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We study generic properties of topological groups in the sense of Baire category.
First, we investigate countably infinite groups. We extend a classical result of

B. H. Neumann, H. Simmons and A. Macintyre on algebraically closed groups and
the word problem. Recently, I. Goldbring, S. Kunnawalkam Elayavalli, and Y. Lodha
proved that every isomorphism class is meager among countably infinite groups. In
contrast, it follows from the work of W. Hodges on model-theoretic forcing that there
exists a comeager isomorphism class among countably infinite abelian groups. We
present a new elementary proof of this result.

Then, we turn to compact metrizable abelian groups. We use Pontryagin duality
to show that there is a comeager isomorphism class among compact metrizable
abelian groups. We discuss its connections to the countably infinite case.

Finally, we study compact metrizable groups. We prove that the generic compact
metrizable group is neither connected nor totally disconnected; also it is neither
torsion-free nor a torsion group.
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2 Generic properties of topological groups
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1. Introduction

Motivation

Generic properties in the sense of Baire category have been extensively studied in
numerous branches of mathematics. For example, there is a vast literature on the
behaviour of the generic continuous function.

More recently, E. Akin, M. Hurley, and J. A. Kennedy [1] investigated the dynam-
ics of generic homeomorphisms of compact spaces. A. Kechris and C. Rosendal [22]
studied the automorphism groups of homogeneous countable structures. Among
numerous other results they characterized when an automorphism group admits a
comeager conjugacy class.

Even more recently, Doucha M. and Malicki [5] examined generic representa-
tions of discrete countable groups in Polish groups. I. Goldbring, S. Kunnawalkam
Ellayavalli, and Y. Lodha [11] studied generic algebraic properties in spaces of enu-
merated groups. Among many other results, they proved that in the space G′ of all
enumerated countably infinite groups the following hold:

• every group property P ⊆ G′ with the Baire property is either meager or
comeager [11, Theorem 5.1.1];

• every isomorphism class is meager in G′ [11, Theorem 1.1.6 and Remark
1.1.4];

• algebraically closed groups form a comeager set in G′ [11, Lemma 5.2.7].

To maintain the coherence and clarity of the paper, in § 3.1, we provide several
definitions and basic observations that were essentially already present in [11]. Also,
we make heavy use of a special case of [11, Lemma 5.2.7], which we state and prove
as Theorem 3.11.

Setup and goals.

First, we extend the theory developed by I. Goldbring, S. Kunnawalkam Elayavalli,
and Y. Lodha: we study further generic properties of countably infinite groups.
Then we turn to a more general family of problems: generic properties of topological
groups. We investigate two important classes of topological groups:

In §4, we study generic properties of compact metrizable abelian groups by equip-
ping the set of compact subgroups of a universal compact metrizable abelian group
TN with the Hausdorff metric. We denote this space by S(TN) and we view it as
the space of compact metrizable abelian groups. This setup was introduced in [8]
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and basic properties of spaces of the form S(G) with compact G were studied in
[8] and [9].

In section 5, we use the same approach for compact metrizable groups (with the
universal compact metrizable group

∏∞
n=1 SU(n)).

Main results and the organization of the paper

Section 2 provides preliminaries in topology and algebra.
Section 3 focuses on two results. First, we extend a classical result of

B. H. Neumann, H. Simmons, and A. Macintyre on algebraically closed groups and
the word problem while we explore the generic subgroup structure of a countably
infinite discrete group. Second, we give a new, elementary proof of the exis-
tence of a comeager isomorphism class among countably infinite discrete abelian
groups, which was previously known only by utilizing the work of W. Hodges on
model-theoretic forcing.

In §4, we make heavy use of Pontryagin duality to prove that there is a comeager
isomorphism class in the space of compact metrizable abelian groups. We discuss
connections to the countable discrete abelian case.

In §5, we drop commutativity and study compact metrizable groups as compact
subgroups of

∏∞
n=1 SU(n). Here we find a much less clear picture: the generic group

proves to be heterogeneous both topologically and algebraically.

2. Preliminaries

All topological groups are assumed to be Hausdorff.

Notation 2.1. For convenience let N := {1, 2, 3, . . .} throughout this paper.

Notation 2.2. Let (Xn)n∈N be topological groups. Then let us define

π[n] :
∏
k∈N

Xk →
∏
k∈N

Xk, (x(1), x(2), . . .) 7→ (x(1), . . . , x(n), 1Xn+1
, 1Xn+2

, . . .).

and

πn :
∏
k∈N

Xk → Xn, (x(1), x(2), . . .) 7→ x(n).

Notice that the πn are surjective continuous homomorphisms and the range of
π[n] is canonically isomorphic to

∏n
k=1Xk.

2.1. The space of compact subgroups

For a topological space X let K(X) denote the set of nonempty compact subsets
of X. It is a topological space with the Vietoris topology, that is, the topology
generated by basis elements of the form

{K ∈ K(X) : K ⊆ U, K ∩ V1 6= ∅, . . . ,K ∩ Vn 6= ∅}, (*)

with U, V1, . . . , Vn open in X.
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4 Generic properties of topological groups

If (X, d) is a metric space, then K(X) is also a metric space with the Hausdorff
metric:

dH(K,L) := inf{ε > 0 : Kε ⊇ L, Lε ⊇ K},

where Aε is the ε-neighbourhood of the set A. It is well-known that the Hausdorff
metric induces the Vietoris topology. It is also well-known that (K(X), dH) inherits
several topological properties of (X, d). For example, if X is compact, then K(X)
is also compact (see [21, Subsection 4.F]).

We will need the following well-known lemma.

Lemma 2.3. Let X, Y be topological spaces. A continuous map f : X → Y induces
a continuous map:

K(f) : K(X) → K(Y ), K 7→ f(K).

Proof. It is easy to check that inverse images of basis elements of the form (?) are
open. �

Now we turn to topological groups.

Proposition 2.4. For any topological group G the set

S(G) := {K ∈ K(G) : K is a subgroup of G},

is closed in K(G).

Proof. Observe that

S(G) = {K ∈ K(G) : K ·K−1 = K}.

It is easy to check that this set is closed. (Use Lemma 2.3.) �

Definition 2.5. We call the above defined S(G) the space of compact sub-
groups of G. Note that for a compact metrizable group G the space S(G) is also
compact metrizable.

We need the following well-known fact, which is a special case of [19,
Theorem 1.6].

Theorem 2.6 Let G and H be compact groups. If ϕ : G → H is a surjective
continuous homomorphism, then it is open.

2.2. Baire category

In this subsection we present well-known theorems and notions. All of them can be
found in [21].

A topological space (X, τ) is called Polish if it is separable and completely
metrizable. Clearly, countable discrete spaces are Polish. In particular, 2 = {0, 1}
and N with the discrete topologies are Polish. The following proposition is well-
known:
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Proposition 2.7. Countable products of Polish spaces are Polish. In particular,
2A and NA are Polish for any countable set A.

A subset E of a topological space X is called nowhere dense if the closure of
E has empty interior, meager if it is a countable union of nowhere dense sets, and
comeager if its complement is meager.

Theorem 2.8 (Baire Category Theorem). In a completely metrizable space every
nonempty open set is nonmeager.

If X is a completely metrizable space of objects (sets, functions, groups, etc.),
we say that the property P is generic in X if {x ∈ X : x is of property P} is
comeager in X. We also say that the generic x ∈ X has property P.

Another well-known theorem characterizes Polish subspaces of Polish spaces.

Theorem 2.9. A subspace E of a Polish space X is Polish if and only if E is Gδ

in X. In particular, closed subspaces are Polish.

Remark 2.10. It is well-known that a subset of a Polish space is comeager if and
only if it contains a dense Gδ set. It follows immediately that an Fσ subset of a
Polish space is nonmeager if and only if it has nonempty interior.

2.3. Group theory

We will need the following notion from combinatorial group theory.

Definition 2.11. A finitely generated group G has solvable word problem if
there exists a Turing machine that decides for every word in the generators of G
whether it represents the identity element. It is easy to see that the solvability of
the word problem is independent of the choice of the finite generating set.

Let F be a free group on the infinite generating set X = {x1, x2, . . . } and G be
any group. Recall (see [26, Chapter 3]) that an element of the free product F ? G
is a word whose letters are from X and G. Intuitively, in a word w ∈ F ? G letters
from X are variables and letters from G are parameters.

Let E and I be finite subsets of F ? G. We view E as a set of equations and I
as a set of inequations. A solution of the system (E, I ) in G is a homomorphism

f : F → G such that the unique homomorphism f̃ : F ? G → G extending both f
and the identity of G maps every e ∈ E to 1G and does not map any i ∈ I to 1G .

The system (E, I ) is consistent with G if it has a solution in some larger group
H ≥ G. That is, if there exists a group H and an embedding h : G→ H such that
for the unique homomorphism h̃ : F ?G→ F ?H extending both h and the identity

of F, the system
(
h̃(E), h̃(I)

)
has a solution in H.

Definition 2.12. The group G is algebraically closed if every finite system
(E, I) of equations and inequations that is consistent with G has a solution in G.

Remark 2.13. It follows immediately from the definition that every algebraically
closed group is infinite. Some authors prefer the term existentially closed that comes
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6 Generic properties of topological groups

from model theory and they reserve the term algebraically closed for the case when
one does not allow inequations in the definition. However, B. H. Neumann proved
in [30] that the two notions coincide except for the trivial group. Since we study
only infinite groups, the terminology will cause no confusion.

By a standard closure argument, one easily verifies the following.

Theorem 2.14 (Scott, [38, Theorem 1]). Every countable group can be embedded
into a countable algebraically closed group. In particular, algebraically closed groups
exist.

We also need the following proposition.

Proposition 2.15. Every algebraically closed group has a countably infinite
algebraically closed subgroup.

To prove this we need two theorems.

Theorem 2.16 [31, Chapter III] If H and K are groups with a common subgroup
G = H ∩K, then there exists a group M such that H and K are subgroups of M.

Definition 2.17. In a group G a subgroup H is elementary if for every first-
order formula ϕ in the language of group theory with parameters from H we have:
ϕ holds in G if and only if ϕ holds in H.

By the Downward Löwenheim-Skolem Theorem (see [17, Corollary 3.1.5]) we
have the following.

Theorem 2.18 If G is a group, then for every cardinality ℵ0 ≤ κ ≤ |G| there is
an elementary subgroup of G with cardinality κ.

Proof of Proposition 2.15. Fix an algebraically closed group H. By Theorem 2.18
there is a countably infinite elementary subgroup G of H. We claim that G is
algebraically closed.

Pick any finite system (E, I ) of equations and inequations with parameters from
G such that (E, I ) has a solution in some bigger group K ≥ G. Clearly, we may
choose K so that G = H ∩ K. By Theorem 2.16 there is a group M such that
H,K ≤ M . Clearly, (E, I ) has a solution in M but contains only parameters from
G. Since H is algebraically closed, (E, I ) has a solution in H as well. Moreover, (E, I )
has a solution in G because G is an elementary subgroup of H, which concludes
the proof. �

Definition 2.19. A group G is homogeneous if any isomorphism between two
finitely generated subgroups of G extends to an automorphism of G. If this exten-
sion can always be chosen to be an inner automorphism, then G is strongly
homogeneous.

The following lemma is an instance of a well-known fact in model theory (see,
for example, [17, Lemma 7.1.3]).
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Lemma 2.20. Let G be a countable group and H be a homogeneous group. Then G
can be embedded into H if and only if every finitely generated subgroup of G can be
embedded into H.

The following proposition is based on the existence of so-called HNN extensions,
a celebrated result of Higman, Neumann, and Neumann. For the proof, see [25,
Lemma 1].

Proposition 2.21. (Macintyre). Algebraically closed groups are strongly homo-
geneous.

Finally, we cite a very nice result that connects the word problem and alge-
braically closed groups. It is due to B. H. Neumann, H. Simmons and A. Macintyre,
see [32, Corollary 3.5], [39, Theorem C] and [24, Corollary 2].

Theorem 2.22 (Macintyre–Neumann–Simmons). A finitely generated group has
solvable word problem if and only if it is embeddable into every algebraically closed
group.

Remark 2.23. It is well-known that algebraically closed groups are simple [30]
and not finitely generated [32, Theorem 2.1]. Since they contain free subgroups by
Theorem 2.22, they are not locally finite either (recall that a group G is locally
finite if every finitely generated subgroup of G is finite).

3. Countably infinite discrete groups

3.1. The space of multiplication tables

By Proposition 2.7 the space NN×N of infinite tables of natural numbers is Polish.
A clopen basis for NN×N consists of sets of the form:{

A ∈ NN×N : A(n1,m1) = k1, . . . , A(nl,ml) = kl
}
, (3.1)

for ni,mi, ki ∈ N, (i = 1, . . . , l). We will study the subspace

G :=
{
A ∈ NN×N : A is the multiplication table of a group, 1 is its identity element

}
.

Definition 3.1. A group property is an isomorphism-invariant subset P ⊆ G.
The property P is generic if it is a comeager subset of G.

We would like to apply the Baire category theorem (Theorem 2.8) in G. Therefore,
by Theorem 2.9 we need to prove that G is Gδ in NN×N. The calculation is quite
straightforward, see [6, Proposition 3.1].

Remark 3.2. Consider the space introduced in [11, Section 3.1], which is also
denoted by G. To avoid confusion, here we denote it by G′. There is a natural
embedding Φ : G ↪→ G′ that maps G onto a clopen subset of G′: multiplication
tables determine inverses and we take 1 to be the identity element. Moreover, G′ is
the disjoint union of countably infinitely many copies of Φ(G). Therefore, regarding
the genericity of group properties, G and G′ are equivalent. Also, it is pointed out
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8 Generic properties of topological groups

in [11, Proposition 3.1.1] that the subspace G′ is closed in NN×N ×NN ×N. On the
other hand, G is not closed in NN×N.

We reserve the notation G̃ for the unique group of multiplication table G and
underlying set N.

Remark 3.3. When we consider elements of G we use the usual shorthands of
group theory. For example, to define the subspace of torsion groups we write

{G ∈ G : ∀n ∈ N ∃k ∈ N nk = 1}

instead of the rather cumbersome

{G ∈ G : ∀n ∈ N ∃k ∈ N G(G(. . . G(G(n, n), n), . . . , n), n)︸ ︷︷ ︸
k times

= 1}.

Remark 3.4. We also use inverses for convenience:
Fix any n,m, k ∈ N. Then e.g. nm−1 = k abbreviates ∀x (mx = 1 =⇒ nx = k).

Clearly, this defines a closed subset of G. However, the group axioms imply that it
is equivalent to ∃x (mx = 1 ∧ nx = k), which defines an open set. Thus nm−1 = k
defines a clopen set.

observation 3.5. The above-mentioned standard clopen basis (3.1) of NN×N

induces a clopen basis for G: sets of the form

{G ∈ G : ∀i ≤ l (ni ·mi = ki)} (3.2)

with l ∈ N and ni,mi, ki ∈ N for all i ≤ l constitute a basis. For practical reasons
we introduce another clopen basis for G.

Proposition 3.6. For any finite sets {U1, . . . , Uk} and {V1, . . . , Vl} of words in n
variables x1, . . . , xn and for any a1, . . . , an, b1, . . . , bk, c1, . . . , cl ∈ N the setG ∈ G :

k∧
i=1

Ui(a1, . . . , an) = bi ∧
l∧

j=1

Vj(a1, . . . , an) 6= cj

 , (3.3)

is clopen, and sets of this form constitute a basis for G.

Proof. This family extends (3.2), so it suffices to show that its elements are clopen.
Since clopen sets form an algebra, it suffices to consider only one word W and only
the case of equation. The proof is a straightforward induction on the length of W
and uses the same argument as Remark 3.4. �

observation 3.7. An important observation is that permutations induce home-
omorphisms. Let ϕ : N → N be a bijection that fixes 1. Then the induced
homeomorphism hϕ : G → G is defined as follows. Intuitively, we define hϕ(G)
by pushing forward the structure of G via ϕ. More precisely, for any G ∈ G the
multiplication table hϕ(G) is defined by the equations i · j := ϕ(G(ϕ−1(i), ϕ−1(j)))

for all i, j ∈ N. Thus ϕ is an isomorphism between G̃ and h̃ϕ(G). It is an easy
exercise to verify that hϕ is indeed a homeomorphism.
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3.2. Subgroups

As we have already mentioned in §2.3, the following nice and highly nontrivial result
is due to B. H. Neumann, H. Simmons and A. Macintyre, see [32, Corollary 3.5],
[39, Theorem C] and [24, Corollary 2].

Theorem 2.22 (Macintyre–Neumann–Simmons). A finitely generated group has
solvable word problem if and only if it is embeddable into every algebraically closed
group.

From Theorem 2.22 it is not hard to prove the following corollary. Here we omit
its proof because it follows from Theorem 3.17, which we prove in this subsection.

Corollary 3.8. The following are equivalent:

(1) The group H can be embedded into every algebraically closed group.
(2) The group H is countable and every finitely generated subgroup of H has

solvable word problem.

Note that these results connect algebraic closedness, which is a purely algebraic
notion, to computability theory. One of the main goals of this section is to prove that
the purely topological property introduced in the following definition is equivalent
to (1) and (2). We find this phenomenon noteworthy since it connects three fields
of mathematics.

Definition 3.9. For a group H let us define

EH :=
{
G ∈ G : H can be embedded into G̃

}
.

We say that the group H is generically embeddable if EH is comeager.

To prove the above-mentioned equivalence (Theorem 3.17) we need several
results, many of which are interesting in their own.

Notation 3.10. If B is a clopen set of the form {G ∈ G : ∀i, j ≤ k (i · j = mi,j)}
with k ∈ N and mi,j ∈ N for all i, j ≤ k, let suppB := {1, . . . , k}∪{mi,j : i, j ≤ k}.

The following theorem is a special case of [11, Lemma 5.2.7] (recall Remark 3.2).
For the sake of completeness and understandability we present our own proof.

Theorem 3.11 (Goldbring–Kunnawalkam Elayavalli–Lodha). The set

C := {G ∈ G : G̃ is algebraically closed}

is comeager in G.

Proof. Let F be the free group generated by X = {x1, x2 . . . }. Let G ∈ G. By
definition, G̃ is algebraically closed if and only if the following holds. For every
finite system (E, I ) of equations and inequations with elements from F ? G̃ either

(E, I ) is inconsistent with G̃ or it has a solution in G̃ (see § 2.3 for the definitions).

https://doi.org/10.1017/prm.2024.91 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.91


10 Generic properties of topological groups

Note that elements of F ? G̃ are words with letters from X and N. Clearly, there
are countably many such words. Thus, it suffices to prove that for any finite system
(E, I ) the set

C(E, I) := {G ∈ G : (E, I) is inconsistent with G̃ or (E, I) has a solution in G̃}

contains a dense open set. Fix

E = {U1(x1, . . . , xn), . . . , Uk(x1, . . . , xn)} and I = {V1(x1, . . . , xn), . . . , Vl(x1, . . . , xn)}

where x1, . . . , xn are the variables occurring in elements of E and I.
Fix a nonempty basic clopen set B = {G ∈ G : ∀i, j ≤ k (i · j = mi,j)} with

k ∈ N and mi,j ∈ N for all i, j ≤ k. We need to show that B ∩ C(E, I) contains a
nonempty open set. There are two cases.

Case 1. There exists H ∈ B such that (E, I ) has a solution in H̃. That

is, for some natural numbers a1, . . . , an we have
∧k

i=1 Ui(a1, . . . , an) = 1 and∧l
j=1 Vj(a1, . . . , an) 6= 1 in H̃. Then

U :=

G ∈ G :
k∧

i=1

Ui(a1, . . . , an) = 1 ∧
l∧

j=1

Vj(a1, . . . , an) 6= 1

 ,

is clopen in G by Proposition 3.6. Now U ⊆ C(E, I) and H ∈ U ∩B, hence U ∩B is
a nonempty open subset of B ∩ C(E, I), which completes Case 1.

Case 2. For every G ∈ B the finite system (E, I ) is unsolvable in G̃. It suffices

to prove that for every G ∈ B the finite system (E, I ) is inconsistent with G̃.

Suppose that there is some H ∈ B and a group L ≥ H̃ such that (E, I ) has a
solution a1, . . . , an in L. Clearly, we may assume that L is countable since otherwise
we could replace it by one of its countably generated subgroups. Let M be the set of
natural numbers occurring in elements of E or I. We choose any bijection ϕ : L→ N
that extends the identity of the finite set M ∪ (suppB)∪{1} (recall Notation 3.10).
We define the multiplication table K on N by pushing forward the structure of L via
ϕ. Then K̃ ∈ B and ϕ(a1), . . . , ϕ(an) is a solution of (E, I ) in K̃, a contradiction.
�

Corollary 3.12. The generic G ∈ G is simple, not finitely generated and not
locally finite.

Proof. This follows from Remark 2.23 and Theorem 3.11. �

Recall from logic that an existential sentence is a closed formula that starts with
a string of existential quantifiers followed by only a quantifier-free formula.

Remark 3.13. It is well-known [16, page 47] that a group G is algebraically closed
if and only if the following holds: for every group H ≥ G and existential formula
ϕ with parameters from G, we have that whenever ϕ holds in H, it holds in G as
well.
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Lemma 3.14. Let Φ be an existential sentence in the first-order language of group
theory. If Φ holds in some group, then Φ holds in every algebraically closed group.

Proof. Let H be a group such that Φ holds in H. By the definition of algebraically
closed groups and Remark 3.13, it suffices to show that for any algebraically closed
group G the sentence Φ holds in G ×H. Since {1} ×H and H are isomorphic, Φ
holds in {1} ×H. Hence Φ holds in G ×H because Φ is existential. �

Theorem 3.15 The isomorphism class of any countably infinite algebraically
closed group is dense in G.

Proof. Fix a nonempty basic clopen B = {G ∈ G : ∀i, j ≤ k (i · j = mi,j)} with

k ∈ N and mi,j ∈ N for all i, j ≤ k. Fix any multiplication table A ∈ G with Ã
algebraically closed. Pick any H ∈ B. We associate variables xi to i for each i ≤ k
and xi,j to (i, j ) for each i, j ≤ k. For each i, j, l ≤ k let

ϕi,j,l =

xi,j = xl if mi,j = l,

xi,j 6= xl if mi,j 6= l,

and for each i, j, r, s ≤ k let

ϕi,j,r,s =

xi,j = xr,s if mi,j = mr,s,

xi,j 6= xr,s if mi,j 6= mr,s.

Now let Φ denote the following formula:

∃x1, . . . , xk, x1,1, . . . , x1,k, x2,1, . . . , x2,k, . . . , xk,1, . . . , xk,k
 ∧

i,j≤k

xi · xj = xi,j

 ∧

 ∧
i,j≤k
i 6=j

xi 6= xj

 ∧

 ∧
i,j,l≤k

ϕi,j,l

 ∧

 ∧
i,j,r,s≤k

ϕi,j,r,s


 .

Clearly, Φ holds in H̃. Thus Φ holds in Ã as well by lemma 3.14. That is, there
are numbers ai, ni,j ∈ N such that the equations ai · aj = ni,j hold in Ã for each
i, j ≤ k and two of them equal if and only if the corresponding elements are equal
in H. Note that a1 = 1 since both a1 · a1 = n1,1 and n1,1 = a1 hold. Let α : N → N
be a bijection that extends the finite map ai 7→ i, ni,j 7→ mi,j for each i, j ≤ k.

Then hα(A) ∈ B and h̃α(A) is isomorphic to Ã (recall from observation 3.7 that
hα is the induced homeomorphism). �

Lemma 3.16. For any finitely generated group H the set EH is Fσ.

Proof. Fix a finite generating set {a1, . . . , an} for H. Let G ∈ G be arbitrary.

Claim. The group H is embeddable into G̃ if and only if there are b1, . . . , bn ∈
N such that for every word W in n variables W (a1, . . . , an) = 1 in H ⇐⇒
W (b1, . . . , bn) = 1 in G̃.
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12 Generic properties of topological groups

If there is an embedding i : H ↪→ G̃, then clearly for every word W in n variables
W (a1, . . . , an) maps to W (i(a1), . . . , i(an)), therefore bj = i(aj) for each 1 ≤ j ≤ n

is suitable. On the other hand, if for some b1, . . . , bn ∈ G̃ we haveW (a1, . . . , an) = 1

in H ⇐⇒ W (b1, . . . , bn) = 1 in G̃ for every word W in n variables, then H and
〈b1, . . . , bn〉G̃ have the same presentation, hence they are isomorphic. This proves
the claim.

Thus we may write EH as⋃
b1,...,bn∈N

⋂
W is a word
in nvariables

{G ∈ G : W (a1, . . . , an) = 1in H ⇐⇒ W (b1, . . . , bn) = 1in G̃}︸ ︷︷ ︸
clopen by Proposition 3.6

,

which proves the lemma. �

Now we turn to the main result of this subsection.

Theorem 3.17 The following are equivalent:

(1) The group H is generically embeddable.
(2) The group H can be embedded into every algebraically closed group.
(3) The group H is countable and every finitely generated subgroup of H has

solvable word problem.

Proof. (2) =⇒ (3) follows from Theorem 2.14 and Theorem 2.22.
(3) =⇒ (2): Suppose (3). By Theorem 2.22 every finitely generated subgroup of

H can be embedded into every algebraically closed group. Since every algebraically
closed group is homogeneous by Proposition 2.21, (2) follows from Lemma 2.20.

(2) =⇒ (1) is immediate from Theorem 3.11.
(1) =⇒ (2): Fix a generically embeddable group H. By Lemma 2.20 it suffices

to prove that any finitely generated subgroup K of H can be embedded into every
algebraically closed group. Fix K. Note that EK is comeager because it contains
EH . On the other hand, EK is Fσ by Lemma 3.16, hence it has nonempty interior
by Remark 2.10. However, isomorphism classes of algebraically closed groups are
dense in G by Theorem 3.15; therefore K can be embedded into every countably
infinite algebraically closed group. Now Proposition 2.15 completes the proof. �

Remark 3.18. We note that (3) =⇒ (1) follows easily from [11, Theorem 1.1.3
and Remark 1.1.4].

3.3. Abelian groups

In this section, we give a new, elementary proof of the existence of a comea-
ger isomorphism class among countably infinite discrete abelian groups, that is,
a comeager isomorphism class in the subspace A := {G ∈ G : G̃ is abelian}. This
was previously known only by utilizing the work of W. Hodges on model-theoretic
forcing.

To avoid confusion and preserve the coherence of section 3 we do not switch to
additive notation in elements of A.
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First of all, observe that

A = {G ∈ G : ∀n, k (nkn−1k−1 = 1)} =
⋂

n,k∈N

{G ∈ G : nkn−1k−1 = 1}

is a closed subspace of G, therefore it is a Polish space.

Remark 3.19. It is very easy to see that A ⊆ G has empty interior, hence it is
nowhere dense. Thus for a comeager property P ⊆ G the set P ∩A may be meager
in A.

The following theorem is well-known, see [10, Chapter 4, Theorem 3.1].

Theorem 3.20 Every divisible abelian group is of the form⊕
p∈P

Z[p∞](Ip)

⊕Q(I),

where P is the set of prime numbers, Z[p∞] is the well-known Prüfer p-group, I
and Ip are arbitrary sets of indices, and for a group G and a set J the term G(J)

abbreviates the direct sum
⊕

j∈J G.

Let A ∈ G be such that

Ã ∼=
⊕
p∈P

Z[p∞](N).

Remark 3.21. Another well-known theorem is that every abelian group can be
embedded into a divisible abelian group, see [10, Chapter 4, Theorem 1.4]. Thus,

by Theorem 3.20, every countable abelian torsion group can be embedded into Ã.

Remark 3.22. If G is a divisible abelian torsion group, then it can be written
as the torsion summand in Theorem 3.20. If every finite abelian group can be
embedded into G, then Ip is infinite for every p ∈ P since G must contain infinitely
many elements of order p for every p. If G is countable, then Ip is countable for

every p ∈ P. Therefore, Ã is the unique, up to isomorphism, countable, divisible
abelian torsion group that contains every finite abelian group (up to isomorphism).

Proposition 3.23. The sets

D := {G ∈ A : G̃ is divisible}, T := {G ∈ A : G̃ is a torsion group}

and

F := {G ∈ A : every finite abelian group can be embedded into G̃}

are Gδ in A.
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14 Generic properties of topological groups

Proof. By definition,

D = {G ∈ A : ∀n, k ∈ N ∃m ∈ N (mk = n)} =
⋂

n,k∈N

⋃
m∈N

{G ∈ A : mk = n}︸ ︷︷ ︸
clopen

,

which is Gδ in A. Again, by definition,

T = {G ∈ A : ∀n ∈ N ∃k ∈ N (nk = 1)} =
⋂
n∈N

⋃
k∈N

{G ∈ A : nk = 1}︸ ︷︷ ︸
clopen

,

which is Gδ in A. For F note that there are countably infinitely many finite abelian
groups up to isomorphism, hence it suffices to prove that for any fixed finite abelian
group H the set A ∩ EH is Gδ. Let {h1, . . . , hn} be the underlying set of H. For a

G ∈ A the group H is embeddable into G̃ if and only if there exist pairwise distinct
numbers g1, . . . , gn ∈ N such that hi · hj = hl in H implies gi · gj = gl in G̃ for all
i, j, l ≤ n. That is,

EH ∩ A =
⋃

g1,...,gn∈N
p. distinct

⋂
hi,hj ,hl∈H,

hi·hj=hl

{G ∈ A : gi · gj = gl},

which is open in A. �

From Remark 3.22 we know that the isomorphism class IA := {G ∈ G : G̃ ∼= Ã}
can be written as A ∩D ∩ T ∩ F , which is Gδ in A. Now we show that it is dense
in A.

Proposition 3.24. The isomorphism class IA is dense in A.

Proof. Fix any nonempty basic clopen B = {G ∈ A : ∀i, j ≤ k (i · j = mi,j)} with
k ∈ N and mi,j ∈ N for all i, j ≤ k. Pick some H ∈ B and a divisible abelian group

K with an embedding ϕ : H̃ ↪→ K; such a K exists by Remark 3.21. Clearly, K
can be chosen to be countable. We write K in the form⊕

p∈P

Z[p∞](IK,p)

⊕Q(IK ).

Consider the finite subset ϕ(suppB) ⊆ K (recall notation 3.10). Each x ∈ ϕ(suppB)
has finitely many nonzero coordinates xi with i ∈ IK . Let n be a natural number
greater than 2 · max{|xi| : x ∈ ϕ(suppB), i ∈ IK}. Let N be the subgroup of K
generated by elements of the form ((0, 0, . . . ), (0, . . . , 0, n

rth
, 0, . . . )) for every r ∈ IK .

Let ψ : K → K/N be the quotient map. Clearly, K/N is⊕
p∈P

Z[p∞](IK,p)

⊕ (Q/nZ)(IK ).

This is a countable abelian torsion group, thus there is an embedding ν : K/N ↪→ Ã

by Remark 3.21. Notice that ν◦ψ◦ϕ : H̃ → Ã is homomorphism that is injective on
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the set suppB ⊆ H̃ by the choices of n and N. Thus, there is a bijection ϑ : N → N
that extends the finite bijection (ν ◦ψ◦ϕ|suppB)−1. For such a ϑ we have hϑ(A) ∈ B
because H and hϑ(A) coincide on {1, . . . , k}×{1, . . . , k} (recall from Observation 3.7

that hϑ is the induced homeomorphism). Since h̃ϑ(A) ∼= Ã, we conclude that IA is
dense in A. �

Corollary 3.25. The isomorphism class IA is comeager in A.

4. Compact metrizable abelian groups

4.1. Pontryagin duality

Here we remind the reader to the notion and fundamental properties of Pontryagin
duality. Let us denote the circle group by T. For a locally compact abelian group
(hereafter LCA group) G the dual group Ĝ is the set of all continuous homomor-

phisms χ : G→ T with pointwise addition and the compact-open topology, and Ĝ
is also an LCA group (see [35, Chapter 1]). Also recall:

Theorem 4.1 Pontryagin Duality Theorem If G is an LCA group, then its double

dual
̂̂
GĜ is canonically isomorphic to G itself.

For reference we list some well-known properties of Pontryagin duality here.

Proposition 4.2. For an LCA group G the following hold:

(1) An LCA group A embeds into G ⇐⇒ Â is a quotient of Ĝ. [35,
Theorem 2.1.2.]

(2) For a sequence (Ai)i∈N of compact abelian groups we have
∏̂
i∈N

Ai =
⊕
i∈N

Âi.

[35, Theorem 2.2.3.]

(3) G is compact ⇐⇒ Ĝ is discrete. [35, Theorem 1.2.5.]

(4) G is finite ⇐⇒ Ĝ is finite. (Follows from (3) and the Pontryagin Duality
Theorem.)

(5) G is compact metrizable ⇐⇒ Ĝ is discrete countable. [28, Corollary on
page 96]

(6) G is compact torsion-free ⇐⇒ Ĝ is discrete divisible. [28, Theorem 31.]

(7) G is compact totally disconnected ⇐⇒ Ĝ is a discrete torsion-group. [28,
Corollary 1. on page 99]

(8) The dual of T is Z. [35, pages 12-13.]

4.2. The space of compact metrizable abelian groups

We view T as the additive group R/Z, that is, the real numbers modulo 1, and we
use the usual metric dT. Clearly, the circle group is a compact metrizable abelian
group (hereafter CMA group). Let TN denote the countably infinite direct product
of T with itself. Again, it is a CMA group and every closed subgroup of TN is a
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16 Generic properties of topological groups

CMA group as well. We equip TN with the metric

d(x, y) =
∞∑

n=1

1

2n
dT(x(n), y(n)).

Note that by Proposition 4.2 (2) and (8) the dual of TN is F := Z(N). By (1) a CMA
group G is embeddable into TN if and only if the countable discrete abelian group
Ĝ is a quotient of F. Since F is the free abelian group on countably infinitely many
generators, every countable discrete abelian group is a quotient of F, hence every
CMA group is embeddable into TN. Or equivalently, every CMA group is isomorphic
(as a topological group) to some element of S(TN) (recall Definition 2.5).

Thus we may view (S(TN), dH) as the space of CMA groups (here dH is the
Hausdorff metric induced by d). Now we discuss a useful observation about finite
groups in S(TN).

Definition 4.3. For a group G ∈ S(TN) we define the support of G by

supp(G) := {n ∈ N : ∃g ∈ G (g(n) 6= 0)}.

Notation 4.4. Let F denote the set of finite groups in S(TN) with finite support.

Proposition 4.5. F is dense in S(TN).

Proof. Fix some ε> 0 and K ∈ S(TN). Since π[n](K)
dH→ K (as n → ∞, recall

Notation 2.2), we may assume K ≤ TN × {0} × {0} × . . . for some N ∈ N. We
abuse notation and use simply TN instead of TN × {0} × {0} × . . .. We work with

the compatible metric dTN (x, y) :=
∑N

i=1 dT(x(i), y(i)).
Let x1, x2 . . . xk be a finite ε

2 -net in K, and let us fix an integer M such that

M > 2Nk
ε .

We need a simultaneous version of Dirichlet’s Approximation Theorem [37,
page 27].

Theorem 4.6 Let α1, . . . αd be real numbers and let Q be a positive integer. Then
there exist p1, . . . pd, q ∈ Z, 1 ≤ q ≤ Qd, such that |αi − pi

q | ≤
1
qQ for all 1 ≤ i ≤ d.

We apply this theorem with the parameters d = kN and Q =M to
the real numbers x1(1), . . . x1(N), . . . xk(1), . . . xk(N). Thus we get integers
p11, . . . p

1
N , . . . p

k
1 , . . . p

k
N and q with 1 ≤ q ≤MkN such that∣∣∣∣∣xi(j)− pij

q

∣∣∣∣∣ ≤ 1

qM
<

ε

2qkN
.

The last inequality follows from our assumption on M.

This means that dT

(
xi(j),

pij
q

)
< ε

2qkN holds on the circle for each

1 ≤ i ≤ k and 1 ≤ j ≤ N . Let L be the generated subgroup〈(
p11
q , . . . ,

p1N
q

)
, . . . ,

(
pk1
q , . . . ,

pkN
q

)〉
≤ TN . Note that L is finite.
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We claim that dH(L,K) < ε. First we prove that Lε ⊇ K (recall that Lε is the
ε-neighborhood of L). This holds since x1, x2, . . . , xk was an ε

2 -net in K and

dTN

(
xi,

(
pi1
q
, . . . ,

piN
q

))
=

N∑
j=1

dT

(
xi(j),

pij
q

)
<

ε

2qkN
·N =

ε

2qk
≤ ε

2
.

For Kε ⊇ L notice that every element of L is of the form

k∑
i=1

li ·
(
pi1
q
, . . . ,

piN
q

)
,

with li ∈ Z, 0 ≤ li < q for each 1 ≤ i ≤ k, thus

dTN

(
k∑

i=1

lixi,
k∑

i=1

li ·
(
pi1
q
, . . . ,

piN
q

))
≤

k∑
i=1

N∑
j=1

li·dT

(
xi(j),

pij
q

)
< k·N ·q· ε

2qkN
=
ε

2
,

which proves the claim since
∑k

i=1 lixi ∈ K. �

4.3. The comeager isomorphism class

Theorem 4.7 There exists a generic compact metrizable abelian group. That is,
there exists a comeager isomorphism class in S(TN). Namely, it is the isomorphism
class of

Z =
∏
p∈P

(Zp)
N,

where P is the set of prime numbers and Zp is the group of p-adic integers.

Remark 4.8. In Remark 3.22 we showed that Ã =
⊕

p∈P Z[p∞](N) is the unique,
up to isomorphism, countable abelian group that is divisible, torsion and contains
every finite abelian group up to isomorphism. It is well-known that the additive
group Zp of p-adic integers is the Pontryagin dual of Z[p∞] (see [15, 25.2]); therefore

it follows by Proposition 4.2 (2) that Z is the Pontryagin dual of Ã. Hence by
Proposition 4.2 (1), (4), (6) and (7) Z is the unique CMA group (up to isomorphism)
such that it is torsion-free, totally disconnected and every finite abelian group
occurs as its quotient.

Thus for proving Theorem 4.7 it suffices to verify that these three properties hold
for the generic K ∈ S(TN), which will be done in the following three lemmas.

Lemma 4.9. For the generic K ∈ S(TN) every finite abelian group occurs as a
quotient of K.
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18 Generic properties of topological groups

Proof. Let

B1 := {K ∈ S(TN) : every finite abelian group A is a quotient of K}.

Recall that for compact groups quotients and continuous homomorphic images
coincide, hence

B1 =
⋂

A is finite abelian

{K ∈ S(TN) : ∃ ϕ : K → A surjective continuous homomorphism}.

Since there are countably many finite abelian groups up to isomorphism, it sufficies
to show that for a fixed finite abelian group A the following subset of S(TN) is
dense open:

BA := {K ∈ S(TN) : ∃ ϕ : K → Asurjective continuous homomorphism}.

Claim 1. The set BA is open.
Let {a1, a2, . . . , an} be the underlying set of A. For a fixedK ∈ BA let ϕ : K → A

be a surjective continuous homomorphism and let H := Kerϕ. Then we have a
partition K =

⋃n
i=1(ki +H), where ki ∈ K with ϕ(ki) = ai. Note that ki +H is

compact for each i and let

δ := min{dist(ki +H, kj +H) : 1 ≤ i, j ≤ n, i 6= j} > 0.

We claim that BdH

(
K, δ4

)
⊆ BA. To show this, for any L ∈ BdH

(
K, δ4

)
we have

to find a surjective continuous homomorphism ψ : L → A. By the choice of δ, if
we define Li := L ∩ (ki +H) δ

4
, then

⋃n
i=1 Li is a decomposition of L into disjoint

nonempty open sets. Let us define ψ as ψ(x) = ai if and only if x ∈ Li. The
continuity of ψ is clear and the surjectivity follows from the fact that each Li is
nonempty. Now we have to show that ψ is a homomorphism.

Pick any li ∈ Li and lj ∈ Lj . Then there exist xi ∈ ki +H and xj ∈ kj +H such
that dTN(xi, li) <

δ
4 , dTN(xj , lj) <

δ
4 , ψ(li) = ϕ(xi) = ai and ψ(lj) = ϕ(xj) = aj .

Note that

dTN(xi+xj , li+lj) ≤ dTN(xi+xj , xi+lj)+dTN(xi+lj , li+lj) = dTN(xj , lj)+dTN(xi, li) <
δ

2
,

therefore li + lj ∈ (xi + xj +H) δ
2
. Now it follows from L ⊆ K δ

4
and the choice of

δ that li + lj ∈ (xi + xj +H) δ
4
. Thus, by the definition of ψ, we have ψ(li + lj) =

ϕ(xi+xj) = ai+aj . We conclude that ψ is a homomorphism, which completes the
proof of Claim 1.

Claim 2. The set BA is dense in S(TN).
By Proposition 4.5 it sufficies to approximate elements of F . Fix F ∈ F and

ε> 0. Let N ∈ N be such that 1

2N
< ε and {1, . . . , N} ⊇ supp(F ). Since A is a
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CMA group, there is an embedding

ϕ : A ↪→ {0} × . . .× {0}︸ ︷︷ ︸
Ntimes

×T× T . . . .

Now the subgroup H of TN generated by F and ϕ(A) is isomorphic to F ×A.
Therefore, we have a natural surjective continuous homomorphism H →A and also
dH(H,F ) < ε because π[N ](H) = π[N ](F ) and

1

2N
< ε. �

Remark 4.10. It follows immediately from Lemma 4.9 that the genericK ∈ S(TN)
is not simple.

Lemma 4.11. The generic K ∈ S(TN) is torsion-free.

Proof. Let

B2 := {K ∈ S(TN) : Kis torsion-free}.

We will show that B2 is dense Gδ in S(TN).
Claim 1. The set B2 is Gδ in S(TN).
Let us define fn : TN → TN as fn : x 7→ n · x. Clearly, fn is continuous and

B2 =
{
K ∈ S(TN) : ∀n, k ∈ N

(
0 /∈ fn

[
K \B

(
0, 1k

)])}
=

=
⋂

n,k∈N

K ∈ S(TN) : K ∩B
(
0, 1k

)c ∩ f−1
n ({0})︸ ︷︷ ︸

closed

= ∅

︸ ︷︷ ︸
open

.

Claim 2. The set B2 is dense in S(TN).
By Proposition 4.5 it suffices to approximate elements of F . Fix any F ∈ F

and ε> 0. Let N ∈ N be such that 1

2N
< ε and {1, . . . , N} ⊇ supp(F ). As in

Theorem 4.7, let Z =
∏

p∈P (Zp)
N, which is torsion-free (recall Remark 4.8). Since

Z is a CMA group, there is an embedding

ϕ : Z ↪→ {0} × . . .× {0}︸ ︷︷ ︸
Ntimes

×T× T× . . . .

As we have already observed in Remark 4.8, every finite abelian group is a quo-
tient of Z. Since Z and ϕ(Z) are isomorphic, there is a surjective continuous
homomorphism θ : ϕ(Z) → F . Now consider the following map:

Φ : F × ϕ(Z) → F × F, Φ(f, x) := (f, θ(x)).

(More precisely, instead of F × ϕ(Z) we should consider the subgroup of TN gen-
erated by F and ϕ(Z) as in the end of the proof of Lemma 4.9. Here we avoid
such rigor for notational simplicity.) Clearly, Φ is a surjective continuous homo-
morphism. Then for the diagonal subgroup F̃ = {(f, f) : f ∈ F} ≤ F × F we have
K := Φ−1(F̃ ) ∈ S(TN). We claim that K is torsion-free and dH(K,F ) < ε.
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20 Generic properties of topological groups

Assume that (f, x) ∈ K \ {(0, 0)} (with f ∈ F and x ∈ ϕ(Z)) and n(f, x) =
(nf, nx) = (0, 0) with some n ∈ N. Since x ∈ ϕ(Z), and ϕ(Z) is torsion-free, we get
x =0. On the other hand, (f, x) ∈ K means θ(x) = f , hence we have f =0. Thus
K is torsion-free.

Note that π[N ](K) = π[N ](F ), therefore dH(F,K) < ε. This completes the proof
of Claim 2. �

Lemma 4.12. The generic K ∈ S(TN) is totally disconnected.

Proof. Let

B3 := {K ∈ S(TN) : Kis totally disconnected}.

We need to show that for the generic K ∈ S(TN) the singleton {0} is a connected
component. Notice that whenever ϕ : K → F is a continuous homomorphism to
a finite abelian group, the connected component of 0 is a subset of Kerϕ. Let us
define

B
′
3 :=

⋂
n∈N

{
K ∈ S(TN) :

there exists a finite abelian group Fn and a continuous

homomorphism ϕn : K → Fn with diam(Ker(ϕn)) <
1
n

}
︸ ︷︷ ︸

Un

.

Now we have B′
3 ⊆ B3, hence it suffices to prove that B′

3 is dense Gδ in S(TN). The
denseness follows directly from Proposition 4.5 and the fact that every finite group

is in B′
3.

Claim. The set Un is open.
Pick some K ∈ Un. Fix a finite abelian group Fn and a continuous homomor-

phism ϕn : K → Fn with diam(Ker(ϕn)) <
1
n . As in the proof of Claim 1 of

Lemma 4.9, for any given ε> 0 if L ∈ S(TN) is suitably close to K, then ϕn gives
rise to a continuous homomorphism ψn : L → Fn with Ker(ψn) ⊆ (Ker(ϕn))ε.
Then ε := 1

2

(
1
n − diam(Ker(ϕn))

)
witnesses that Un is open. �

4.4. Countable abelian groups revisited

In Section 3.3 we introduced a Polish space A of the (infinite) countable abelian
groups. Now we present a different approach and discuss its relation to both A and
S(TN). As in Section 3.3, we do not use additive notation in elements of A.

Notation 4.13. Recall that Z(N) is the countably infinite direct sum of Z with
itself. Let A′ denote the set of all subgroups of Z(N) with the subspace topology

inherited from the Cantor space 2Z
(N)

.

It is easy to check that the subspace A′ is closed in 2Z
(N)

, thus A′ is Polish.
(Compare this to [11, page 16-17].) Since every countable abelian group is a quotient
of Z(N), we may use A′ to define generic properties among countable abelian groups:
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Definition 4.14. A group property P is A′-generic if the set

{H ∈ A′ : Z(N)/H is of property P}

is comeager in A′. (Here by a group property P among countable abelian groups we
mean an isomorphism-invariant subset of the set of all quotients of Z(N).)

The following theorem is a special case of [8, Theorem 14.].

Theorem 4.15 (Fisher–Gartside). There is a canonical homeomorphism between
A′ and S(TN).

Sketch of proof.

Notation 4.16. Let H be a fixed locally compact abelian group, and Ĥ its
Pontryagin dual. If G is a closed subgroup of H, then the annihilator of G is
defined as:

Ann(G) := {χ ∈ Ĥ : ∀a ∈ G (χ(a) = 0)}.

Notice that Ann(G) is subgroup of Ĥ.

Recall that any CMA group G can be embedded into TN, hence the annihilator
of G is a subgroup of Z(N), that is, Ann(G) ∈ A′. Thus the canonical map, which
turns out to be a homeomorphism between A′ and S(TN), is Ann itself. �

It is well-known that for a subgroup G ≤ TN the dual Ĝ is isomorphic to

T̂N/Ann(G) (see [35, Theorem 2.1.2.]). We conclude that the property of being
isomorphic to the group

⊕
p∈P Z[p∞](N), which is the dual of Z in Theorem 4.7, is

A′-generic. Recall that the isomorphism class of this group is comeager in A. It is
natural to ask whether there is a simple topological connection between A and A′

that explains this phenomenon.

Notation 4.17. For x ∈ Z(N) let

supp(x) := {n ∈ N : x(n) 6= 0}.

Notation 4.18. Let ei be the following element of Z(N): ei(k) = 1 if k = i and
ei(k) = 0 otherwise.

We will show that A naturally embeds into A′. Let us pick any A ∈ A. Recall
that elements of Z(N) are N → Z functions with finite support. Now let

Φ(A) :=

{
x ∈ Z(N) :

∏
n∈N

nx(n) = 1 holds in Ã

}
.

Clearly, Φ(A) is a subgroup of Z(N), that is, Φ(A) ∈ A′.

Proposition 4.19. The map Φ : A → A′ is an embedding.
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Proof. Injectivity. Pick distinct elements A,B ∈ A. If we use the original nota-
tions introduced in the beginning of Section 3.1, this means that there exist
k, l,m ∈ N such that m = A(k, l) 6= B(k, l). By the definition of Φ it follows
that ek + el − em ∈ Φ(A) and ek + el − em /∈ Φ(B).

Continuity and openness. Sets of the form

Ux = {A′ ∈ A′ : x ∈ A′} and Vx = {A′ ∈ A′ : x /∈ A′}

with x ∈ Z(N) constitute a subbasis in A′. By the definition of Φ we have

Φ−1(Ux) =

{
A ∈ A :

∏
n∈N

nx(n) = 1 in Ã

}
,

and

Φ−1(Vx) =

{
A ∈ A :

∏
n∈N

nx(n) 6= 1 in Ã

}
.

By Proposition 3.6 these sets are open, hence Φ is continuous. Again, by
Proposition 3.6 the set {Φ−1(Ux) : x ∈ Z(N)} is a subbasis for A. Thus
Φ(Φ−1(Ux)) = Ux ∩ Φ(A) and the injectivity of Φ shows that Φ is open (onto
its range). �

Proposition 4.20. The set Φ(A) is nowhere dense in A′.

Proof. Observe that ei /∈ A′ if i ≥ 2 and A′ ∈ Φ(A), therefore we have Φ(A) ⊂⋂∞
i=2 Vei . Then it suffices to prove that

⋃∞
i=2 Uei

is dense in A′. Pick any nonempty
basic clopen set U := Ux1

∩ . . . ∩ Uxn ∩ Vy1 ∩ . . . ∩ Vyk in A′. Let N ∈ N be such

that N /∈ (
⋃n

i=1 supp(xi)) ∪ (
⋃k

j=1 supp(yj)) ∪ {1}. Now it is easy to check that
U ∩ UeN

6= ∅. �

Summary. The two approaches (A andA′) give the same comeager isomorphism
class: the class of

⊕
p∈P Z[p∞](N). Although there is a natural embedding Φ : A ↪→

A′, this does not explain the coincidence since Φ(A) is nowhere dense in A′.

5. Compact metrizable groups

In this section, we study generic properties of compact metrizable groups. We will
see a more obscure picture than in the abelian case, however, we believe our results
constitute a promising starting point for interesting future research.

We prove that both in terms of connectedness and torsion elements the generic
group is heterogeneous.

5.1. The space of compact metrizable groups

It is well-known that every compact group G can be embedded into a direct product∏
j∈J U(nj), where nj ∈ N and U(nj) is a unitary group [20, Corollary 2.29.].

This relies on the fact that unitary representations separate points of G. If G
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is metrizable, then it is easy to check that even countably many representations
separate points of G, therefore every compact metrizable group can be embedded
into a countable direct product of unitary groups.

Also, note that U (n) is embeddable into the special unitary group SU (k) for
k >n. We conclude that every compact metrizable group is embeddable into SU :=∏∞

n=1 SU(n).
Let dn be a biinvariant metric on SU (n) with dn ≤ 1 for every n ∈ N. We shall

use the metric d(x, y) :=
∑∞

n=1
1
2n dn(x(n), y(n)) on SU and the Hausdorff metric

dn,H (resp. dH) induced by dn (resp. d) on S(SU(n)) (resp. S(SU)).
Clearly, every closed subgroup of SU is a compact metrizable group. Thus we

may view (S(SU), dH) as the space of compact metrizable groups.

observation 5.1. Let G ∈ S(SU) and Gn ∈ S(SU) for every n ∈ N. Notice that

if π[n](Gn) = π[n](G) for every n ∈ N, then Gn
dH−→ G.

5.2. Approximating SU (n)

In this subsection we prove a lemma for later use. It also raises Question 5.8 and
Question 5.9, which are quite interesting in their own.

Lemma 5.2. The group SU(n) cannot be approximated by closed proper subgroups.
That is, SU(n) is an isolated point in S(SU(n)).

To prove this we need the following three theorems.

Theorem 5.3 (Cartan, [23, Theorem 20.10]). A closed subgroup of a Lie group is
a Lie subgroup.

Theorem 5.4 (Mostow, [29, Theorem 7.1.]). In a compact Lie group, any set of
connected Lie subgroups whose normalizers are mutually non-conjugate is finite.

The following is a special case of [40, Theorem 2.].

Theorem 5.5 (Turing). Let G be a connected Lie group with a compatible left
invariant metric d. If G can be approximated by finite subgroups in the sense that
for every ε> 0 there is a finite subgroup F ≤ G that is an ε-net in G, then G is
compact and abelian.

Remark 5.6. Turing formulates his theorem without the assumption of connect-
edness, but this condition cannot be omitted as the example of a finite nonabelian
discrete group shows. Actually, the proof of Turing works (only) if the group G is
connected.

Definition 5.7. The identity component of a topological group G is the con-
nected component of its identity element. We denote it by G◦. It is well-known that
G◦ is a closed normal subgroup of G.

Proof of Lemma 5.2. The trivial group SU (1) has no proper subgroup, hence we
may assume n ≥ 2. Suppose that (Ki)i∈N ≤ SU(n) is a sequence of proper compact
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subgroups such that Ki

dn,H−→ SU(n). Notice that (Ki)
◦ is closed and therefore, by

Theorem 5.3, it is a connected Lie subgroup of SU (n) for every i ∈ N.
Consider the sequence of normalizers Ni := NSU(n)((Ki)

◦). By Theorem 5.4 we
may assume that the Ni are mutually conjugate. Since (Ki)

◦ / Ki, we have Ki ≤

Ni ≤ SU(n). Thus Ni

dn,H−→ SU(n) as well. On the other hand, dn is biinvariant,
hence the distance dH(SU(n), Ni) is the same for each i ∈ N. We conclude that
Ni = SU(n) for every i ∈ N. In other words, every (Ki)

◦ is normal in SU (n).
The Lie algebra of a connected normal subgroup of SU (n) is an ideal of the

Lie algebra su(n) (see [14, page 128]). Since su(n) is simple (see [34, page 13]),
we conclude that every (Ki)

◦ is the trivial group. Therefore, Ki is finite for every
i ∈ N.

By Theorem 5.5 this contradicts the fact that SU (n) is a connected nonabelian
group (see [13, Proposition 13.11] for the connectedness). �

Although for our purposes Lemma 5.2 suffices, it raises natural questions:

Question 5.8. Which compact Lie groups can be approximated by proper subgroups
in the Hausdorff metric?

Or more generally:

Question 5.9. Let G be a Lie group. Which compact subgroups K of G can be
approximated by other compact subgroups of G that are non-conjugate to K? (It
follows easily that in a compact connected Lie group G any nonnormal compact
subgroup can be approximated by its conjugates.)

Remark 5.10. We remark that Question 5.9 have been recently answered in [4].

5.3. Generic topological properties

We will need the following well-known theorems.

Theorem 5.11 [14, Chapter II, Exercise B.5.] Every Lie group has the ‘no small
subgroup’ property. That is, in a Lie group G there exists a neighbourhood U of the
identity such that U contains no nontrivial subgroups of G.

Theorem 5.12 [20, Theorem 1.34.] For a locally compact group G the following
are equivalent:

(1) The group G is totally disconnected.
(2) The identity of G has a neighbourhood basis consisting of compact open

subgroups.

Lemma 5.13. If G ∈ S(SU) is totally disconnected, then πn(G) is finite for each
n ∈ N.

Proof. Fix n ∈ N. By Theorem 5.11 there is a neighbourhood U of the identity of
SU (n) that contains no nontrivial subgroups of SU (n). By Theorem 5.12 and the
continuity of πn we can pick a compact open subgroup H of G such that πn(H) ⊆ U

https://doi.org/10.1017/prm.2024.91 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.91


M. Elekes, B. Gehér, T. Kátay, T. Keleti, A. Kocsis and M. Pálfy 25

and thus πn(H) = {1SU(n)}. Also notice that the index of H is finite since H is
open, therefore πn(G) is finite. �

Theorem 5.14. For the generic G ∈ S(SU) there are infinitely many n ∈ N such
that πn(G) = SU(n).

Proof. Let

U := {G ∈ S(SU) : ∀k ∈ N ∃n ≥ k (πn(G) = SU(n))} =

=
∞⋂
k=1

∞⋃
n=k

{G ∈ S(SU) : πn(G) = SU(n)}︸ ︷︷ ︸
Un

.

It follows from Lemma 2.3 and Lemma 5.2 that each Un is open in S(SU), hence U
is Gδ. Thus it suffices to prove that U is dense. Pick any group G ∈ S(SU). Then,
with a slight abuse of notation,

(π[m](G)× SU(m+ 1)× SU(m+ 2)× . . .)
dH−→ G

shows that G can be approximated by elements of U . �

Corollary 5.15. Totally disconnected groups form a nowhere dense set in S(SU).

Proof. We have shown in the proof of Theorem 5.14 that for any k ∈ N the set⋃∞
n=k Un is dense open. On the other hand, by Lemma 5.13 it does not contain

totally disconnected groups for k ≥ 2. �

Corollary 5.16. For the generic G ∈ S(SU) the identity component G◦ is
nontrivial.

Theorem 5.17. For the generic G ∈ S(SU) the quotient G/G◦ is homeomorphic
to the Cantor set.

Proof. Since G/G◦ is a totally disconnected metrizable (see [12, Theorem 4.5])
compact group, it suffices to show that for the generic G ∈ S(SU) it is not finite.
Let n be a fixed positive integer. Let

Un := {G ∈ S(SU) : |G : G◦| ≥ n}.

We will show that Un is open and dense, which completes the proof.
Claim 1. The set Un is dense.
Note that SU (m) contains the cyclic group Cm for each m ∈ N (up to

isomorphism). Also for any G ∈ S(SU) we have, with an abuse of notation,

Gm := π[m](G)× Cm+1 × {1} × {1} × . . .
dH→ G,

by Observation 5.1. Here Gm has at least m +1 connected components, hence Un

is dense.
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Claim 2. The set Un is open.
Pick any group G ∈ Un. First we show that G can be partitioned into finitely

many but at least n clopen cosets. It follows from Theorem 5.12 that the group
G/G◦ can be partitioned into finitely many but at least n clopen cosets. Since
the natural homomorphism G → G/G◦ is continuous, the inverse images of these
clopen cosets form a suitable partition of G.

Now let δ be the minimal distance occurring between these clopen cosets of G.
Then it is easy to see that any L ∈ S(SU) with dH(L,K) < δ

2 has at least n
connected components. �

Remark 5.18. It follows immediately from Corollary 5.16 and Theorem 5.17 that
the generic G ∈ S(SU) is not simple. In particular, it is not algebraically closed by
Remark 2.23.

Corollary 5.19. The generic G ∈ S(SU) is homeomorphic to G◦ × C, where C
is the Cantor set.

Proof. By [20, Corollary 10.38.] for every compact group G the group G◦ ×G/G◦

is homeomorphic to G, hence the corollary follows from Theorem 5.17. �

The following useful fact is well-known. We present a proof for completeness.

Lemma 5.20. Let G and H be compact groups and suppose that H is connected.
Then for any surjective continuous homomorphism Φ : G → H we have Φ(G◦) =
H.

Proof. Let ϕ : G/G◦ → H/Φ(G◦) be the natural continuous surjection, that is,
ϕ(gG◦) := Φ(g)Φ(G◦). We need to prove that H/Φ(G◦) is trivial.

Suppose that there is an open neighbourhood V of the identity of H/Φ(G◦) such
that V 6= H/Φ(G◦). By Theorem 5.12 and the continuity of ϕ there is a clopen
subgroup U ≤ G/G◦ such that ϕ(U) ⊆ V .

Recall that ϕ is an open map because it is a surjective continuous homomorphism
between compact groups. Therefore, ϕ(U) 6= H/Φ(G◦) is clopen, which contradicts
the connectedness of H/Φ(G◦). �

This lemma allows us to state a slight strengthening of Theorem 5.14:

Corollary 5.21. For the generic G ∈ S(SU) there are infinite many k ∈ N such
that πk(G

◦) = SU(k).

Theorem 5.22. For the generic G ∈ S(SU) the connected component G◦ is not
Lie.

Proof. Fix n ∈ N arbitrarily. It suffices to prove that for the generic G ∈ S(SU) its
identity component G◦ is not an n-dimensional Lie group. By Corollary 5.21, for
the generic G ∈ S(SU) we have πk(G

◦) = SU(k) for infinitely many k ∈ N.
Suppose that G◦ is an n-dimensional Lie group, and fix some k >n with

πk(G
◦) = SU(k). It is well-known that any continuous homomorphism between Lie

groups is smooth. (See [41] or [13, Corollary 3.50.]. Although this corollary is stated
for matrix Lie groups, the proof works for any Lie group.) Thus πk|G◦ : G◦ → SU(k)
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is smooth. It is also surjective, therefore, by Sard’s lemma [36, Theorem 4.1], the
differential of πk|G◦ is surjective at some point, which contradicts k >n. �

We summarize the topological results in the following theorem.

Theorem 5.23. The generic G ∈ S(SU) is homeomophic to G◦ × C, where C is
the Cantor set and G◦ is a nontrivial connected group but not a Lie group.

Proof. Follows immediately from Corollary 5.19 and Theorem 5.22. �

5.4. Torsion elements

Based on the abelian case one could suspect that the generic G ∈ S(SU) is torsion-
free. We will show that this is not true. The following proposition is a reformulation
of Proposition 2. c) in [2, Chapter IX, Appendix I, Section 3].

Proposition 5.24. For any compact connected group G there is a family {Si : i ∈
I} of simple connected compact Lie groups and a surjective continuous homomor-
phism

∏
i∈I Si → [G,G] (where [G,G] is the commutator subgroup of G), whose

kernel is a totally disconnected, compact, central subgroup.

In [2, Chapter IX, Appendix I, Section 3] the term almost simple is used.
However, Bourbaki’s definition of an almost simple Lie group agrees with what most
modern authors call a connected simple Lie group, see [3, Chapter III, Section 9.8,
Definition 3].

The preceding reference and the following proposition were communicated to us
by Yves de Cornulier on the website mathoverflow.com. We remind the reader that
every simple connected compact Lie group has finite centre (see [14, page 128]).

Proposition 5.25. Every compact connected torsion-free group is abelian.

Proof. Let G be a compact connected torsion-free group and let {Si : i ∈ I} be
the family of simple connected compact Lie groups provided by Proposition 5.24.
Also let ϕ : S :=

∏
i∈I Si → [G,G] denote the surjective continuous homomorphism

provided by Proposition 5.24.
If [G,G] = 1, then G is abelian and we are done. Otherwise, I is nonempty and

we have Kerϕ ⊆ Z(S) =
∏

i∈I Z(Si) < S by Proposition 5.24. We claim that S
contains a non-central torsion element. Pick j ∈ I such that Sj \Z(Sj) 6= ∅. Clearly,
it suffices to prove that Sj \Z(Sj) contains a torsion element. We may assume that
Sj is infinite. Then it contains a nontrivial torus (recall that a every infinite compact
Lie group contains a nontrivial torus [20, Lemma 6.20.]) and thereby infinitely many
torsion elements, while Z(Sj) is finite. Now it follows that G has a nontrivial torsion
element, a contradiction. �

Lemma 5.26. For n ≥ 2 the group SU(n) does not occur as a quotient of a compact
torsion-free group.

Proof. Suppose that SU (n) occurs as a quotient of a compact torsion-free group
G. By Lemma 5.20 we may assume that G is connected. Then by Proposition 5.25
it must be abelian. Since SU (n) is nonabelian for n ≥ 2, this is a contradiction. �
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Theorem 5.27. In the generic G ∈ S(SU) there are both torsion and nontorsion
elements.

Proof. By Theorem 5.14 for the generic G ∈ S(SU) some SU (k) is a quotient of
G with k ≥ 2. Since SU (k) contains a circle group, it contains elements of infinite
order, and so does G. On the other hand, by Lemma 5.26, G cannot be a torsion-free
group either. �

5.5. Free subgroups

Notation 5.28. For a group G and a number m ∈ N let

F (m,G) := {(g1, ..., gm) ∈ Gm : g1, ..., gm freely generate a free group in G}.

For any set A let (A)m := {(x1, . . . , xm) ∈ Am : xi 6= xj if i 6= j}.

Lemma 5.29. For every n ≥ 3 and m ∈ N the set F (m,SU(n)) is comeager in
SU(n)m.

Proof. Fix m ∈ N and a nonempty reduced word W (x1, ..., xm) in m variables
arbitrarily. Consider the analytic map

fW : SU(n)n → SU(n), (g1, ..., gm) 7→W (g1, ..., gm),

from a connected analytic manifold to an analytic manifold (see [7]).
Claim. The compact set f−1

W (idSU(n)) has empty interior, hence it is nowhere
dense.

Suppose int(f−1
W (idSU(n))) 6= ∅. Then the analytic map fW is constant on a

nonempty open set. Therefore, it is constant on SU(n)m (see, for example, [7]). On
the other hand, it is well-known (and also follows from [7]) that SO(3) contains
a free group of rank m, hence SU (n) also contains a free group of rank m. This
contradicts that fW is constant on SU(n)m, which proves the claim.

Notice that we can write

F (m,SU(n)) =
⋂

W is a nonempty reducedword in m variables

(SU(n)m \ f−1
W (idSU(n))).

By the claim, the right-hand side is a countable intersection of dense open sets,
which concludes the proof. �

We need the following classical result from descriptive set theory.

Theorem 5.30 (Kuratowski–Mycielski, [21, Theorem 19.1]). Let X be a metrizable
space, let m1,m2, . . . be a sequence of natural numbers. If Ri ⊆ Xmi is comeager
for each i ∈ N, then

{K ∈ K(X) : ∀i ∈ N ((K)mi ⊆ Ri)}

is comeager in K(X).
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Theorem For the generic G ∈ S(SU) the generic K ∈ K(G) freely generates a
free group of rank continuum in G.

Proof. By Theorem 5.14, for the generic G ∈ S(SU) there is n ≥ 3 such that
πn(G) = SU(n). Fix such G and n. We claim that the generic K ∈ K(G) freely
generates a free group of rank continuum in G.

Recall that by Theorem 2.6, the map πn : G → SU(n) is continuous and open.
It follows that the map πm

n : Gm → SU(n)m, (g1, . . . , gm) 7→ (πn(g1), . . . , πn(gm))
is also continuous and open for every m ∈ N. Then, by Lemma 5.29 and [27,
Proposition 2.8], the inverse image Bm := (πm

n )−1(F (m,SU(n))) is comeager in Gm

for every m ∈ N. Observe that for every m ∈ N and (g1, . . . , gm) ∈ Bm the elements
g1, . . . , gm freely generate a free group in G because, since πn is a homomorphism,
a nontrivial relation of the gi in G would give us a nontrivial relation of the πn(gi)
in SU (n).

Now by Theorem 5.30, for the generic K ∈ K(G) for every m ∈ N we have
(K)m ⊆ Bm. Therefore, the generic K ∈ K(G) freely generates a free group in G.
Furthermore, by [21, (8.8) Exercise i)], the generic K ∈ K(G) has continuum many
elements, which concludes the proof. �

6. Questions

As a direct analogue of Definition 4.14 we may introduce a notion of genericity
among countable groups. Let F∞ denote the free group on countably infinitely
many generators. It is straightforward to verify that the subspace N := {A ⊆ F∞ :
A / F∞} is closed in 2F∞ . Let us say that a property P of countable groups is
N -generic if the set {N ∈ N : F∞/N is of property P} is comeager in N .

Problem 6.1 It would be interesting to study N -genericity and explore its
connections to results of Section 3.

For partial results in the abelian case see Section 4.4. The above notion of
genericity was considered in [33] and [11, page 16].

Although we obtained results on the structure of the generic compact metrizable
group, a lot of basic questions remained open.

Question 6.2. Is there a comeager isomorphism class in S(SU)?

We also propose problems that seem more accessible.

Problem 6.3 Describe G◦ up to homeomorphism for the generic G ∈ S(SU), if
this is possible.

Remark 6.4. One may think that G◦ is connected but behaves so wildly that
it does not contain any nontrivial path. However, we claim that for the generic
G ∈ S(SU) there are many paths (even 1-parameter subgroups) in G◦. First, by
Corollary 5.21, we know that for the generic G ∈ S(SU) for infinitely many n ∈ N
the projection πn : G◦ → SU(n) is surjective. Fix such G and n ≥ 2. Second, by [13,
Theorem 11.9], every p ∈ SU(n) is contained in a (maximal) torus, so every point p
lies on a one parameter subgroup of SU (n). Third, by [18, Lemma 4.19], every one
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parameter subgroup can be lifted among pro-Lie groups, that is, if q : G→ H is a
quotient morphism of pro-Lie groups and γ : R → H is a one parameter subgroup,
then there exists a one parameter subgroup γ̃ : R → G such that γ = q ◦ γ̃. Thus,
for every p ∈ SU(n) there is a 1-parameter subgroup in G◦ that meets the set
π−1
n (p).

Question 6.5. What can we say about generic algebraic properties in S(SU)?
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