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The connection between wave dissipation by breaking deep-water surface gravity
waves and the resulting turbulence and mixing is crucial for an improved
understanding of air—sea interaction processes. Starting with the ensemble-averaged
Euler equations, governing the evolution of the mean flow, we model the forcing,
associated with the breaking-induced Reynolds shear stresses, as a body force
describing the bulk scale effects of a breaking deep-water surface gravity wave on
the water column. From this, we derive an equation describing the generation of
circulation, I', of the ensemble-average velocity field, due to the body force. By
examining the relationship between a breaking wave and an impulsively forced fluid,
we propose a functional form for the body force, allowing us to build upon the
classical work on vortex ring phenomena to both quantify the circulation generated by
a breaking wave and describe the vortex structure of the induced motion. Using scaling
arguments, we show that I = a(hk)**c/g, where (c, h, k) represent a characteristic
speed, height and wavenumber of the breaking wave, respectively, g is the acceleration
due to gravity and o is a constant. This then allows us to find a direct relationship
between the circulation and the wave energy dissipation rate per unit crest length due
to breaking, ¢,. Finally, we compare our model and the available experimental data.
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1. Introduction

Breaking waves are an important mechanism for modulating and enhancing the flux
of gases, heat and momentum across the air—sea interface (Melville 1996). Breaking
is believed to be the main way that momentum is passed from the wind-driven
irrotational wave field into the underlying rotational ocean currents. An improved
knowledge of the modification of these fluxes due to breaking is crucial for a better
understanding of the mechanisms involved in air-sea interaction, and specifically
for the enhancement of coupled atmosphere—ocean models. Although there have
been recent advances in laboratory and field measurements, the problems associated
with wave breaking still present demanding experimental, numerical and theoretical
challenges. Therefore, even simple theoretical models focusing on the response of the
water column to breaking can prove to be valuable in gaining a better understanding
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of air—sea interaction from local to global scales (Banner & Peregrine 1993; Melville
1996). In this paper, we present a model relating the circulation generated by a
breaking wave to the wave energy dissipated due to breaking.

Duncan (1981) performed laboratory experiments involving quasi-steady breaking
generated by flow over a submerged hydrofoil. Duncan’s (1981) scaling of dissipation
is consistent with Lighthill’s (1978) description of the wave power generated by flow
past a cylinder. Using the balance of forces for breaking waves presented by Duncan
(1981), Phillips (1985) proposed a model for the energy dissipation rate of a breaking
wave per unit length of breaking crest, €;:

€ =b—, (1.1)
8

where p is the density of water, g is the acceleration due to gravity, c is
the characteristic wave phase speed and b is a non-dimensional breaking strength
parameter.

Dimensional analysis arguments by Melville & Rapp (1985), Melville (1994) and
Drazen et al. (2008) show that b is a function of the bandwidth of the breaking wave
group, the rate at which focusing occurs, and the wave slope at breaking, S. Following
Drazen et al. (2008), this is defined as the linear prediction of the slope at focusing of
the wave packet,

S= Z ak,, (1.2)

where the summation is over all amplitudes a, and wavenumbers k, of the input wave
packet.

Drazen et al. (2008) proposed an inertial scaling model for plunging quasi-two-
dimensional breaking based only on the local slope ik at breaking, finding

b= B(hk)>"*, (1.3)

where B is a constant of order unity, 4 is the wave height at breaking and k is the
characteristic wavenumber of the breaking wave defined through the linear dispersion
relation, ¢ = g/k. The slope at breaking hk does not necessarily relate to S, the
linear prediction of the slope at breaking, in a simple way, since wave breaking is
an inherently nonlinear process, especially as the point of breaking is approached;
however, the experiments and analysis of Drazen et al. (2008, §5) and Tian, Perlin
& Choi (2010, §3.1.5) show that within the scatter of the laboratory data the two
quantities are approximately linearly related.

Equation (1.3) has been corroborated through analysis of laboratory experiments for
plunging breaking waves by Drazen et al. (2008). Romero et al. (2012) showed (see
figure 1) that when combined with a threshold for breaking, this power law extends
to the data for the onset of breaking from Banner & Peirson (2007); that is, it applies
across the whole available range of breaking strength data.

Melville & Rapp (1985) and Rapp & Melville (1990) measured the loss of
momentum and energy fluxes from surface waves due to breaking by using dispersive
focusing of a wave packet to induce unsteady, quasi-two-dimensional breaking. In
particular, Rapp & Melville (1990, §5.4) found that for three different strengths of
wave breaking (two of which were described as plunging and one as spilling) more
than 90 % of the energy lost by the wave field due to breaking was dissipated within
four wave periods of the breaking event. Meanwhile, they found that between 58 and
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FIGURE 1. Analysis of laboratory measurements, adapted from Romero, Melville & Kleiss
(2012), of the breaking parameter b versus the maximum linear slope at breaking, S, as
defined in (1.2). DML (SIO) and DML (THL) are data from Drazen, Melville & Lenain
(2008), M are data from Melville (1994), BP and BP (wide basin) are data from Banner
& Peirson (2007) and the solid line represents the fit predicted by the scaling argument of
Drazen et al. (2008), with coefficient 0.4 and threshold slope of 0.08 chosen to best fit the
data. See Romero et al. (2012) for further details.

86 % of the momentum lost by the wave field was present in the breaking-induced
currents four wave periods after the breaking event. In addition, the authors found
that the magnitudes of the induced mean and turbulent currents were comparable.
Melville, Veron & White (2002) (hereinafter referred to as MVW) used a similar
dispersive focusing technique to study the ensemble averaged flow and turbulence after
the breaking event. The post-breaking flow in these studies was dominated by a robust
vortex, which is displayed in figure 2, lasting for more than 58 wave periods after
breaking (see also Rapp & Melville 1990, Sullivan et al. 2004). MVW showed that
this vortex slowly propagated downstream under the influence of its image in the free
surface.

To study the effects of breaking waves on the water column, Sullivan, McWilliams
& Melville (2004) (hereinafter referred to as SMM2004) proposed a heuristic model of
a breaking wave by the use of a body force. The authors modelled this force based on
laboratory experiments of Rapp & Melville (1990) and MVW, finding qualitative and
quantitative agreement between the large-scale response of the flow in the model and
the (ensemble-averaged) behaviour observed in the laboratory. They then compared the
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FIGURE 2. Laboratory measurements of the ensemble averaged, non-dimensionalized,
velocity field induced by breaking, from Melville et al. (2002, MVW). Here, A and T
represent the characteristic wavelength and period of the breaking wave, respectively, and
the vector density is reduced by a factor of 10 for clarity of presentation; see MVW for further
details. The figure shown is for times ¢/T = 26.5, 50 for top and bottom plots, respectively.
The main feature of the flow is a coherent vortex, which lasts for more than 50 wave periods
after the breaking event and slowly propagates downstream through the action of its image in
the free surface.
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FIGURE 3. Impulse due to the body force parametrizing a breaking event. The plot on the left
shows the impulse in the (x, z) plane at y = 0 while the plot on the right shows the impulse in
the (x, y) plane at z = 0; based on forcing given in SMM2004, which is in the ¥ direction.

effects of the body force with a uniform surface stress of equivalent total momentum
transfer, highlighting the marked impact of intermittent body forces, or breaking, on
the dynamics of the water column. The impulse per unit mass, I, imparted to a fluid
by a body force per unit mass F is defined as

T
I=/ F(x, 1 dt, 1.4
0

where 7 is the duration of the forcing event (Lamb 1932, § 119). Figure 3 shows the
impulse of the body force, modelled after a deep water breaking wave, proposed by
SMM2004.
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Sullivan, McWilliams & Melville (2007, SMM2007) then extended the use of their
model to include an ensemble of breaking events and explored the ramifications of
these impulses on the underlying dynamics, finding that upper ocean processes respond
strongly to the addition of wave breaking. Restrepo et al. (2011) used a qualitatively
similar parametrization of the body force, as well as a scaling assumption that the
velocity induced by the breaking is weak, to analytically solve for the behaviour of
currents and waves in the presence of wave breaking. While the effects of breaking
may be weak in the mean (Hasselmann 1974), the velocity due to breaking is O(c)
over short time scales (Rapp & Melville 1990).

The ability to reproduce the vortical behaviour found in the laboratory (MVW)
using an impulsive body force (SMM2004) implies that this is a viable model of wave
breaking. The dynamics of impulsively forced fluids, and in particular the relationship
between impulse and vorticity, is well known and in cases where the impulse has an
axial symmetry, the resulting structures are known as vortex rings (see, for instance,
Batchelor 1967, §§ 7.1 and 7.2; Saffman 1992).

The most striking feature of the vortex ring is its robust coherence (Shariff &
Leonard 1992). Theoretical investigations of vortex dynamics are complicated by the
details of the vorticity distributions within their cores; however, for certain simple
systems, closed-form equations describing integral scalar quantities of the vortex ring
(i.e. impulse, energy, circulation) exist (Batchelor 1967, § 7.2). For instance, Helmholtz
(1858) described, and Taylor (1953) quantified, a simple experiment to create a half
vortex ring by forcing a partially submerged disc along its axis of symmetry in a fluid
and then quickly removing it (see figure 5).

Theoretical descriptions of vorticity generation by breaking deep-water waves have
been sparse, although descriptive models have been hypothesized. Csanady (1994)
argued that breaking will generate vertical eddies at the surface, contributing to
the Craik-Leibovich II (CL II) mechanism (Craik & Leibovich 1976; Leibovich
1983) and enhancing Langmuir circulation, a suggestion supported by the numerical
modelling of SMM2007. Similarly, Peregrine (1999) noted that Helmholtz’s (1858)
vorticity theorems imply that the vortex filament generated by a deep-water breaking
wave is topologically equivalent to a half vortex ring (see figure 4). These studies,
however, have stopped short of making quantitative predictions about the vorticity and
circulation generated by breaking waves except in the case of shallow water, where the
vorticity is bounded by the surface and the bottom (see, for instance, Peregrine 1998).
The recent numerical efforts mentioned above have started to elucidate the importance
of breaking in mixed-layer processes, but many of the basic theoretical mechanisms
are still unclear (Thorpe 2005). In this paper we make progress in this direction by
following SMM2004 and SMM2007 in assuming that the effects of a breaking wave
can be modelled by an impulsively forced fluid, allowing us to find a relationship
between the energy lost due to breaking and the circulation that is generated.

The organization of the paper is as follows. In § 2 we introduce governing equations
for a homogeneous incompressible fluid and derive from this an equation for the
generated circulation. In §3, we associate the forcing with the effects due to a
breaking wave and make scaling arguments supporting a relationship between the
circulation and the characteristic variables of a breaking wave. Next, we compare the
theoretical predictions with the available laboratory data. The results are discussed
in §4.
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FIGURE 4. Description, proposed by Peregrine (1999), of the topological shape (a half vortex
ring) of the flow shortly after a breaking event. The surface of the torus denotes the vortex
filament and the arrows indicate the direction of the velocity.

-B

FIGURE 5. Sketch of a thin elliptical half disc of major axis length 2A and minor axis length
2B being forced from rest to a velocity Ux through a fluid with surface at z = 0. Here z < 0
corresponds to water while z > 0 corresponds to air.

2. The breaking circulation model
2.1. Governing equations

Consider an incompressible homogeneous inviscid fluid with a free surface. The
governing equations (i.e. Euler’s equations) are
Du 1 .
—=——Vp+gii V-u=0, (2.1)
Dt P
where u is the fluid velocity, p is the density of water, g is the acceleration due to
gravity and p is the pressure.
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The present study is intended to characterize the post-breaking, ensemble-average,
large-scale flow response to a breaking wave. To this end, we define the ensemble-
averaging operator ( ) such that

N
Gix,5;N) = % Z G(x,t,n), (2.2)

n=1

where G is the ensemble-average of the variable G(x,t, n), measured during the
nth realization of the experiment (where each realization has identical initial and
boundary conditions), with total number of repeats N. For a thorough discussion of the
properties of this averaging operator, see also Andrews & Mclntyre (1978, §2) and
Kundu, Cohen & Dowling (2012, § 12.3).

The measured fluctuating component of the variable, G’ (x, t, n), is then defined as

G (x,t,n) =G(x,t,n) — G, t; N). (2.3)

The true ensemble-average and fluctuating components are just the limits of (2.2)
and (2.3) as N — oo. The error associated with keeping N finite can be estimated by
conducting a number of repeat realizations of the experiment and then estimating the
convergence of the measured quantity as a function of N (see further discussion in
§3.2).

Now, we decompose the breaking-induced velocity # into mean, #, and fluctuating
(i.e. turbulent), u’, components, with respect to this averaging operator, so that

ux,t,n)=ulx,t; N) +u'(x, t, n), 2.4)

where, by definition, (u’) = 0. If we substitute this decomposition into (2.1), and then
take the ensemble-average of the resulting equation, we find (see, for instance, Pope
2000, §4)
du; 9 ,_ 07—~ 1 op R

o + ox, (u, u_,) + o, (uluj) = o, + gx3, (2.5
where the subscript i (i = 1,2, 3) denotes the ith Cartesian component of a vector
(e.g. xy =x, x, =y, x3 =z), summation over repeated indices is assumed, and p
represents the ensemble-average pressure. The influence of the turbulent velocity
fluctuations on the mean flow is represented by the forcing associated with the
Reynolds stress tensor (u;u;). We note that (2.5) is an inviscid version of the Reynolds-
averaged Navier—Stokes equations (see Pope 2000) with a free surface.

Now, instead of solving (2.5) directly, we will consider the circulation, I", of the
ensemble-average velocity field. As will be shown below, the circulation is an integral
scalar quantity governed by (an ensemble-average version of) Kelvin’s circulation
theorem and has established closed forms for vortex rings, which can be written solely
in terms of the characteristic variables of a breaking wave.

Consider the circulation of the ensemble-average velocity field, defined as

r E]{u. dae, 2.6)
C

where C is a closed material contour moving with velocity #, which will be further
specified below. Next, the ensemble-average total derivative is defined as

D 3_’_7 v 2.7)
_—= — u - , .
Dt ot
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so that the evolution of (2.6) is then given by

br [Da b
br_ .de+fu.de. 2.8)
Dt ¢ Dt ¢ Dt

The second term on the right-hand side of (2.8) can we rewritten as (Batchelor 1967,

§§3.1 and 5.2)
%u.Dcw:j{u-(dl-Vu):]{V ("'”)-de, (2.9)
Fo Dt C C 2

which, by application of Stokes’ theorem and the fact that the curl of the gradient of a
scalar function vanishes, is identically zero.
Next, we substitute (2.5) into the first term on the right-hand side of (2.8), so that

we find
Du 07— 1op 9
- jq{ A prvy B LG LR ITR (2.10)
Dt po 0x; 0 0X; 0x;

First, we note that the second and third terms on the right-hand side of (2.10),
involving the ensemble-average pressure p and the acceleration due to gravity g, will
be zero because, again by Stokes’ theorem, the argument of these integrals is the curl
of the gradient of a scalar function.

Next, we perform the canonical decomposition of the Reynolds stress tensor into
isotropic and deviatoric anisotropic components (see, for instance, Pope 2000, §4.2):

C

(i) = (1185 + Zy) , (2.11)
where
1= 1(u D= ze(x, 1), (2.12)

I1§; (with §; =1 for i =j and O otherwise) is the isotropic (normal) stress, IT is a

scalar function proportional to the turbulent kinetic energy e(x,7) = (w’ -u’)/2 and
is the anisotropic (shear) stress, given by

= (uju) ) — fe(x D (2.13)

Therefore, the term related to the Reynolds stresses in the governing equation for
the circulation, i.e. (2.10), is equivalent to

o —— 9
f - a(u;u;) de;, = f . (18; + Zy) de;. (2.14)
]

Cc c J

The contour integral of the normal component of the Reynolds stress tensor, VII,
will be zero, which again can be seen by application of Stokes’ theorem and noting
that the curl of the gradient of a scalar function vanishes, so that (2.14) reduces to

0 Dy
f — — () de; = f L de;. (2.15)
C 8xj C 8

C

Now, the laboratory studies under consideration in thls paper use dispersive focusing
of compact unidirectional wave groups to induce unsteady quasi-two-dimensional
breaking waves. For times much less and much greater than the time at which
breaking occurs, the wave groups are accurately described by linear theory, which
predicts that the momentum transported by these wave packets is solely in the
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direction of wave propagation (see, for instance, Phillips 1977, § 3), which throughout
this work is along the x-axis.

That is, if M°(x,t < t,) = M°(x,t < t,)X, where 1, represents the time at which
the breaking event occurs, is the momentum in the wave field before breaking, and
M (x, 1> 1,) = M/ (x,t>> 1,)% is the momentum in the wave field after breaking,
the difference AM = (M° — M/)x is transferred to the water column by the
breaking process. Note, as mentioned in the introduction, some of the momentum
lost from the wave field due to breaking will go into other phenomena besides current
generation. See §4 for further discussion (see also SMM2004, §4; SMM2007, §3).
If the breaking event occurs for a time .7, then we see that AM /T represents the
average force exerted by the breaking wave on the water column during the breaking
event. Now, the details of the momentum loss from the wave field are unknown during
the highly nonlinear breaking process, where locally, vertical exchanges of momentum
can occur. However, by the above arguments, the average forcing corresponding to
the change in the wave packet’s momentum is entirely in the direction of wave
propagation.

Shortly after the breaking event, the stresses due to quasi-two-dimensional breaking
waves have been reported by, for instance, Rapp (1986), MVW and Drazen & Melville
(2009). However, during the breaking process the exact form of the Reynolds stress
tensor is unknown, so that we must choose how to close these equations. Based on
the above discussion of the momentum lost by the wave field, we will assume that
the mean flow induced during the breaking event is solely in the direction of wave
propagation, so that the forcing, associated with the shear Reynolds stresses of the
breaking induced turbulent velocities, also acts along the x-axis.

Therefore, we parametrize the forcing terms, related to the shear Reynolds stresses
in our governing equation for the mean flow, i.e. (2.15), as

39, -~
% - 9 dﬁ, = %F(Si] dgi, (216)

po 0x; po

where the anisotropic stress term is related to the body force F, with F = FX.
Therefore, the governing equation for the circulation reduces to

DI D [_ —
— = u-d(:%F-dZ, (2.17)
Dt Dt Je el

which is an inhomogeneous form of Kelvin’s circulation theorem, describing the
evolution of the circulation of the ensemble-average flow generated by the body force
F, where the body force will model the bulk scale effects of a breaking wave on
the water column. A body force acting on a fluid with a free surface can lead to the
generation of both waves and vortices (see, for instance, Biihler 2007). Post-breaking
flow is analysed in the laboratory experiments of Rapp & Melville (1990) and MVW,
where wave breaking is due to compact wave groups, which focus, break and then
propagate away. Based on this we can assume that after the breaking event, in the
compact region where the forcing occurred and beyond, the free surface effectively
acts like a rigid lid (see also SMM2004).

To accurately model the long time evolution of the flow one must also include
effects due to viscosity. However, we note that the laboratory experiments of MVW
(see their figure 14) show that circulation decreases by less than an order of magnitude
for a time interval of more than 50 wave periods after breaking.
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2.2. Vortex generation

The exact functional form of the ensemble-average body force F cannot be resolved,
but following SMM2004, can be guided by laboratory data. We assume that the body
force is compact in space and time, and is symmetric, about y = 0, along the crest
of the breaking wave (see figure 3). It is natural to then consider the simple model
proposed by Helmholtz (1858, see also Tait 1867), and quantified by Taylor (1953)
(see also Saffman 1992, § 6.4), in which a half vortex ring is generated by impulsively
forcing a thin disc, half submerged, through a perfect fluid with no flow separation.
Breaking waves may have an asymmetry between the horizontal and vertical scales,
so that a generalization of Taylor’s (1953) work to elliptical vortex rings, by Dhanak
& De Bernardinis (1981), is more applicable to our study. Elliptical vortex rings can
be generated by slightly modifying the thought experiment of Helmholtz (1858) to
consider the flow generated by impulsively forcing a thin elliptical disc, submerged
along its major axis to the depth of its semi-minor axis, through a fluid.

More precisely, we assume the forcing, F, acts like a thin elliptical disc submerged
along its major axis, of length 2A, to the depth of its semi-minor axis, of length B,
being impulsively forced from rest to a speed U in a perfect fluid (see figure 5) with
no flow separation. This problem was considered by Dhanak & De Bernardinis (1981)
in their work on elliptical vortex rings.

Now, Dhanak & De Bernardinis (1981) find that the velocity potential at the surface
of the disc is

N Ub y2 ZZ
dp(x=0 ,y,z)—$g(e) 1 e (2.18)
where &+ refers to the front and rear of the disc, respectively; e is the eccentricity and
& (e) is the complete elliptic integral of the second kind:

/2 A2 _ BZ
&(e) = / V1—esin’0do; o= : (2.19)
0

A2

The circulation around a contour starting at (x,y,z) = (07,0,0) and ending at
(07,0, 0) is given by Dhanak & De Bernardinis (1981)

_ 2UB
r'=¢0",0,00—¢(0",0,00=——. (2.20)
& (e)

Following Taylor (1953), we assume the disc is suddenly dissolved, so that the
induced motion may now be described as being due to a collection of elliptic vortex
lines, with axis ratios the same as that of the disc, over the plane of the disc. From
(2.18) it is clear that the velocity is strongest at the edge of the disc, implying that
the flow will tend to roll up around this region (see also Saffman 1992, §§ 6.3, 8.4),
forming an elliptical vortex ring.

We assume the rolling up of the vortex sheet will not change the circulation around
the core (Taylor 1953; Saffman 1992) so that the circulation of the generated vortex
ring will be the same as the circulation of the forced disc, as given in (2.20). Dhanak
& De Bernardinis (1981) found that elliptical vortex rings will oscillate in shape
as they propagate, and for cases where the vortex ring has large eccentricity, can
potentially break-up into multiple rings. The time scale of these oscillations is on the
order of 4wA%/I". For the laboratory experiments considered in this paper, 4m/I" is
of the order of 10> m~2 s (see §3) while A is taken to be large, so that the time
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scale of these oscillations is much larger than the times in which we are interested in
describing the circulation.

3. Circulation of breaking waves

Vortex lines must start and end on the boundaries, or be closed loops within
the fluid. This implies that for three-dimensional deep-water breaking waves the
distribution of vorticity must be topologically equivalent to a half vortex ring, since the
vortex lines induced by the event will not reach the bottom (Peregrine 1999; Csanady
1994; Thorpe 2005, see also figure 4). Note that in two dimensions the vorticity
induced by breaking takes a form such that the kinematics can be described by those
of a point vortex, which is a limiting case of the three-dimensional vortex ring as
A — oo with B finite (see figure 2; see also Rapp & Melville 1990; MVW). Along
with the considerations of the structure of the impulse due to breaking discussed in
§2.2, we now see that there is a direct relationship between the flow response to an
impulsively forced thin disc moving through a fluid and that due to a breaking wave.
Therefore, we are in a position to apply the relationship established in (2.20), between
the circulation and the characteristic variables of the forced disc, to the problem of
wave breaking.

Now, from the laboratory experiments of Rapp & Melville (1990), and the scaling
arguments of Drazen et al. (2008), we expect the variables parametrizing the forced
disc to be related to those describing a breaking wave; but precisely how is not
immediately clear. In order to make progress, we turn to scaling arguments.

3.1. Scaling of circulation

We present two separate scaling arguments to quantify, to within a constant, the
circulation induced by a breaking wave. First, we will make a scaling argument based
on dynamical considerations relating the momentum lost from the wave field due to
breaking to the variables describing the generated vortex. Second, we make scaling
arguments based on the geometry and kinematics of both a plunging and spilling
breaking wave.

3.1.1. Scaling based on dynamical considerations

A fully three-dimensional breaking wave will start to break at a point in space
and subsequently this breaking spreads along the length of the crest of the breaking
wave, with associated time scale T. We assume that this occurs on a much faster time
scale than the wave period, T, of the breaking wave (i.e. Tt < T), so that following
SMM?2004, the crest length is taken to be constant. Finally, we assume the initial
depth of penetration of a breaking wave is generally much smaller than the resulting
length scale of the crest; that is, A > B, so that &(e) ~ 1 in (2.20):

I ~2UB. 3.1)

Note, as mentioned above, that we are assuming the circulation is conserved during
the roll-up process, so that (3.1) is also the circulation of the vortex generated by the
impulsive event.

The fluid impulse &7 (Batchelor 1967, § 7.2), associated with the flow of the forced
elliptical disc presented in § 2.2 is given by Dhanak & De Bernardinis (1981)

2nAB*U
P = PT@), (3.2)
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where the variables are as defined in that section (see also figure 5). Accounting for
the above assumption that the major axis of the disc is much larger than the minor
axis, equation (3.2) reduces to

2nAB*U
P = p%. (3.3)
Comparing this with (3.1), we see that
1 3
=—— 34
p 2tAB

By considering the reduction of energy and momentum densities of the wave field
due to breaking, the total energy lost by a breaking event per unit length of breaking
crest is given by (Phillips 1985; see also SMM2007, § 3.1)

El = CM], (35)

where M, is the total momentum loss per unit length of breaking crest and c is the
phase speed of the breaking wave. Here E, is related to the energy dissipation rate per
unit length of breaking crest €, by

T
E = / € dt, 3.6)
0

where 7 is a constant of O(T) (Rapp & Melville 1990; see also SMM2004,
SMM2007), T is the period of the breaking wave, and the energy dissipation rate
€; is given by (1.1) and (1.3), that is (Drazen et al. 2008)

_s (hk)** pc .

8

Now, the loss of momentum from the wave field will go into the generation of the
rotational flow under consideration (Rapp & Melville 1990, §5.4; see also §2.1 and
§ 4 here for further discussion on the momentum lost by the wave field), which implies
that M; can be related to the impulse of the forced disc &7:

yél
g@:/M,dy:// < drdy, (3.8)
0 C

where the last equality comes from (3.5), (3.6) and (3.7), and the spatial integrals are
over the entire region where the forcing acts.

Based on Rapp & Melville (1990), we assume that the semi-minor axis of the disc B
scales with the depth of the penetration of the fluid, and hence the height of the wave
at breaking /. Also, we assume that the major axis of the elliptical disc 2A scales with
the crest length of the breaking wave.

Therefore, substituting (3.7) into (3.8) and equating with (3.4), we find

3.7

€

3
I~ (hk)*2ex ~ (k)< (3.9)
8
where the linear dispersion relation was used to rewrite the wavelength in terms of the

phase speed and the gravitational constant. From (3.9) we conclude that

(hk)**c3
o) ¢
g

Ir= , (3.10)
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where o is a constant. Recall that the forced disc corresponds to the ensemble-average
body force model F, so that I" is the generated circulation corresponding to the
ensemble-averaged velocity field u, i.e. (2.6). Therefore, to within a scaling constant,
we have described this circulation in terms of the characteristic variables of the
breaking wave.

3.1.2. Plunging breaking waves

Next, we present scaling arguments for the generation of circulation by both
plunging and spilling quasi-two-dimensional breakers, using models based on the
geometry and kinematics of breaking. This follows the work of Melville (1994) and
especially Drazen et al. (2008), who hypothesized and tested a functional form of
the breaking parameter b, (1.3), based on an inertial model for plunging breakers.
Romero et al. (2012) then showed that by introducing a threshold slope for breaking,
these results held over the available laboratory data extending from the onset of weak
breaking to very strong plunging breaking waves (see figure 1).

We assume that the plunging breaker has amplitude a and height at breaking / (see
figure 6a), the toe of the breaking wave follows a ballistic trajectory once it begins to
form and has velocity w = /2gh at impact with the water (Drazen et al. 2008). Before
breaking, the flow is irrotational, with vorticity being introduced when the toe of the
breaker reconnects with the surface (Hornung, Willert & Turner 1995).

Inertial scaling of the vorticity just after the breaking event implies w = ¢ii/] where
 is the magnitude of vorticity, & and I are the characteristic velocity and length scales
of the flow, respectively, and ¢ is a constant parameter of order unity. Drazen et al.
(2008) assumed the velocity scale is set by w = 4/2gh, the length scale by & and the
area of the cloud of turbulence induced by the breaking, o7, is mh?/4 (see figures 6a
and 6b; see also figure 3 in Drazen et al. 2008).

Now, we are interested in finding the circulation of the ensemble-average velocity
field, which we recall is given by (2.6):

F:fu-d(z/w-dA @3.11)
C o

where the second equality is from Stokes’ theorem, @ =V x u and </ is the area
bounded by C.

Recall that Rapp & Melville (1990, § 5) found that the mean and turbulent velocities
induced by wave breaking had comparable magnitudes, so that we assume the
generated ensemble-average velocity is of the same order as the integral velocity
scale, w, used by Drazen et al. (2008). Furthermore, Rapp & Melville (1990, §4.3)
found that the deviation in the area of mixing of the broken fluid, for an individual
realization of a breaking event, was within an order one constant of the ensemble-
average value. This implies that the mean area of entrainment induced by the breaking
event <7 is of the same order as the turbulent cloud used by Drazen et al. (2008), <.
Therefore, equation (3.11) becomes

r=/ w-dA~/ wdot =t Zhy/2gh, (3.12)
4 o 4
so that, using the linear dispersion relation, we find

(hk)*’*c3
ai
g

Ir= , (3.13)
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(@)

(b)

(9]

FIGURE 6. Schematic of (a) the geometry of a plunging breaker, following Drazen et al.
(2008) where w is the velocity of the toe of the breaker as it penetrates the water and (b) a
video frame of a plunging breaking wave as the toe connects with the surface, adapted
from Drazen et al. (2008), where we see the turbulence cloud corresponding to the vorticity
induced by the breaking, i.e. the white circle, has the approximate cross-section mh?/4. (c)
A spilling breaker based on Longuet-Higgins & Turner (1974): u* and u denote the velocity
of the whitecap and underlying motion due to the wave, respectively, in a reference frame
moving at the phase speed of the breaking wave and s is the downslope distance as measured
from the crest of the wave. The dashed lines represents the contour of integration C with
tangent vector d€. See the text for details. In (a)-(c), a and h represent the amplitude and
height of the breaking wave.

where « is a constant. This result, up to the scaling constant, is in accordance
with (3.10).

3.1.3. Spilling breaking waves

Spilling breakers appear to be markedly different from their plunging counterparts;
nevertheless, an analogous scaling model can be constructed to find a functional form
for the circulation. Longuet-Higgins & Turner (1974) modelled a spilling breaker as a
steady turbulent gravity current riding down the forward fixed slope of the underlying
breaking wave, and assumed the flow remained similar as it developed in time.
Although this theory is formulated for steady motion, it was shown to approximately
describe both the acceleration of the front of an unsteady spilling breaker, as well as
the geometry of the breaking region (Longuet-Higgins & Turner 1974, §§ 6, 7; see also
Duncan 2001, §5.1), prompting its use as a possible model describing the geometry
and kinematics of an unsteady spilling breaking wave.
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Longuet-Higgins & Turner (1974) proposed that the speed along the slope, in a
reference frame moving with the phase speed of the breaking wave, is u* = U*\/gs’
and u = U./gs' for the whitecap and underlying fluid, respectively. Here U* and U are
constants and s’ € (0, s) represents the distance downslope from the crest of the wave,
where s is proportional to 4, the height of the breaking wave (see figure 6¢).

Now, the scaling of the ensemble-average velocity, and area of entrainment of the
broken fluid, discussed in the section on plunging breaking waves (§ 3.1.2) were also
observed by Rapp & Melville (1990) to be true for spilling breaking waves. Therefore,
we assume that the mean induced velocity @ scales with the total induced velocity u
and that the mean contour C scales with C, so that

F:?{u-dZN%u-dZ. (3.14)
c c

Assuming the whitecap remains thin (Longuet-Higgins & Turner 1974) and the
velocity along the front remains finite, the circulation generated along C, will be small
compared with the contributions along C; and Cs, so that the circulation around the
contour, C = C; + C; + Cj3, is approximated by

F:%u-d(N%u-dE%/ u-d(—l—/ u-de (3.15)
c c q I
X 0 2
:/ U*\/gs/ds’ﬁ—/ U gs’ds/zg(U*—U)\/gs3, (3.16)
0 s

to give

(hk)**c3
L)<
8

I'= , 3.17)

where we have again used the linear dispersion relationship and x represents a
constant of proportionality. We note that a similar argument, based on this model,
gives the same functional form of the energy dissipation rate found by Drazen et al
(2008) for plunging breaking waves, that is, (3.7).

As was discussed in §2, we assume the circulation imparted by the breaking will
be conserved, so that the above relationships will describe the circulation of the post-
breaking flow. Therefore, we conclude that (3.10), (3.13) and (3.17) are all equivalent,
up to a scaling constant, and characterize the generated circulation, corresponding to
the ensemble-average velocity, for both spilling and plunging breakers, based on the
characteristic variables of the breaking wave.

It should be noted that a simpler dimensional analysis argument, in the spirit of
Drazen et al. (2008), can give us this same functional form for the circulation by
assuming that it is a function of only gravity and the height of the breaking wave;
namely, I" = I'(g, h).

Through the wave slope at breaking hk, we can find a connection between the wave
energy dissipation and the circulation. To this end, equating (3.10), (3.13) or (3.17)

with (3.7), we have

= /ge 3/5

F:(’), (3.18)
g\ P
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Experiment S Description f, (Hz) Number of Time after
repeats breaking
RM 0.278  Spilling 0.88 10 4
RM 0.352  Plunging 0.88 10 4
MVW 0.320  Plunging 0.99 15 3
DM 0.360  Plunging 1.08 20 3.42
Rapp 0.420  Plunging 1.28 10 4

TABLE 1. Summary of relevant laboratory experiments and wave parameters for the
circulation generated by quasi-two-dimensional breaking waves, with quantities as given in
the original papers, used to test the model for circulation generated by breaking, i.e. (3.19).
Here S is as defined in (1.2) while f. represents the centre frequency of the input wave
packet. RM, DM and Rapp correspond to Rapp & Melville (1990), Drazen & Melville
(2009) and Rapp (1986), respectively, and all other names are as denoted in the text. Note
that the available data includes both plunging and spilling breaking waves.

~

where & is a constant of proportionality. This simple relationship establishes a
connection between the wave energy dissipated by a breaking event and the resulting
circulation.

3.2. Comparison with laboratory studies

We now compare our model with the limited available laboratory data. The main
features of the laboratory experiments, consistent with this study, are shown in table 1
and we refer the reader to the original papers for full details on the experimental
techniques and laboratory configurations. The accessible laboratory experiments were
conducted for quasi-two-dimensional breaking waves using a dispersive focusing
technique, with breaking strength ranging from spilling to plunging. The studies
under consideration also employed a technique to obtain spatial measurements of
the induced velocity field, thus allowing for the calculation of the circulation generated
by a breaking wave. For each experiment, an ensemble of runs (between 10 and 20
depending on the study) were conducted for a fixed set of initial wave parameters.

We consider the circulation of the vortex generated by the breaking wave,
corresponding to the ensemble-averaged velocity field, at the earliest measured time
after the breaking event (cf. equation (2.17)). Also, in order to obtain a consistent
comparison amongst the different experiments, we sought to calculate the circulation
at a common time after the breaking event. This occurred for times in the interval
i€ [3,4], where 1=1t/T, (T. is the centre period of the input wave group), after
the breaking event, with the specific time dependent on the available data from the
experiment in question (see table 1). Recall that Rapp & Melville (1990) found that
four wave periods after the breaking event, more than 90 % of the energy lost by the
wave field had been dissipated, while most of the momentum lost by the wave field
was in the breaking generated mean flow.

Rapp & Melville (1990) and Rapp (1986) used a laser doppler anemometer to
measure the velocity field of the flow induced by breaking. The three cases from these
experiments include both spilling and plunging breaking waves (see table 1). Each
breaking scenario was repeated 10 times (the authors reported negligible differences
between the mean velocity for 10 repeats versus 40 repeats). The original data from
these laboratory experiments is unavailable, so that a description of the circulation
was inferred from the published figures depicting the ensemble average velocity field


https://doi.org/10.1017/jfm.2013.453

https://doi.org/10.1017/jfm.2013.453 Published online by Cambridge University Press

214 N. E. Pizzo and W, K. Melville

induced by breaking (specifically figures 43b and 45b in Rapp & Melville (1990) and
figure 5.3.6b in Rapp (1986)). In particular, the average velocity along each segment of
a rectangular contour, encompassing the vortex in question, was computed, from which
the circulation was estimated.

Next, the laboratory experiments of MVW (see also White 1996) used digital
particle image velocimetry (DPIV) to measure the velocity field induced by a plunging
breaking wave. The authors found that the mean square velocity rapidly converged
over an ensemble of events (see MVW, figure 4), so that the mean square velocity of a
15 member ensemble had a relative error of approximately 2 % compared with a total
sample size of 24 repeats. The authors then computed the circulation, corresponding to
the ensemble average of 15 repeats, of the induced vortex three wave periods after the
breaking event (see MVW, figure 5).

Finally, Drazen & Melville (2009) used a similar DPIV technique to analyse
properties of the flow induced by a plunging breaking wave. Drazen (personal
communication) has provided us with archived data of 20 repeats of the velocity field
induced by breaking from the study of Drazen & Melville (2009, figure 2). Following
the analysis of MVW, for each realization we compute the circulation around a closed
rectangular contour that encompasses the vortex under consideration. We find that
the circulation (non-dimensionalized by g/c*) corresponding to the ensemble-averaged
velocity field is 0.152, with a standard deviation of 0.022, which also corroborates the
assumptions made to derive (3.13). This is shown in the error bar in figure 7.

Now, (3.10) and (3.13) or (3.17) imply that the (non-dimensional) circulation is

r —emy”, (3.19)
C

where % is a constant. Based on the laboratory results of Banner & Peirson (2007,
Appendix B; see also Rapp & Melville 1990) and the analysis of Drazen et al. (2008,
§5), we assume that the characteristic speed of the breaking wave is given by the
phase speed of the centre frequency of the input wave packet. Next, as mentioned
in the introduction, and following Drazen et al. (2008), instead of using the slope
at breaking hk, which depends on nonlinear processes leading up to breaking, we
consider the maximum predicted linear slope at breaking S, since this parameter is
known a priori. Following Romero et al. (2012), a slope threshold and scaling factor
for § were introduced and obtained by a least-squares fit with the data, giving

rs —085(5-0.058)". (3.20)
C

Figure 7 shows a comparison between the model described in (3.20) with the data
given in table 1. Although only a limited amount of data is available, the relative
agreement with the model is encouraging.

4. Discussion

We have proposed a simple relationship for the ensemble-averaged circulation
generated by breaking deep-water surface gravity waves as a function of the
characteristic variables of the breaking wave. Through scaling arguments, we have
also clarified why the form of the governing equation for energy dissipation rate, as
well as the generated circulation, should hold over the entire range of breaking, that is
for both plunging and spilling breaking waves.

Note that Romero et al. (2012, equation (24); see also figure 1) found, via a visual
fit, that the parameters that best fit, with respect to the available laboratory data for
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FIGURE 7. Comparison of normalized circulation versus maximum linear slope at breaking
S for the available laboratory data, which includes both spilling and plunging breaking waves.
The sources of data in the legend are explained in table 1. The error bar on the DM data
denotes the standard deviation of individual realizations versus the 20 member ensemble
average. The solid line is given by (3.20) while the dashed line is based on the breaking
strength parameter b, from Romero et al. (2012), and is given by (4.2). See the text for further
details.

the energy dissipation rate per unit length of breaking crest, the model of Drazen
et al. (2008) were b(S) = 0.4(S — 0.08)”/>. Substituting this relation into (3.7), and
subsequently (3.18), gives

r —0582(s- 008" (4.1)
c
A least-squares fit of & with the laboratory data gives & & 1.64, so that

r% = 0.98(S — 0.08)*", 4.2)
which is displayed by the dashed line in figure 7. Note that the scaling factor & is of
order unity, and not inconsistent with the O(1) scaling of constants in (3.10), (3.13)
and (3.17).

It should also be noted that energy and momentum lost from the wave field to
the water column due to breaking will go into other phenomena besides that which
explicitly creates the large-scale flow that is analysed in this paper. Principal amongst
these is the work done against the buoyancy force associated with bubble entrainment.
Lamarre & Melville (1991) found that up to half of the energy lost to the water
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column may be expended this way. However, they also found that the proportion of
maximum volume entrained versus total energy lost due to breaking scales with the
characteristic variables of the breaking wave. This implies that we can absorb these
effects into the constant of proportionality, &, relating circulation and wave energy
dissipation in (3.18), just as they are included in the dissipation data of figure 1.
Also, breaking waves will generate both currents and waves (Biihler 2007); however,
these waves were measured in the case of a plunging breaking wave by Rapp &
Melville (1990, §3.5) and found to contain less than 1% of the energy of the main
packet. Furthermore, the contributions of irrotational waves to the contour integral of
the instantaneous forcing function in (2.6) is zero. We note that although these effects
were not explicitly taken into account in the scaling argument of Drazen et al. (2008),
these phenomena are inherent in the laboratory studies used to corroborate the scaling
model, shown in figure 1 (see also Romero et al. 2012).

Measurements of dissipation due to turbulence associated with breaking waves in the
field are now available (see, for instance, Romero et al. 2012; Sutherland et al. 2012),
so that using the results in this paper one could potentially estimate the circulation
imparted to the underlying surface currents. Also of interest for application in the field
is the description of the vertical vorticity at the surface, which can now be measured
in the ocean (Veron, Melville & Lenain 2009; Sutherland et al. 2012), and has been
hypothesized to seed the so-called CL II instabilities leading to Langmuir circulations
(Csanady 1994, SMM2007), an important feature of upper ocean dynamics. We note
that in the absence of outside forcing, the circulation predicted by (3.1) is invariant
along the core. This implies that surface signatures of vorticity can be proxies for the
vorticity and mixing at depth, a result which could be used to corroborate the estimate
of generated circulation based on the energy dissipated by breaking waves.
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