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Abstract

A Room n-cube of side Ms an n dimensional array of side t which satisfies the property that each two
dimensional projection is a Room square. The existence of a Room n-cube of side / is equivalent to the
existence of n pairwise orthgonal symmetric Latin squares (POSLS) of side t. The existence of n
pairwise orthogonal starters of order t implies the existence of n POSLS of side t. Denote by v(n) the
maximum number of POSLS of side t. In this paper, we use Galois fields and computer constructions
to construct sets of pairwise orthogonal starters of order t < 101. The existence of these sets of starters
gives improved lower bounds for v(n). In particular, we show v(\l) > 5, v(2\) > 5, c(29) > 13,
v(Sl) > 15 and v(4\)> 9, among others.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 15.

1. Introduction

A Room n-cube of side r is an n dimensional array of side r which enjoys the
property that each two dimensional projection of the array is a Room square of
side r. For background information on Room squares and Room n-cubes the
reader is referred to [2], [6], [9] and [10]. It is easily shown (see Horton [7]) that the
dimension of a Room n-cube of side r must be less than r — 1 (that is, n < r — 2).
Let v(r) denote the maximum dimension of a Room n-cube of side r. In this
paper, we give improved lower bounds for v(r) for certain small values of r
(/•*£ 101).

The following is known about v(r) (see [2] for a more complete list).
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238 Jeffrey H. Dinitz |2]

THEOREM 1.1 (Dinitz and Stinson [4]). v(r)>3for all odd r>7.

THEOREM 1.2 (Dinitz [1]). v(q) > t, if q — 2kt + 1 is a prime power with t odd.

THEOREM 1.3 (Gross, Mullin and Wallis [6]). v(r) -> oo as r -» oo.

In order to construct Room w-cubes, we define the notion of orthogonal
starters. A starter of order g in an additive abelian group G, \ G | = g, is a set of
pairs A — {{st, ?,}, 1 < i < {(g — 1)} satisfying the properties:

The starter P = {{x, -x) | x E G } is termed the patterned starter. A starter
A = {{Sj, tt}} is a strong starter if st + tt ¥= Sj + tj for all / ¥=j.

Let A = {{j,., tj}} and fi = {{«,-,«,}} be two starters in (7. We may assume
that tt — st = i), — M, for all 1 < / < j(g — 1). A and 5 are orthogonal starters if
M, — s, ¥= Uj — Sj for all / ¥=j, and if M, =̂ 5, for all /. It is easily shown that if A is
a strong starter, then A and -A = {{-•?,, f,-}} and P are 3 pairwise orthogonal
starters. All starters constructed in this paper will be strong starters. The
connection between orthogonal starters and Room w-cubes is given in the
following theorem.

THEOREM 1.4 (Horton [7]). / / there exist n pairwise orthogonal starters of order r,
then there is a Room n-cube of side r, and thus v(r) > n.

In view of the above theorem, to find lower bounds for v{r) it is convenient to
search for large sets of pairwise orthogonal starters of order r. The proof of
Theorem 1.2 above introduces a construction for / pairwise orthogonal starters in
GF(q)+ , where q = 2kt + 1 is a prime power with t odd. In Section 2 we show
that the starters found in Theorem 1.2 are in some sense unique. In Section 3 we
will add on some starters to those given in Theorem 1.2 to obtain larger sets of
pairwise orthogonal starters. These new starters will be termed two-quotient
starters and will be defined presently.

In Section 4 we give 4 pairwise orthogonal starters of order 15 and 5 pairwise
orthogonal starters of orders 17, 21, 33, 35, 39. These starters were obtained by
use of a computer.
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13 J Room //-cubes of low order 239

2. One quotient starters

For this section and the next we assume q = 2*7 + 1 is a prime power with t
odd. For the sake of clarity we indicate the proof of Theorem 1.2.

Let G = GF(q)* be the multiplicative group of the Galois field GF(q) and let
Co C G be the subgroup of G or order t. Let A = 2k~x and let Co, C, , . . . , C2A_,
be the multiplicative cosets of Co. Note that C, = -C A + / where the subscripts are
taken mod 2A = 2*. In particular, -1 £ Q = -Co.

Call H C G a /w//-.se/ if / / U - 7 / = G. Thus H = Co U C, U • • • UCA_, is a
half-set, and for all a G G, a ^ 1, 7/a = ( l / ( a - 1)) 7/ is also a half-set. / / and
Ha also have the properties that CAH = - / / and CAi/a = - / / a . For each a G CA

define 5a = {{x,<jx}|x6Wa}.
Theorem 1.2 asserts that for each a G Q , Sa is a starter, and for a =£ b e Q

that 5a is orthogonal to 5fc. The proof is straightforward and we omit it here. Note
that | CA |= / and thus we have constructed t pairwise orthogonal starters of order
q = 2*7 + 1. Therefore v(q) > t.

Every starter defined above and the original Mullin-Nemeth starters [8] which
these starters generalize, have the property that the quotient of the elements in
any pair is a constant. To be more precise, define S = {{x,, yt}} to be a one
quotient starter in GF(q)+ if there exists some a G. GF(q)* such that xi/yi = a or
yt/xt = a for all /. Then we see that each starter Sa is a one quotient starter with
quotient a G CA.

The following theorem determines the possible quotients of one quotient
starters.

THEOREM 2.1. If S is a one quotient starter in GF(q)+ with quotient a, then
a G Q .

PROOF. Let S = {{.?,, t,}} be a starter in GF(q)+ and without loss of generality
let ti/si = a for all i. If {x, ax} G S, then so must be {a2x, a3x}, [a*x, a5x},...
and {as~2x, as~xx) where 5 is the order of a in GF(q)*. The differences between
the elements in these pairs are ±x(a — 1), ±a2x(a — 1), ±a4x(a — 1),. . . and
±a*~2x(a — 1), respectively. Since S is a starter these differences are all distinct.
However, if 4\s, then s/2 = In is even. Since as/2 = - 1 , then x(a — 1) =
-as/2x(a — 1) = a2nx{a — 1), which implies that the differences above are not
all distinct, a contradiction. Thus 4 \ s.

With Co, C, , . . . , Q , . . . , C2A_, as defined above, it is clear that if s is the order
of a and if 4\s, then a e Co U Q .
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Assume a E Co. Then it must be possible to write Co = Uy. {xy, axj) where
{xj, axj} £ S for ally. But |C o |= t is odd. Thus Co is not the disjoint union of
pairs of elements. Therefore a ¥= Co, and thus the result.

REMARK. Note that according to Theorem 2.1, those starters Sa defined above
comprise the largest possible set of orthogonal one quotient starters.

3. Two quotient starters

In this section we will find new starters which are pairwise orthogonal to each
other and also orthogonal to each of the starters determined by Theorem 1.2. In
view of the remark following Theorem 2.1 it is impossible for these new starters to
be one quotient starters. So as a generalization of one quotient starters we define
£={{.* , , /,}} to be a A: quotient starter in GF(q)+ if there exist Q =
{a0, ax,...,ak^x) C GF{q)* such that *,/$•,. £ Q or s,/tt £ Q for each i. Note
that if ax—a2 = • • • = ak, then S is also a one quotient starter. We will
concentrate on two quotient starters.

Let q = 4t + 1 be a prime power with / odd. As in the previous section let
Co C GF(q)* — G be the subgroup of order t (so Co has index 4). Again let
C0,C,,C2,C3 be the multiplicative cosets of Co. Define the set S(a0, a,)—
{{x, a0, x}, {y, axy) \x £ Co

a°, y £ Cf'} where C,a> = ( l / ( a , - 1))C, for i = 0,1.
Notice that if S(a0, ax) is a starter, then it is a two quotient starter. Also, if
a0 — ax = a £ C2, then S(a0, ax) = Sa defined in Section 2 (since Ha = Co" U
Cf). The following gives necessary and sufficient conditions for S(a0, ax) to be a
starter.

LEMMA 3.1. S(a0, a{) is a starter in GF(q)+ if and only if the following conditions
are satisfied:

(a) a0 & C0,ax $ Co,

(b) ^ ? C , ,a0 i

a, - I
(c) U '

(d)

(e)
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PROOF. TO prove that S(a0, a,) is a starter in GF(q)+ it must be shown that
every non-zero element is contained in exactly one pair in S(a0, ax), and that
every non-zero element is a difference of one of the pairs in S(a0, ax).

Using the conditions of the lemma it can be checked that ( l / ( a 0 — 1))CO,
(ao/(ao - 1))CO( ( l / ( a , - 1))C,, (ax/(ax - 1))C, are all different cosets. Thus,
every element in G is in exactly one pair in S(aQ, ax). The differences occurring in
a pair of the form {x, a0, x) are ±00* ~~ x ~ ±(ao ~ ^)x an(^ occur in the
cosets ¥= (a0 - 1) • ( l / ( a 0 - 1))CO = Co U C2. Those differences obtained from
the other type of pairs, {y, ax, y) w i th j G Cf1, can similarly be shown to be the
elements of the cosets C, U C3. Thus, every element in G is a difference for
exactly one pair in S(a0, a,).

The proof of necessity is similar.

If ao = a, = a, then in order for S(a, a) to be a starter, the conditions of the
above lemma imply that a E C2. Thus, S(a, a) is one of the starters given by
Theorem 1.2, in particular, S(a, a) = Sa.

We now give conditions for orthogonality.

LEMMA 3.2. Let S(a0, a,) and S(b0, bx) be two quotient starters. Then S(a0, a,)
and S(b0, bx) are orthogonal if and only if

bn — an fli — 1 b, — 1

/ ^ r ' ^ r / ^ T * c " a°^6° and a-^>-
PROOF. Assume S(aQ, a,) and S(b0, bt) are orthogonal two quotient starters.

Then there exist pairs {x, aox) and {y, axy) £ S(a0, ax) such that aQx — x = 1
and axy — y = g, for some given g, G C,. This follows since aox — x — 1 implies
JC = l(a0 - 1) and l / ( a 0 - 1) G Q°. Similarly y = gx/{ax - 1) G C{\ Also,
there exist pairs {z, />oz} and (w, bxw) G 5(ft0, 6,) with boz — z = 1 and 6,^ — w
= gx. This implies 2 = \/(b0 - 1 ) 6 C0

6° and w = g , / (6 , - 1) G Cf.

Now, since 5(a0, «i) and S(b0, bx) are orthogonal we must have that x — z ^y
- w. Therefore \/(a0 - 1) - \/(b0 - 1) ̂  g l / ( f l l - i) - g|/(ft] - i). So (b0

- ao)/(ao - lX*o ~ 1) * Sxibx ~ ax)/(ax - \)(bx - 1) and thus ((b0 -

aO)/(*i - «.)) • « a . - l)/(«o - 0) • ((*, - l)/(*o - !)) ^ gi f°r any g, G C,.
Thus ((ft0 - ao)/(bx - a,)) • ((ax - l)/(a0 - 1)) • ((bx - \)/(b0 ~ 1)) g C,.
Also it is clear that if a0 — b0 or ax ~ bx, then the two starters would have a pair
in common contradicting the assumption of orthogonality. Thus the conclusion.

Now assume S(a0, ax) and S(bOf bx) are not orthogonal. Then there are two
distinct pairs {JC, a,x}, {y, a}y} G S(a0, a,) and two distinct pairs {z,btz},
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{w, bjw) G S(b0, ft,), with x(a, - 1) = z(ft, - 1), y(oj - 1) = w(bj - 1) and x -
z = y — w. If a,, = Oj or ft, = ft,, then both at = a, and ft, — bj. This follows by
assuming (without loss of generality) that a, = ttj = a0, with ft, = b0 and fty = ft,.
Then ^(a0 — 1) G Co while w(ft, — 1) G C, but y(a0 — 1) = w(ft, — 1), a con-
tradiction. Thus assume a, = aj and ft, = ft,. Then we have that (x — y\at — 1)
= (z — w)(bt — 1). Since x =£ y and z ^ w, then a, — 1 = ft, — 1 and so a, = bt,
again a contradiction.

If a, =̂  a7, then without loss of generality assume a, = a0 and ay = a,, and so
ft, = ft0 and ft, = ft,. Now let x = ( l / ( a 0 — 1)) • x0 where x0 G Co and w =
(l/(ft, - l))*v, where w, G C,. Then JK = ((ft, - l ) / (a , - l))(l/ft, - l)w, =
H-,/(ai - 1) and z = ( K - l)/(ft0 - 1)) • (\/(a0 - l))x0 = xo/(bo - 1). So x
— y = z — w implies

x0 H>, _ x0 wi

o - \ a, - 1 ft0 - 1 ft, - 1 '

_K - i)(ft0 - i)
Thus

b0 ~ Qo fl| ~ 1 bx - 1 _ w,
ft,-a, flo-ra,-i * o

e c ' -
So we have that if S(a0, a,) and j(ft0, ft,) are not orthogonal, then a0 = ft0 or
a, = ft, or ((ft0 - ao)/(ft, - a,)) • ((a, - l ) / (a 0 - 1)) • ((ft, - l)/(ft0 - 1)) G
C,. So if a0 ¥- ft0 and a, # ft, and ((ft0 - ao)/(ft, - a,)) • ((a, - \)/(a0 - 1)) •
((ft, — l)/(ft0 — 1)) £ C,, then ^(ao, a,) and S(b0, ft,) are orthogonal.

Again we note that if a0 = a, = a G C2 and ft0 = ft, = ft G C2 with a ¥= ft, then
the starters Sa = 5(a0, a,) and Sb = S(b0, ft,) are orthogonal. This is now easy to
show, since in this case

ftp - a0 Q, - 1 ft, - 1 _ ft - a a - 1 ft - 1 _
ft, — a, a0 — 1 ft0 — 1 ft —a a— 1 ft— 1 '"

Often when considering a starter s= {{st, /,}}, we wish to investigate the
negative starter -S = {{-*,-,-f,-}}- In the case of two quotient starters S(a0, a,)
this negative starter has a nice form.

LEMMA 3.3. / / S(a0, a,) is a two quotient starter, then -S(a0, a,) =
S(\/a0, I /a , ) .
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PROOF. S ( l / a o , l / a , ) = {{z,(l/a,)z}, {w,(\/ax)w} \z G C^a\ w G C,1""}.
Now z G q}/fl<> = ( l / ( l / f l 0 ~ 1))CO = (ao / ( l ~ *o))Q. Thus -z G (a o / (a o ~
1))CO. Let x = - ( l /a o )z , then x G ( l / ( a 0 - 1))CO = Qa°. Similarly, it can be
shown that if y = -( l /a,)w, then y G Cf. We now have that S(\/a0, I /a , ) =
{{-aox,-x},{~aiy,-y}\x E Co

a°, y G Cf'}. This is just -S(a0, a,).

As an application of the two previous lemmata we give the following theorem.

THEOREM 3.4. Let S(aQ, ax) = { { J , , /,}} be a quotient starter; then the following
are equivalent.

(a) S(aQ, ax) is orthogonal to -S(a0, a,).
(b) S(a0, a,) is a strong starter (that is, s, + tt ¥= Sj + tj if i ¥=j),

(c)

a o - l 1 + a ,

PROOF, (a «• b). See [10].

(a <=> c). Use Lemma 3.3 to write -S(a0, at) = S(\/a0, I /a , ) . Then use Lemma
3.2. The following are equivalent.

S(a0, ax) is orthogonal to ~S(a0, a,)

<=> S(a0, a,) is orthogonal to 5 — , — I
\ao a\ I

I /a , - a, a0 - 1 l / a 0 -

The original motivation for investigating two quotient starters was to find more
starters orthogonal to the set of starters Sa = {{x, ax) \x G Ha) for a E C2. With
this in mind we assume a0 & C2 and a, ^ C2. Since if either a0 G C2 or a, G C2,
then S(a0, a,) would have some pairs in common with Sb where b = a0 or a,. The
following lemma gives conditions for a two quotient starter to be orthogonal to
the original set of starters Sa for a G C2.

LEMMA 3.5. Suppose {a0, a,} C G such that S(a0, a,) is a starter and
(a) a0 G C,, a, G C3 and((a0 - 6)/(a, - b)) € C3/or a// fc G C2, or
(b) a0 G C,, a, G C, a«J((a0 - 6)/(a, - 6)) $ CJorallb G C2, or
(c) a0 G C3, a, G C, an /̂ ((a0 - 6)/(a, - 6)) g C, /or a// Z> G C2, or
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(d) a0 G C3, a, E C3 and ((a0 - 6) / (a , - b)) & C2 for all b G C2,
5(a0 , a,) is orthogonal to Sbfor all b E C2, am/ thus -S(a0, a,) « orthogonal to Sb

for all b G C2. y4fao, 5(a0, a,) is orthogonal to -S(a0, a,).

PROOF, (a) Using Lemma 3.1 it is seen that since S(a0, a,) is a starter then
((a - l)/(a0 - 1)) G C2. By Lemma 3.2 S(a0, a0) is orthogonal to Sb for all

b G C2if x = ((a0 - fcXa. - *)) • ((*i —l)/(flo - 1)) •((* - l ) / ( * - 1)) £ C,.
But by assumption ((a0 - 6) / (a , - b)) £ C3 for all b G C2. Thus x <£ C,. The
other cases are similar.

If S(a0, a,) is orthogonal to Sb for all b G C2, then -S(a0, a,) is orthogonal to
-Sb for all Z> G C2. But - 5 6 = S ] / 6 and if 6 G C2, then \/b G C2. Thus -5(a0 , ax)
is also orthogonal to Sb for all b G C2.

Noting that -1 G C2, the assumption that ((a0 - 6) / (a , - b)) ^ C3 for all
b G C2 implies ((a0 + l ) / (a , + 1)) £ C3. For each of the cases it is easily shown
that ((o0 + l ) / (a , + 1)) • ((a, - l ) / ( a 0 - 1)) 6 C,. Thus by Theorem 3.4,
5(a0 , a,) is orthogonal to -5(a 0 , ax). This completes the proof.

The following theorem improves upon the result of Theorem 1.2.

THEOREM 3.6. (a) There are 5 pairwise orthogonal starters in Z13, thus v(\3) > 5.
(b) There are 15 pairwise orthogonal starters in Z37, thus i>(37) 3s 15.

PROOF, (a) Let ^ = . 1 3 with 3 a generator for GF(\3)*. Consider the two
quotient starter 5(2,11). The conditions of Lemma 3.1 are easily checked. We
check the conditions of Theorem 3.5. In this case C2 = {4,12,10). First of all
aQ = 2 G C, while a, = 11 6 C3, thus we are in case (a) in the above lemma. For
b = 4 we have ^ ^ = Y = 9 G Co. If b = 12, then ^% = £ = 10 G C2.
Finally, if Z> = 10, then f f ^ = f = 5 G C,. Thus by Theorem 3.5 5(2,11) and
-5(2,11) = 5(7,6) are orthogonal to 54, 512, and 510 and to each other. Thus
since 54, 5 J 2 and 5,0 are pairwise orthogonal by Theorem 1.2, the results follows.

(b) Let q = 37 with 2 a generator for GF(37)*. Using Lemmata 3.1, 3.2 and
Theorem 3.5 the following starters can be shown to be pairwise orthogonal and
orthogonal to all of the starters 56 for b G C2. These starters are ±5(35,2),
±5(15,6) and ±5(23,14). Thus we have 6 + 9 = 15 pairwise orthogonal starters
in GF(31)+ . So v(37) > 15.

We note that the same 5 starters were found by Gross [5]. His construction also
made use of the multiplicative cosets of order 3 in GF(13)*.

https://doi.org/10.1017/S1446788700024678 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024678


191 Room /i-cubes of low order 245

The following lemma proves that if S(a0, a,) and S(b0, b2) are two quotient
starters with a^/a0 = bx/b0, then they are orthogonal.

LEMMA 3.7. Suppose (a0, a,} C G such that S(a0, a,) is a two quotient starter.
Also suppose there is a set T = {1 = t0, tx, t2,.. .,tv) C Co U Co and that the
following properties hold:

(a) a o
e C i> t>\^C3,

(b) t,^tj ifi^j,

(<0 7 ^ 4 e C2 foralltieTnC0>a '
(d) '-"• ' E Co

'i"0 *

(e) ^ i — T « C, i/ {r,, /,.} C Co or {/„ 0 } C C2,
r,rya, l

(f) | ' ^ 2 _ ; g C3 ' / ' , G C o a ^ / 7 G C 2 .

77ien 5(/,a0, r,a,) w a starter for each tt G T. Also S(f,a0, /,-a,) « orthogonal to
±S(tJa0,tJal)forti¥=tJ.

PROOF. We must first show that 5(^a0, t(ax) is a starter. Since a0 G C, and
a, G C3, by the proof of Lemma 3.5 we have (a, — l ) / (a 0 — 1) G C2. Now, in
order to show that S(ttaQ, r,a,) is a starter, we show that the conditions of
Lemma 3.1 are satisfied. Consider the case when f, G Co. By assumption (tial —

l)/(t,a0 - 1) G C2. So (r,.fl, - ^/(r.-a^'.-ao ~ ! ) e C 3 ' C.-«i ~ O'^oA' ,^. "
1) G C3 and ((^a, - l)/(f,-a0 - 1)) • (r,ao/f,a,) G Co. Thus by Lemma 3.1,
5(^a0, /,-a,) is a starter for all t: G Co. The case /, G C2 is similar.

To show that if / ¥=j, then S(tta0, /,a,) and S(tja0, tjax) are orthogonal we use
Lemma 3.2. Consider x = ((/yfl0 - tta0)/(tjax - ttax)) • ((r,a, - l)/(/,-fl0 ~

 J))
• ((/ya, - l)/(r7a0 — 1)). The starters are orthogonal if x & Cx. Simplifying
yields x = (ao /a , ) • ((/,-a, - l)/(t,a0 - 1)) • ((f,a, - l)/(/ya0 ~ !))• N o w ao/ f l i
e C2, (/,«, - l)/(r,a0 - 1) G Co U C2 and (/,.«, - l) /( /y 0 - 1) G Co U C2, thus
x ^ C,, and therefore the starters are orthogonal.

Finally, it need only be shown that S(/,a0, t{a^) is orthogonal to -S(tja0, tjax).
By Lemma 3.2, the two starters are orthogonal if

1 A « o ~ ',ao f,-fli - 1 1/V»i ~ 1
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Reducing gives

x —

_ Utja

Jetti

11 a2 t a

titjaf tjO0

o - 1 ttax

ey H. Uimtz

tfl\ ~ 1 l

t,a0 - 1 1

-1 ';«,-!

— t a

[10]

If /, and tj are both in Co or both in C2, then conditions (c), (d), and (e) above
imply x £ Cx. If ?, and tj are in different cosets, then conditions (c), (d), and (f)
imply x £ C,. Thus the result.

Lemma 3.5 can be combined with Lemma 3.7 to obtain the following theorem
which yields large sets of pairwise orthogonal starters.

T H E O R E M 3.8. Suppose {a0, a , } C G such that S(a0, ax) is a two quotient starter.
Also suppose there is a set T= {1 = t0, tx, t2,...,tv} C C o U C2 and that the
following properties hold:

( a ) aGCx, ax£C3,

(b) — r$C3 forallb<=C2,
ax — b

(c) t,*tj ifi*j,

(e)

ttO

(g)

I

- 1

2
titja\

Then ±5( / ,a0 , r,a,) a/irf 56 are pairwise orthogonal starters for all tt G 7 am/
J6Q.

PROOF. This is immediate from Lemmata 3.5a and 3.7 and Theorem 3.1.

We now apply the above theorem to q = 29,61, and 101.
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THEOREM 3.9. (a) There exist 13 pairwise orthogonal starters of order 29, and thus
v(29) > 13.

(b) There exist 21 pairwise orthogonal starters of order 61, and thus v(6\) > 21.
(c) There exist 31 pairwise orthogonal starters of order 101, and thus p(101) > 31.

PROOF, (a) Let a0 = 3 £ C,, a, = 27 e C3, f0 = 1, t} = 28 and t2 = 23. Then
the conditions in Theorem 3.8 can be shown to be satisfied.

(b) Let a0 = 32, a, = 31, t0 = 1, f, = 22 and t2 — 56. Again the conditions in
Theorem 3.8 are satisfied.

(c) Let a0 = 67, a, = 90, t0 = 1, /, = 5, and t2 = 58. Then once again the
conditions in Theorem 3.8 are satisfied.

In all previous cases, we have searched for large sets of pairwise orthogonal two
quotient starters which are also orthogonal to the original one quotient starters Sa

given in Section 2. We now give a technique for finding large sets of exclusively
two quotient starters.

If S = {{st, /,}} is a starter in GF(q)+, then certainly for any a G GF(q)*,
a • S - {{asi, a/,}} is also a starter in GF(q)+ . Call Ta conjugate of S if T = aS
for some a G GF(q)*. The following lemma holds for two quotient starters. The
proof is straightforward and is omitted.

LEMMA 3.10. Let S(a0, a,) be a two quotient starter in GF(q)+, q — At + 1.
Then

aS(ao,ax) = S(ao,ax) if a G Co,

= sl±-,a0) if a EC,,

PROPOSITION 3.11. / / S(a0, a,) is a two quotient starter and if S(a0, a,) is
orthogonal to S(alt \/aQ), then it is orthogonal to 5(l/a, , a0).

PROOF. Using Lemma 3.2, if S(a0, ax) is orthogonal to S(a, \/a0), then
((a0 - *,)/(*, - \/a0)) • ((a, - l)/(a0 - 1)) • ((l /a0 - l)/(a, - 1)) g C,.
Thus by simplification (a0 — ax)/{\ — aQax) $ Cx. Now again using Lemma 3.2,
it is seen that S(a0, ax) is orthogonal to S(\/ax, a0) if ((a0 — \/al)/(al — a0)) •
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((a, - l ) / (a0 - 1)) • ((a0 - l ) / ( l / a , - 1)) £ C,. This simplifies to (a0 -
o0)/( l — aoax) € C,. Hence the result.

Define a two quotient starter S(a0, ax) to be super strong if it is not only strong
(orthogonal to -5(a0, a,)) but also orthogonal to its conjugate aS(a0, ax) for
a £ C ] U C3. That is, a two quotient starter 5(a0, ax) is super strong if it is
orthogonal to a5(a0, a,) for a € Co. It is easy to see that if S(a0, ax) is
orthogonal to all aS(a0, ax) for a £ C, then aS(a0, a,) is orthogonal to all
^S(aQ, a,) for all /?, /?/« £ Q>. Thus, in view of Proposition 3.11, if it is shown
that S(a0, ax) is strong and orthogonal to S(ax, \/a0) = aS(a0, a,), a G C,, then
the conjugate starters to S(a0, a,) form a set of 4 pairwise orthogonal starters. We
also have the following proposition which is trivial to prove.

PROPOSITION 3.12. Suppose 5(a0, a,) and S(b0, bx) are super strong two quotient
starters. If S(a0, ax) is orthogonal to fSS(b0, b^forallji e GF(q)*,thenaS(a0, at)
is orthogonal to fiS(b0, bx) for all a, /? G GF(q)*. Thus there is a set of 9pairwise
orthogonal starters in GF(q)+ . (The 8 two quotient starters and the patterned starter
/> = ({*,-*} | x # 0 ) ) .

We use this proposition to get

THEOREM 3.13. There are 17 pairwise orthogonal starters in GF(53)+ , thus
K53) > 17.

PROOF. We give 4 super strong starters with the property that each is pairwise
orthogonal to all of the conjugates of the others. Thus by Proposition 3.12, there
are 17 pairwise orthogonal starters. The starters are 5(2,18), 5(22,12), 5(51,5)
and 5(34,19).

For the more general case of prime powers q = 2kt + 1 define

5 = S ( a 0 , a x , . . . , a 2 t - , _ x ) = { { * „ a ,x , } |*,. e q " , 0 < i < 2 * " 1 - 1}

where C, is the Jth coset of Co (the subgroup of order t), and Cf' = (l/(a,- - 1))C,-.
Then under certain conditions analogous to those in Lemma 3.1, 5 will be a
starter (a 2k~) quotient starter). Four quotient starter are used in the following
theorem to construct pairwise orthogonal starters.

THEOREM 3.14. (a) There are 7 pairwise orthogonal starters of order 25, thus
K25) > 7.

(b) There are 9 pairwise orthogonal starters of order 4], thus ^(41) > 9.
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PROOF, (a) In GF(5) let w be a root of the irreducible polynomial x2 — 4x — 3.
Then GF(25) = {aw + b | a, b G GF(5)}. Denote the element aw + b by ab. The 7
starters are:

532 = 5(32,32,32,32) = {{23,24}, {01,32}, {31,04}, {11,21}, {10,44},
{34,40}, {03,41}, {43,02}, {14,12}, {30,22},
{42,20}, {33,13}};

5(11,20,11,40) = {{22,23}, {20,01}, {13,31}, {44,04}, {40,24},
{21,32}, {10,03}, {34,43}, {11,14}, {41,33},
{02,30}, {12,42}};

5(21,21,21,13) = {{11,12}, {10,41,} {34,02}, {03,13}, {43,22},
{14,20}, {30,23}, {42,01}, {33,31}, {40,32},
{21,04}, {44,24}};

P = 5(04,04,04,04) = {{x, x] \x £ GF(25)*};

-532;-5(11,20,11,40) and -5(21,21,21,13).

It can be checked that the above starters are pairwise orthogonal. In [5] Gross
also finds 7 pairwise orthogonal starters of order 25; however, they are not the
same ones given here.

(b) For 41 = 8 • 5 + 1, it can be checked that the following 9 starters are
pairwise orthogonal: ±525, ±S4,P = 5^, ±5(20,35,2,35), and ±(22,27,27,19).

4. Further results

For all orders n < 133 not a power of a prime, the best lower bound for v{n) is
v(n)> 3. In this section we have employed computer techniques to improve upon
this bound for the orders 15, 17, 21, 33, 35 and 39. By use of a simple
backtracking algorithm we have

THEOREM 4.1. There are 4 pairwise orthogonal starters of order 15, and thus
4.

PROOF. We give the orthogonal starters in Z,5:

5, = {{13,14},{10,12},{4,7},{5,9},{1,6},{2,8},{11,3}},

5 2 = {{11,12}, {6,8}, {1,4}, {14,3}, {5,10}, {7,13}, {2,9}},

5 3 = {{10,11}, {14,1}, {2,5}, {4,8}, {7,12}, {3,9}, {6,13}},

5 4 = {{1,2}, {7,9}, {11,14}, {6,10}, {3,8}, {13,4}, {5,12}}.
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By means of a slight modification of the algorithm for finding strong starters
described in [3], we have found 5 pairwise orthogonal starters of several orders.

THEOREM 4.2. There are 5 pairwise orthogonal starters of orders n — 17,21,33,35
and 39, and thus for each of these n, v(n) 3s 5.

PROOF. For each of these orders n we have found two strong starters A, B
which have the property that A is orthogonal to B and -B. It then follows that -A
is orthogonal to both B and -B and thus the starters A, -A, B, -B and
P = {{x,-x}\x G Z J form a set of 5 pairwise orthogonal starters in Zn. For
each n we give the starters A and B.

n = \l
A = {{2,3}, (11,13}, {5,8}, {14,1}, {7,12}, {4,10}, {9,16}, {15,6}},

B= {{1,2}, {14,16}, {10,13}, {5,9}, {3,8}, {6,12}, {4,11}, {7,15}}.

A = {{19,20},{12,14},{13,16},{4,8},{1,6},{5,11},{3,10},{15,2},

{9,18},{7,17}},

B = {{3,4}, {10,12},{16,19},{14,18}, {2,7},{9,15},{20,6},{5,13},

{8,17},{1,11}}.

n = 33
A = {{20,21}, {6,8}, {28,31}, {12,16}, {25,30}, {7,13}, {29,3}, {15,23},

{2,11},{17,27},{32,10},{14,26},{9,22},{24,5},{4,19}, {18,1}},

B = {{29,30},{3,5},{21,24},{6,10},{7,12},{14,20}, {18,25}, {26,1},

{23,32}, {9,19}, {2,13}, {15,27}, {4,17}, {8,22}, {16,31}, {28,11}}.

« 35
A = {{10,11}, {16,18} {26,29}, {32,1}, {17,22}, {33,4},{5,12}, {20,28},

{25,34}, {9,19},{30,6},{2,14}, {8,21},{13,27},{23,3},{15,31},

{7,24}},

21= {{30,31}, {19,21}, {23,26}, {12,16}, {34,4}, {3,9}, {11,18}, {32,5},
{6,15},{17,27},{14,25},{33,10},{29,7},{22,1},{13,28},{8,24},

{20,2}}.
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« = 39

,4 = {{17,18}, {27,29}, {23,26}, {36,1}, {28,33}, {16,22}, {6,13}, {11,19},

{37,7}, {5,15}, {31,3}, {35,8}, {38,12},{20,34},{9,24},{25,2},

{4,21},{14,32},{30,10}},

B = {{37,38},{4,6},{16,19}, {31,35}, {29,34}, {3,9}, {23,30},{5,13},

{1,10},{15,25},{17,28},{20,32}, {14,27},{12,26},{7,22},{8,24},

{33,11},{18,36},{2,21}}.

A few comments are in order concerning the search for orthogonal starters.
First of all, the above set of starters in Z15 constitute a maximal set. Secondly, an
exhaustive search for orthogonal starters of orders 11 and 13 was possible with
the result that there are not 6 pairwise orthogonal starters of orders 11 and 13.
Furthermore, the only set of 5 pairwise orthogonal starters of order 11 is the set
given in Section 2. Also, there are only two sets of 5 pairwise orthogonal starters
of order 13 and both can be obtained bV the method of two-quotient starters.
Finally, we have found that the maximal set of pairwise orthogonal starters of
orders 15, one of which is P, the patterned starter, is 3. Thus the method used to
find 5 orthogonal starters in Theorem 4.2 can not be used for n = 15.

5. Conclusion

We have found improved lower bounds for v(n) for many small values of n
(n= 13,15,17,21,25,29,33,35,37,39,41,53,61, and 101). The bounds for
prime-powers were determined by difference methods in cyclotomic fields while
the other values were determined by computer techniques.

We have not investigated upper bounds for v(n). It has been conjectured [6]
that v(n) < (n — l)/2 for all n > 7. This conjectured upper bound is attained
when n is a prime-power, n = 3 (mod 4). In no other instance has this bound been
achieved. Most of the lower bounds presented in this paper vary a good deal from
the conjectured upper bound. However, there are several cases where this dif-
ference is only 1; we have v(9) > 3 [2], *<13) > 5 and H29) > 13.

Possible further research into the behavior of v(n) could be directed at a proof
that v(n) < (n - l)/2. Also, it would be of interest to show that if p = 2kt + 1 is
a prime-power with t odd, then v(p)> t. This result is suggested by the small
examples presented in this paper.
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