. Therefore {ord = 3} ⊂ C3 ∪C4. If n = 1 then C4 is empty
and consequently C3 ∩ {ord ≤ 3} = {ord ≤ 3}.

Therefore in the case k = 1 Theorem 5.2 can be reformulated as follows.

Corollary 5.3 The three simple singularities of curves γ ∈ (A2,R
3, α) are distinguished

by ord(γ, α): there is exactly one singularity such that ord(γ, α) = 1, exactly one
singularity such that ord(γ, α) = 2, and exactly one singularity such that ord(γ, α) =

3. The four simple singularities of curves γ ∈ (A2,R
2n+1, α), n ≥ 2 are as follows: there

is exactly one singularity such that ord(γ, α) = 1, exactly one singularity such that
ord(γ, α) = 2, and exactly two singularities such that ord(γ, α) = 3. The latter two
singularities of order 3 correspond to the cases dα|L2

6= 0 and dα|L2
= 0, where L2 is the
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tangent 2-plane at 0 to some (and then any) smooth 2-manifold containing the image
of γ.

Now we consider the case k ≥ 2. In this case the class {ord = 2} is empty —
for any curve γ ∈ (A2k,R

2n+1, α) either ord(γ, α) = 1 (if and only if γ ∈ C1) or

ord(γ, α) ≥ 3. The class C2 corresponds to the condition α1(0) = 0, α2(0) 6= 0, the
class C3 ∪C4 — to the condition α1(0) = α2(0) = 0, and the class {ord = 3}— to
the condition α1(0) = 0, ∂α1

∂x1

(0) 6= 0.

Corollary 5.4 The three simple singularities of curves γ ∈ (A2k,R
3, α), k ≥ 2, are as

follows: there is exactly one singularity such that ord(γ, α) = 1, exactly one singularity
such that ord(γ, α) = 3 and the contact structure is transversal to the 2-plane L2, and

exactly one singularity such that ord(γ, α) = 3 and the contact structure is tangent
to L2. The four simple singularities of curves γ ∈ (A2k,R

2n+1, α), k ≥ 2, n ≥ 2 are as
follows: there is exactly one singularity such that ord(γ, α) = 1, exactly one singularity
such that ord(γ, α) = 3 and the contact structure is transversal to L2, and exactly two

singularities such that ord(γ, α) = 3 and the contact structure is tangent to L2. The
latter two singularities correspond to the cases dα|L2

6= 0 and dα|L2
= 0.

Example In [Ar-1] V. Arnol’d obtained 5 singularities of curves diffeomorphic to A2

in the contact space

(5.4) (R
2n+1, α), α = dz − y1dx1 − · · · − yndxn.

represented by the curves

a0 : z = t2, x1 = t3, y≥1 = 0, x≥2 = 0,

b1 : z = t3, x1 = t2, y≥1 = 0, x≥2 = 0,

c2 : z = t4, x1 = t2, y1 = t3, y≥2 = x≥2 = 0,

e3 : z = t4, x1 = t2, x2 = t3, y1 = t5, y≥2 = x≥3 = 0,

f 4 : z = t4, x1 = t2, x2 = t3, y≥1 = 0, x≥2 = 0

(notations are taken from [Ar -1]). Let us show that e3 and f 4 are the same singularity,

i.e., the curves e3 and f 4 are contactomorphic. The curves e3 and f 4 have the same
order of tangency 3 with the contact structure. The image of the curve e3 belongs to
the 2-manifold z = x2

1, y1 = x1x2, y≥2 = x≥3 = 0, and the image of f 4 belongs to
the 2-manifold z = x2

1, y≥1 = 0, x≥3 = 0. The 2-plane L2 for e3 and f 4 is the same:

L2 = span( ∂
∂x1

, ∂
∂x2

). The restriction of dα to L2 is zero. Therefore the curves e3 and

f 4 belong to the class C4 ∩ {ord ≤ 3} and by Theorem 5.2 (or Corollary 5.3) they
are contactomorphic.

The curve a0 has tangency of order 1 with the contact structure, and the curve

b1 — tangency of order 2. The curve c2 has tangency of order 3 with the contact
structure, its image is contained in the 2-manifold z = x2

1, y≥2 = x≥2 = 0, therefore
for c2 the plane L2 is spanned by ∂

∂x1

and ∂
∂y1

. The restriction of the contact structure
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to L2 is not zero. Therefore by Theorem 5.2 (or Corollary 5.3) any simple curve in
(A2,R

2n+1, α) is contactomorphic to one and only one of the curves a0, b1, c2, e3 if

n ≥ 2 (e3 can be replaced by f 4), and to one and only one of the curves a0, b1, c2 if
n = 1.

Remark It is not so easy to find explicitly a contactomotphism sending e3 to f 4.

Here is one such contactomorphism:

z = z̃ + (z̃ − x̃2
1)x̃2/2, xi = x̃i (1 ≤ i ≤ n),

y1 = ỹ1(1 + x̃2/2)− x̃1x̃2,

y2 = ỹ2(1 + x̃2/2) + (z̃ − x̃2
1)/2,

yi = (1 + x̃2/2)ỹi (3 ≤ i ≤ n).

Example Consider the following curves diffeomorphic to A2k in the contact space
(5.4):

C1 : z = t2, y1 = t2k+1, y≥2 = x≥1 = 0,

C2 : z = t2k+1, y1 = x1 = t2, y≥2 = x≥2 = 0,

C3 : z = t4, y1 = t2, x1 = t2k+1, y≥2 = x≥2 = 0,

C4 : z = t4, y1 = t2, y2 = t2k+1, y≥3 = x≥1 = 0.

It is easy to check that the curve Ci belongs to the singularity class Ci∩{ord ≤ 3},
i = 1, 2, 3, 4. Therefore by Theorem 5.2 any simple curve in (A2k,R

2n+1, α) is con-
tactomorphic to one and only one of the curves C1, C2, C3, C4 if n ≥ 2 and to one

and only one of the curves C1,C2,C3 if n = 1. This is so for any k ≥ 1. If k = 1
then the normal form C2 can be simplified — the curve C2 is contactomorphic to the
curve z = t3, x1 = t2, y≥1 = x≥2 = 0.

The proofs of Theorems 5.1 and 5.2 are based on the classification of the algebraic

restrictions to A2k of all possible contact structures on R
2n+1(x1, . . . , x2n+1).

Proposition 5.5 If A2k belongs to the singularity class Ci∩{ord ≤ 3}, then the algebraic

restriction of the contact structure to the image of A2k is diffeomorphic to the algebraic
restriction

[(dx1)]A2k
if i = 1; [(dx2 + x1dx1)]A2k

if i = 2;

[(x1(dx1 + dx2))]A2k
if i = 3; [(x1dx1)]A2k

if i = 4.

Proof We will restrict ourself to the proof for the case i = 4 (the proof for the other
three cases is similar). Take coordinates in which A2k has form (5.1). The restriction

of the contact structure to A2k can be represented by a 1-form α = α1(x1, x2)dx1 +
α2(x1, x2)dx2. The relations

[2x2dx2]A2k
= [(2k + 1)x2k

1 dx1]A2k
,

[2x2k+1
1 dx2]A2k

= [2x2
2dx2]A2k

= [(2k + 1)x2k
1 x2dx1]A2k
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imply that if j2kα2(x1, 0) = 0 then [α]A2k
= [a(x1, x2)dx1]A2k

for some function
a(x1, x2). We will show below that the condition j2kα2(x1, 0) = 0 can be reached by

a diffeomorphism preserving A2k.

The function a(x1, x2) can be expressed in the form a1(x1) + x2a2(x1) modulo
(x2k+1

1 −x2
2). Therefore [a(x1, x2)dx1]A2k

=
[(

a1(x1)+x2a2(x1)
)

dx1

]

A2k

. The assump-

tion A2k ∈ C4 ∩ {ord ≤ 3} implies that a1(0) = a2(0) = 0, a ′
1(0) 6= 0. Consequently

the function a1(x1) + x2a2(x1) has the form Q(x1, x2)x1, where Q(0) 6= 0, and we get
the normal form [(x1dx1)]A2k

.

A diffeomorphism of the plane R
2(x1, x2) preserving A2k : x1 = t2, x2 = t2k+1 and

reducing to zero the 2k-jet of the function α2(x1, 0) can be constructed as follows.

Take a vector field of the form

X = (c0 + c1x1 + · · · + c2k1
x2k

1 )
(

2x2

∂

∂x1

+ (2k + 1)x2k
1

∂

∂x2

)

.

Let Xt be the flow of X. Since X is tangent to A2k then the diffeomorphism X1 pre-
serves A2k. It is easy to see that the assumptions α1(0) = α2(0) = 0, ∂α1∂x1(0) 6= 0

imply that for suitable c0, c1, . . . , c2k the 1-form (X1)∗α has the form a(x1, x2)dx1 +
b(x1, x2)dx2 with j2kb(x1, 0) = 0.

Proposition 5.5 and Theorem 2.1 imply that all curves γ ∈ (A2k,R
2n+1, α) be-

longing to the singularity class Ci ∩ {ord ≤ 3} with fixed i ∈ {1, 2, 3, 4} are con-
tactomorphic. To prove Theorems 5.1 and 5.2 it remains to prove that there are no

simple curves in the singularity class {ord ≥ 4} ⊂ (A2k,R
2n+1, α). To prove this we

will show that if ord(A2k, α) ≥ 4 then the algebraic restriction [(α)]A2k
is not simple

within algebraic restrictions [(α̃)]A2k
, where (α̃) is a contact structure close to (α).

Assume that ord(A2k, α) ≥ 4 and that the contact hyperplane at 0 is tangent to
the 2-plane L2 (if k = 1 then the first assumption implies the second one). Then

the algebraic restriction of (α) to A2k is represented by 1-form α = α1(x1, x2)dx1 +
α2(x1, x2)dx2, where the 1-jet of α has the form j1α = a1x1dx2 + a2x2dx1 + a3x2dx2.
Transfer α to a vector field X on the (x1, x2)-plane via a volume form. The ratio of
the eigenvalues of the linearization of X is λ = λα = a2/a1. If α̂ is a 1-form close

to α and the Pfaff equations (α̂) and (α) are diffeomorphic then λα̂ = λα (provided
the genericity assumptions a1 6= 0, a1 6= a2). The modulus λ does not change when
replacing α by another 1-form α̃ with the same algebraic restriction to A2k. In fact,
α̃ = α + Hµ + f dH, where H = x2k+1

1 − x2
2, µ is a 1-form, f is a function, therefore

j1α̃ = a1x1dx2 + a2x2dx1 + ã3x2dx2 and λα̃ = λα. Consequently λ is a modulus in
the classification of algebraic restrictions to A2k of contact structures close to (α).

Assume now that ord(A2k, α) ≥ 4 and the contact hyperplane at 0 is transversal
to the 2-plane L2. This is possible if k ≥ 2 only. In this case a modulus appears in
the classification of 3-jets of algebraic restrictions. The algebraic restriction can be

represented by 1-form dx2 + f (x1, x2)dx1, where f (0) = 0, ∂ f
∂x1

(0) = 0. Using the

group of diffeomorphisms preserving the image of A2k one can reduce the 3-jet of
f (x1, x2) to ax2

1 + bx3
1. If a 6= 0 then a can be reduced to 1, and we get the family

dx2 + (x2
1 + λx3

1)dx1 of the 3-jets of algebraic restrictions. It is not hard to prove that
in this normal form λ is a modulus.
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6 Proofs of Theorems 2.1 and 2.4

The implication (ii)→ (i) in Theorem 2.4 follows from Theorem 2.3. The implica-
tion (i) → (ii) is based on the following proposition which will also be used in the
proof of Theorem 2.1. Recall that by m(n) we denote the minimal dimension of a

smooth submanifold containing the set N .

Proposition 6.1 Let N be a subset of a contact manifold (M, α). Let S be a smooth m-
dimensional submanifold of M containing N, where m = m(N). Let β be the geometric

restriction of α to S. If β̂ is a 1-form on S such that β and β̂ have the same algebraic
restriction to N then there exists a 1-form α̂ on M whose geometric restriction to S is
equal to β̂ and such that α̂(0) = α(0), dα̂(0) = dα(0). Consequently, α̂ is a contact
1-form at 0.

Proof The equality of the algebraic restrictions means that β − β̂ = µ + dH, where
µ and H are a 1-form and a function on S respectively vanishing at any point of N .

If dµ(0) 6= 0 or dH(0) 6= 0 then the ideal of functions on S vanishing at any point
of N contains a function g with non-vanishing differential. Then N is contained in
the smooth hypersurface of S given by the equation g = 0. This contradicts to the
definition of m(N). Therefore dµ(0) = 0 and dH(0) = 0. Consequently β̂(0) = β(0)

and dβ̂(0) = dβ(0).
Take a projection π : M → S (a nonsingular map preserving S pointwise). Set

α̂ = π∗β̂ + α − π∗β. It is clear that the geometric restriction of α̂ to S is β̂. Since
β(0) = β̂(0) and dβ(0) = dβ̂(0) then α(0) = α̂(0) and dα(0) = dα̂(0).

Proof of Theorem 2.4 Implication (i) → (ii): We will prove this implication us-
ing Theorem 2.1 and Proposition 6.1. One can assume that 1-forms β and β̂ have the

same algebraic restriction to N . By Proposition 6.1 there exists another contact struc-
ture (α̂) on M whose geometric restriction to S is equal to (β̂). The contact structures
(α) and (α̂) have the same algebraic restriction to N . By Theorem 2.1 there exists a
diffeomorphism Φ of M preserving N and sending the contact structure (α̂) to the

contact structure (α). This diffeomorphism sends the manifold S to some manifold
Ŝ containing N . Let φ be the restriction of Φ

−1 to Ŝ. Then φ∗(β̂) = (α|TŜ).

Proof of Theorem 2.1 To prove Theorem 2.1 we have to show that if α0 and α are

contact 1-forms on M with the same algebraic restriction to a subset N ⊂ M then
there exists a local diffeomorphism preserving N pointwise and sending the contact
structure (α) to the contact structure (α0).

Let m = m(N) be the minimal dimension of a smooth submanifold of M contain-

ing N . Let S be one of such smooth m-dimensional submanifolds of M. (It is possible
that m = dim M, then S = M). By Proposition 6.1 there exists a contact 1-form α1

whose geometric restriction to S coincides with that of α and such that the difference
of α1 and α0 vanishes at the origin along with its differential. By Darboux–Givental’

Theorem 1.1 there exists a diffeomorphism preserving pointwise S (in particular, N)
and sending (α) to (α1). Therefore to prove Theorem 2.1 it suffices to prove that
the contact structures (α0) and (α1) can be brought one to the other by a diffeomor-
phism preserving N pointwise. The advantage of this reduction is as follows: since
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the difference of α1 and α0 vanishes at 0 along with its differential then the 1-form
αt = α0 + t(α1 − α0) is contact for all t . This allows use of the homotopy method.

By the homotopy method, it suffices to prove the solvability of the equation

(6.1) LZt
αt + htαt = α0 − α1

with respect to a family Zt of vector fields such that Zt (n) = 0 for any n ∈ N and

t ∈ [0, 1], and a family of functions ht . Here LZt
is the Lie derivative along the vector

field Zt .
Since α0 and α1 have the same algebraic restriction to N then α0 − α1 = dH + µ,

where H is a function vanishing at any point of N and µ is a 1-form vanishing at any

point of N . The 1-form αt is contact, therefore αt (0) 6= 0 and there exists a family Yt

of vector fields such that Yt ⌋αt = 1, t ∈ [0, 1]. The vector field HYt vanishes at any
point of N , for all t , and satisfies the relation LHYt

αt = dH + HYt ⌋dαt . Introduce,
instead of the unknown family of vector fields Zt in (6.1), another family Vt such that

Zt = HYt + Vt . One gets the equation

(6.2) LVt
αt + htαt = θt = µ−HYt ⌋dαt ,

with respect to (Vt , ht ) such that Vt (n) = 0, n ∈ N , t ∈ [0, 1]. Note that the 1-form

θt vanishes at any point of N . To solve (6.2) we use the following lemma.

Lemma 6.2 Let αt be a family of contact 1-forms on a (2k+1)-space. If νt is a family of
1-forms such that αt ∧(dαt )

k−1∧νt = 0 then νt = htαt for some family ht of functions.

Let us show how one can use Lemma 6.2 to prove the solvability of equation (6.2).
Let dim M = 2k + 1. Since the 1-forms αt in (6.2) are contact then Lemma 6.2 allows
to replace equation (6.2) by the equation

(6.3) (LVt
αt ) ∧ αt ∧ (dαt )

k−1
= θt ∧ αt ∧ (dαt )

k−1,

with respect to a family Vt of vector fields vanishing at any point of N . Let us show
that the family Vt defined by the relation

(6.4) Vt ⌋
(

αt ∧ (dαt )
k
)

= kθt ∧ αt ∧ (dαt )
k−1

is a required solution of (6.3). At first note that Vt is well defined since αt ∧ (dαt )
k is

a family of non-degenerate volume forms. Note also that Vt vanishes at any point of
N since so does the 1-form θt . The external multiplication of (6.4) by αt leads to the

relation Vt ⌋αt = 0. It follows that LVt
αt = Vt ⌋dαt and (LVt

αt ) ∧ αt ∧ (dαt )
k−1

=

(Vt ⌋(αt ∧ (dαt )
k))

/

k. By (6.4) Vt satisfies equation (6.3).

Proof of Lemma 6.2 Since αt is a family of non-vanishing 1-forms then it suffices

to prove that αt ∧ νt = 0. If k = 1 there is nothing to prove. Assume that k ≥ 2.
Let p be a point of the (2k + 1)-space. Denote by Kp,t the kernel of the form αt at
the point p, and by δp,t the restriction of dαt (p) to the 2k-space Kp,t . Assume that
(αt ∧ νt )(p) 6= 0. Then the set of vectors of the space Kp,t annihilated by νt (p) is a

hyperplane in Kp,t . Denote it by W p,t . Sinceαt is contact then δp,t is a non-degenerate
2-form. Since k ≥ 2 then dim W p,t = 2k − 1 > k/2, therefore δp,t cannot vanish
when being restricted to W p,t . This contradicts to the relation αt ∧ (dαt )

k−1∧νt = 0.
The contradiction shows that (αt ∧ νt )(p) = 0 at any point p of the (2k + 1)-space.
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A Why is the 3-Dimensional Case Different?

The results in Sections 3–5 show that the classification of singular curves in a con-

tact 3-manifold is much simpler than the classification of singular curves in contact
manifolds of dimension ≥ 5. This is so because of the realization Theorem 2.6. The
thing is that in Sections 3–5 we studied stratified 1-dimensional submanifolds N of
a contact manifold which are contained in a smooth 2-dimensional submanifold. In

notation of Section 2 one has m(N) = 2. For such N ⊂ R
2n+1 the realization Theo-

rem 2.6 implies that if n ≥ 2 then the algebraic restriction to N of any Pfaff equation
on R

2n+1 is realizable by a contact structure, but if n = 1 then there is a big set of
singular non-realizable algebraic restrictions to N .

By the results of Sections 3 and 4 any integral stratified submanifold of a contact 3-
space which is diffeomorphic to N = {x1x2 = x3 = 0} or to N = {x3

1−x2
2 = x3 = 0}

is contactomorphic to N . In these cases N is a singular Legendrian submanifold.
There are much more general results on classification of singular Legendrian sub-
manifolds. In [Gi], A. Givental’ proved the following result on structural stability of
stratified integral Legendrian submanifolds of a contact manifold within perturba-

tions preserving the equivalence class with respect to diffeomorphisms: if N1 and N2

are Legendrian stratified submanifolds of a fixed contact manifold whose germs at 0
are diffeomorphic and sufficiently close one to the other then the germ of N1 at 0 is

contactomorphic to the germ of N2 at some point p close to 0.

The possibility to replace in this statement the point p by 0 and to remove the
assumption of closeness of the germs was studied in [Zh-2] and [Is] for the case

where N1 and N2 are the images of singular Legendrian curves. In [Zh-2] it is proved
that almost any two diffeomorphic germs at a fixed point of Legendrian curves in
contact 3-space are contactomorphic. In this statement a curve is the image of a map

(R, 0) → (R
3, 0), and the words “almost any” exclude a certain set of Legendrain

curves of infinite codimension within the space of all Legendrain curves. In [Is],
G. Ishikawa proved (independently and by a different method) that in the complex
case (holomorphic curves (C, 0) → (C

3, 0)) any two diffeomorphic germs at a fixed

point of Legendrian curves are contactomorphic. These statements do not hold for
isotropic singular curves if the dimension of the contact manifold is ≥ 5, see [Ar-1]
and results of Sections 3–4 of the present paper.

B Relative Darboux Theorem for Singular Submanifolds of a Sym-
plectic Manifold

The Darboux–Givental’ theorem given in Section 2 also holds in the symplectic case:

the only local invariant of a smooth submanifold N of a symplectic space (R
2n, ω)

is the closed 2-form on N which is the geometric restriction to N of the symplectic
2-form ω, see [Ar-Gi]. Therefore it is natural to ask whether there is, in the symplec-
tic case, an analogous of the algebraic restriction and Theorem 2.1 stating that the

algebraic restriction is a complete invariant for any subset N of a symplectic space.

There are two ways to define the algebraic restriction of a closed 2-form on R
2n to

a subset N ⊂ R
2n:

(a) two germs of closed 2-forms ω1, ω2 have the same algebraic restriction to N
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if ω1 − ω2 = dα, where α is a 1-form such that α(p) = 0 for any p ∈ N (i.e., the
coefficients of α in some and then any coordinate system vanish at any point of N);

(b) two germs of closed 2-forms ω1, ω2 have the same algebraic restriction to
N if ω1 − ω2 = ω + dα, where ω is a closed 2-form and α is a 1-form such that
ω(p) = α(p) = 0 for any point p ∈ N (i.e. the coefficients of ω and α in some and

then any coordinate system vanish at any point of N).

W. Domitrz proved [Do] that if the algebraic restriction of a symplectic structure
to N is defined by (a) then Theorem 2.1 holds in the symplectic case (the proof is

similar to the proof in the contact case). Nevertheless, definition (b) is much more
natural, and namely definition (b) leads to applications including explanation of the
local symplectic algebra introduced by V. Arnol’d in [Ar-2] and obtaining further
classification results.

If N is a smooth submanifold then (a) and (b) are the same definitions: it is easy to
prove that if ω is a germ of a closed 2-form such that ω(p) = 0 for any point p ∈ N
then ω = dα, where α is a germ of a 1-form such that α(p) = 0 for any point p ∈ N

(the simplest version of the relative Poincaré lemma). This statement remains true if
N is a stratified submanifold provided that the singularities of N are not too deep —
a certain type of local quasi-homogeneity of N is required (see, for example, [Gi]).

Recently W. Domitrz, S. Janeczko, and the author obtained a series of new results
[Do-Ja-Zh-1] relating the Poincaré lemma property of a stratified submanifold N ,
the quasi-homogeneity of N , and the algebra of vector fields tangent to N . These
results allow to distinguish many new cases where N has the Poincaré lemma prop-

erty. Under the Poincaré lemma property definitions (a) and (b) are the same. In this
case one can construct a method [Do-Ja-Zh-2], parallel to the method of the present
paper, allowing to explain and develop the local symplectic algebra introduced in
[Ar-2]. If the Poincaré property does not hold (which is the case where N has rather

deep singularities) then the classification, with respect to symplectomorphisms, of
submanifolds diffeomorphic to N leads to additional invariants on top of the alge-
braic restriction defined by (b); this follows from the results in the work [Is-Ja]. The
work [Do-Ja-Zh-2] will be published elsewhere.
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contact space. Université de Bourgogne, Laboratoire de topologie, preprint 251.

[Zh-2] , Germs of integral curves in contact 3-space, plane and space curves. Isaac Newton
Institute for Mathematical Sciences, preprint NI00043-SGT, December, 2000.

Department of Mathematics

Technion

32000 Haifa

Israel

e-mail: mzhi@techunix.technion.ac.il

https://doi.org/10.4153/CJM-2005-053-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-053-9

