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WEAKLY CLOSE-TO-CONVEX 
MEROMORPHIC FUNCTIONS 

LAURELLEN LANDAU-TREISNER AND ALBERT E. LIVINGSTON 

1. Introduction. Classes of functions, meromorphic and univalent in 

A = {z:\z\< 1} 

with simple pole a t z = p , 0 < / ? < l , have been discussed in several places 
in the literature ([3], [6], [8], [10], [11], and [12]). The purpose of this paper 
is to discuss a class of Close-to-Convex functions with pole at p analogous to 
the class of Close-to-Convex functions with pole at zero studied by Libera and 
Robertson [9]. 

Let E(p) be the class of functions which are univalent and analytic in A — {/?}, 
with a simple pole at z = /?, 0 < p < L A function/ in £(/?) with/(0) = 1 
is said to be in A*(p) iff maps A onto a domain whose complement is starlike 
with respect to the origin. The class A*(p) has been studied in ([3], [8], [10], 
[11], and [12]). Functions/(z) in A*(p) are characterized by the fact that there 
exists F in Z*, the class of meromorphic univalent starlike functions with pole 
at zero of residue one, such that 

(1.1) f(z)=- = ^ -F(z). 
(z-p)(l -pz) 

We let 1(0) be the class studied by Libera and Robertson [9]. Thus h is in 7(0), 
if h is analytic in A — {0} with a simple pole of residue one at z — 0 such that 
there exists G in E* and a, |a| ^ 7r, SO that 

„ / zh\z) \ „ 
\eiaG(z)J 

for 0 < |z| < 1. 
Analogously, if 0 < p < 1, we let /(p) be the class of functions / , analytic 

in A — {/?}, with a simple pole at z = p and such that there exists g in A*(p), 
an a, \a\ ^ n, and a £, 0 < 6 < 1, so that 

(1.2) Ref^ELUo 

for<5< \z\ < 1. 
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In what follows we let (P* be the class of functions P(z), analytic in A 
satisfying ReP(z) > 0 for z in A. 

THEOREM 1. Iff is in I(p), there exists g in A*(/?), an a, |a| ^ 7r and a P{z) 
in &* such that for z in A — {/?}, 

(1.3) f\z) = -g(z)P(z). 
(z-p)(l -pz) 

Proof There exists g in A*(p), an a, \a\ ^ 7r, and a 5,0 < 5 < 1, such that 
(1.2) holds. 

Let 6 < r < 1 and/r(z) =f(rz) and gr(z) = g(rz), then 

(1.4) R e ( ^ - ) > 0 
\eiagr(z)J 

for \z\ — 1. The function zf'(z)/eiagr(z) in analytic in A except for a simple 
pole ai z — p/r. Let 

P r ( z)^ ( z - - ) ( 1 - - Z ) f -^L 

Since (z —p/r)(l —pz/r) is real and positive for |z| = 1, it follows from (1.4) 
that Re^(z) > 0 for \z\ = 1. Since Pr(z) is analytic for |z| ^ 1, it follows 
that Re/V(z) > 0 for \z\ ^ 1. Since /\.(0) = -pf(P)e-ia is independent of r, 
there exists a sequence r„ tending to 1 such that PTn converges uniformly on 
compact subsets of A to P(z) in ¥*. Since fn(z) and gr„(z) converge uniformly 
on compact subsets of A — {p} to f(z) and g(z) respectively, it follows that 

^ ^ ( L Z P f c p z ) ( 2f\2) \ 

\eiag(z)J 

from which we obtain (1.3). 

COROLLARY 1. Iff(z) is in I(p), thenf\z) 7̂  0 for z^p. 

Because of the corollary, there is no loss in generality in assuming that/r(0) = 
1 for f(z) in /(/?), 0 < p < 1. In the sequel we therefore make the added 
assumption that/'(()) = 1 for/ in l(p),0<p < 1. 

Because of Theorem 1, we also define another class of functions I*(p). We 
will say that/(z) is in /*(/?), 0 < p < 1, if it is analytic in A — {p} with a simple 
pole at z = p and/'(()) = 1, and there exists g(z) in A*(p), a P(z) in <P* and 
an a, \a\ ^ 7r, SO that 

(1.5) f\z) = -g(z)P{z). 
( z - / ? ) ( ! -pz) 
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A function/ is said to be in 7*(0) if it is analytic in A — {0} with a simple 
pole at z = 0 and there exists g(z) in £*, P(z) in ^P* and a, \a\ ^ 7r, such that 

(1.6) f\z) = eiag(z)P(z). 

Thus, by Theorem 1,1(p) C /*(/?). Also, /(0) - /*(0). 
We widen the class I*(p) to allow for logarithmic singularities at z = /?. In the 

sequel the statement "/'(z) is analytic in A — {/?}" will refer to a function /(z) 
which is analytic in A — {z : /? ^ z < 1} and such that/'(z) can be analytically 
continued in A — {/?}. In what follows A*(0) = £*. 

We will say that/ is in /*(/?), 0 ^ /? < 1, if / '(z) is analytic in A — {p} and 
there exists g in A*(p), and a, |a| ^ 7r and P(z) m T* such that 

(1.7) f\z) = -g(z)P(z). 
(z-p)(l -pz) 

The essential difference between J*(p) and I*(p) is that in J*(p) we are 
allowing the function to possibly have a logarithmic type singularity at z = p. 
That is, for z in {z : |z — p\ < 1 — p} — {z : /? ^ z < 1} 

oo 

/(z) = - ^ - +/?log(z - p ) + y)c„(z -pf. 

If/ satisfies (1.7) with 0 < p < 1, then it is easily seen that ff(z)/ff(0) has 
the form (1.7). We will thus assume, without loss of generality, that/^O) = 1 
for a l l / in /*(/?),0 < p < 1. Similarly we may assume with loss of generality 
that 

Res(z/7; 0) = - 1 for all / in /*(0). 

The following two functions will be important in the sequel. Let F\ and F2 
be defined by 

(1.8) Fj(z)= P2(l-2f 

(z - p)2(l -pz)2(l + z) 

and 

p 2 ( l+z) 3 

(1.9) F'2(z) = 
(z - p)H\ -pz)2(l - zY 

Both functions F\(z) and F2(z) are members of J*(p) but not of I*(p). 

2. An alternate definition of J*(p). In [8], functions of A*(p) were defined 
by their relationship with functions of Z*. A somewhat different relationship can 
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be found between functions of /*(/?), 0 < p < 1, and /*(0). We first need the 
following lemma. 

LEMMA 1. If g is in A*(p) and (3P — Res(g;/?) then 

l-p2 (z+p\ 

is in Z* and (3P — (1 — p2)/G(—p). Conversely, if G is in X* and (3P = (1 — 
p2)/G(-p), then 

X-p1 \l-pzj 

is in A*(p) and (3P = Res(g;p). 

Proof. The proof follows from the fact that a properly normalized function 
is a member of L* or A*(p) if and only if it maps À onto a domain whose 
complement is starlike with respect to the origin. 

THEOREM 2. Iff is in J*(p)[I*(p)] and ap = —Res((z — p)f'\p)[ap = 
Res(/";/?)] then there exists h in /*(0)[/*(0)] such that 

\-p2 \l-pzj 

Conversely, if h is in /*(0)[/*(0)] and ap = l/h\—p), thenf{z), defined by (2.1) 
isinJ*(p)[I*(p)]. 

Proof We will prove the statement about J*(p). The proof concerning I*(p) 
is similar. Iff is in J*(p) then there exists g in A*(p), P in <P* and an a, \a\ ^ 7r, 
such that 

= (z-p)(l-/,z)/ '(z) 

e''a*(z) 

Thus 

l-p2 \l+pzj 

is also in (P*. Now consider the functions 

where a^ = —Res((z —p)f'\p) and 
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616 L. LANDAU-TREISNER AND A. E. LIVINGSTON 

where (3P = Res(g;p). Then, 

(2.2) f , (z) = 
ap zh'{z) 

TPeiaG(z) PP 

zh'{z) 

ellG(z) 

for a suitably chosen 7. 
Since g is in A*(p), G is in X* by Lemma 1. Also h' is analytic in A — {0} 

with a pole of order 2 at z = 0 and Res(z/z'; 0) = — 1. From (2.2) we have 

^G(z)Q(z) 
h (z) = 

z 

where g(z) = l /^/o^/V*) is in V\ Thus A is in /*(0) and (2.1) holds. The 
proof of the converse is similar. 

Remark. Since functions in /*(0) need not be univalent [9], it follows from 
Theorem 2, that functions in I*(p) need not be univalent. 

3. Integral means. In this section we use a technique of Baernstein [1] as 
employed by Leung [7] to obtain bounds on the integral means of | / ' | . For this 
purpose we first mention some results that will be used. 

For g(x), a real valued integrable function on [—7r, 7r], the Baernstein *-
function is defined by 

g*(&)= sup [ g, 
\E\=26JE \E\=26JE 

for 0 < 0 ^ 7T, where \E\ is the Lebesque measure of the set E in [—7r, IT]. 
Statements A, B and C of the following Lemma were proven by Baernstein 

[1] and statement D was proven by Leung [7]. 

LEMMA 2. (A) For g,h in Ll[—IT, TT], the following are equivalent: 
(i) For every convex non-decreasing function O on (-co, oo) 

<3>(g(x))dx ^ / &(h(x))dx. 
•IX J —TT 

(ii) For every t in (—oo, oo) 

/

7T pit 

[g(x) - t]+dx ^ / [h(x) - t]+dx. 
•IX J —IX (iii) g*(9)£h*(8)for0è6^7r. 

(B) Iff is in S = {f : / is analytic and univalent in A with f(0) = 0 and 
f(0) = 1}, then for each r, 0 < r < 1, 

(±\og\f(reie)\T è (±\og\K(rel9)\T 
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for any Koebe function K(z) = z/(l — eiaz)2. 
(C) For g in Ll[—7r,ir], ifg(x) is the symmetric non-increasing rearrange­

ment of g [4], then 

g\S) = [ g(x)dx = (gT(6). 
J-e 

(D) For g,h in Ll[—7r, 7r], 

[g(6) + h(0)r^g\e) + h*(6) 

with equality if and only if g and h are both symmetric and non-increasing on 
[0,TT]. 

THEOREM 3. For any f in J*(p) and every convex non-decreasing function O 
on (—oo, oo), 

/ " <P(± log \f'{rew)\)dQ ^ f 0 ( ± log \Ff
2(rew)\)d6 

J—IK J— 7T 

where F2 is in J*(p) and is defined by (1.9). 

Proof If / is in /*(/?) then combining (1.1) and (1.7), there exists G in Z* 
an a, |a| ^ 7r, and /> in ^P* such that 

f'(z) = -pel"z 
(z-p)\\-pzf 

Thus 

(3.1) l o g | / V " f los 

G(z)P(z). 

pr 
rew ~p | 2 | l — prei9\2 

+ \og\G(reie)\+\og\P(rei9)\. 

The first term on the right side of (3.1) is symmetric and non-increasing on 
[0,7r]. For the second term, since G is in X*, \/G is in S and by Lemma 2 (B) 

[log\G(rel9)\T log 
1 

\G(rei9)\ 
< r-[-\og\K(relU)\T. 

Choose K(z) = z/(l + z)2, then 

(3.2) [log \G(rei9)\T ^ log 
11 + re1 e\2 

For the third term, since p lP(z) is a function of positive real part and 
\p-lP(0)\ = 1, by Corollary 1 of [7] 

(3.3) [log \P(rel9)\] * < lOg/7 
1 + rew 

1 - reli 
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Using Lemma 2 (D), we have from (3.1) 

[iog|/w*)ir^ log pr 
rew — p\2\\ — prei6\2 

+ [log|G(r^)|]* + [log|F(r^)|]*. 

Now using (3.2) and (3.3), we obtain 

(3.4) [ log | /W') | r^ 

log 

pr 
reid — p\2\\ — prei9\2 

1 + rei[ , , 
log/7 

1 + rew 

1 - rei{ 

Since all three functions on the right of (3.4) are symmetric and non-increasing 
on [0,7r], by Lemma 2 (D) 

W*Ml * < [\og\f(rew)\\ 

By Lemma 2, Part A 

p2\\+rewy 

\reie — p\2\\ — preie\2\\ — rei0 

[\og\F'2(reie)\T. 

[n O(log \f(rew)\)d9 ^ f <D(log \F'2(reiB)\)d6. 
J—ft J— IT 

The proof of the inequality 

T 0 ( - log \ff(rew)\)d9 ^ f 0 ( - log \F'2(rei0)\)d9 
J— TT J— TT 

is similar. 

COROLLARY 2. For any f in J*(p) and any real A, 

(3.5) f \f'{re'etdO ik f \F'2(rei9)\xd6. 
J—TT J— TT 

Proof. Apply Theorem 3 with 0(JC) = etx
 1 t > 0. 

COROLLARY 3. Iff is in /*(/?), then for r ^ p 

(3.6) F^(-r) è \f'(rew)\ ^ Ff
2(r) 

where F'2(z) is defined by (1.9). 
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The bounds in (3.6) are of course sharp in J*(p) and the upper bound gives 

for/ in J*(p) and hence for/ in /*(/?). The order estimate 0(1/(1 — r)) can not 
be improved in I*(p). 

To see this we will construct a function/ for each e, 0 < e < 1, such tha t / 
is in I*(p) and 

l i m ( l - r ) £ | / ; ( r ) | = o o . 

Given any e, 0 < e < 1, choose e' with e < e' < 1, then 

(\ - z)1'6'(\ + z)l+e' 
Gt(z) = z 

is in X*, and 

&(z) = 
-p{\ - z)l~e'(1 + z)l+t' 

(z-p)(l -pz) 
pz 

&(z) = 
-p{\ - z)l~e'(1 + z)l+t' 

(z-p)(l -pz) (z--p)(\- -pz) 

is in A*(p). Let 

1 

mge(z)l 

Gc(z) 

then/e is in I*(p) and 

l im( l - r ) £ | / / ( r ) |=cx) . 
r — > 1 

4. Coefficient estimates. 

LEMMA 3. If g is in A*(p) and 

CO 

g{z)=\+YJbnZ" 
n=\ 

for \z\ <p, then for n ^ 1 

, , ^ ( l+p)( l -P 2 " ) f4 n \h \ < - —- K 

(1 - / ? ) / ? " 

Equality is attained in (4.1) /?_y the function 

-p(\+z)2 

g(z) (z-p)(l -pz)' 
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Proof. Using a result of Jenkins [5] it was pointed out in [10] that (4.1) would 
be true for all n for which the Bieberbach conjecture is true. Thus, due to the 
proof of the conjecture by L. deBranges [2], we can say that (4.1) is valid for 
all n. 

Using a comparison of coefficients, some detailed computations and Lemma 
3, we can prove the following theorem. We omit the proof, choosing instead 
to prove a slightly different type of inequality in Theorem 5, which relates the 
coefficients of a function in J*(p) to those of a function in I*(p). 

THEOREM 4. Iff is in J*(p) and 

oo 

f(z) = a0 + z + ] T anz
n 

n=2 

for \z\ <p, then for n^2 

\un\ = t*M 

j _ n n-\ r 
2/( /+l) y 

1 -pln (l+p) 
pn~l (l-p)3 1 -

4/7(1 -P
n) 

AZ(1+^)(1-/72)J 

where a^ is the n-th coefficient of F2 in J*(p) defined by (1.9). 

In what follows we let ap = —Res((z — p)f',p). Note that fo r / in /*(p), 
ap =Res(/";p). 

LEMMA 4. F o r / m J*(p) 

(4.2) />2(l-/>) 
Of„ <^o+z) 

(1+P)3 " ' ^ - (1- /7)3-

77zese bounds are sharp, being attained by F\ and F2 given by (1.8) and (1.9). 

Proof For / in /*(/7), there exists G in £*, an a, |a| ^ 7r, and F in ^P* so 
that 

/'(z) -pel"z 
(z-p)H\~pz)2 G(z)P(z). 

We then have 

ap = lim(z -pff'(z) = [-p2eia/(l - p2)2]G(p)P(p). 
z^p 

Using well known bounds on \G(p)\ and |P(p)|, we obtain (4.2). 
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LEMMA 5. If h is in /*(0) and 

1 oo 

h(z) - - + aflogz + y ^ c „ z " 

n=0 

forO< \z\ < 1, then 

\d\ ^ 4. 

Equality is attained by h in /*(0), defined by 

- ( 1 + z ) 3 
h\z) 

z2(l-z)' 

Proof. There exists G(z) = l /z+£ 0+#iz + - • • in I*, and P(z) = p$+p\z + - • • 
in IP* so that 

zti = eiaG(z)P(z). 

It follows that 

(4.3) d = eia(B0po+Pi)> 

It is well known that |B0 | ^ 2 and |/?i| ^ 2|/?0| = 2. We thus obtain \d\ ^ 4, 
from (4.3). 

LEMMA 6. 7/"/ /s /« J*(p) and 

oo 

/ ( z ) = 7 - ^ - r + r f iog(Z - /»>+y; c„(Z - p)« 
for {z : |z — p\ < 1 — p } — {z :/? ^ z < 1}, tfie« 

and the bound is sharp. 

Proof. By Theorem 2 there exists h in /*(0) so that 

(4.4) /J£> > „ ( p i ) . 
«/> 1 - /7 2 \1-PZJ 

Let 

1 °° 
(4.5) h(z)=-+c\ogz + Y,dnz

n 

2 *=o 
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for {z : \z\ < 1} - {z : 0 ^ z < 1}. Substituting (4.5) in (4.4) and equating 
coefficients, we obtain 

a„ \-p 2' 

Lemma 6 now follows by applying Lemma 5. 
For sharpness, consider the function 

X-p1 \l-pzj 

where h in /*(0) is the function given in Lemma 5 and ap = l/h'(—p). For this 
function we have 

rf/ap = - 4 / ( l - p 2 ) . 

THEOREM 5. Iff is in J*(p) and 

oo 

/(z) = tf0 + z + ] T a^z" 

for \z\ <p, then 

suP/e/'Cp) 
lim 

«—+00 

where a^ and ap
1^ are the coefficients in the expansion about z = 0 and the 

residue at z — p of 

/ i(z) 
-p\\-l? 

d - P)Hz - P)(i - Pzy 

which is in I*(p). 

Proof. For ^f1 < R < 1 and sufficiently small <5, 

(4.6) nan = -— / dw / dw. 
2ITI JH=R wn 2m J\w„pH wn 

The first integral on the right side of (4.6) can be bounded by using Corollary 
2 and the inequality 
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where C is a constant independent of r [13]. 

(4.7) -Lf ^ 
2™ J\w\=R W" 

l— JjF'2(Re«)\d6 
2irR 

1 - f 
J—IT 

p2\l+Rei9\3d6 

< 

27rRn~l J_v \Reie -p\2\\ -pReid\2\\ -Reil 

P2(I+R)3 r de 

I" 
J— 7T 

2irRn-l(R -p)2{\ -pR)2 J_n |1 -Rei9\ 

R« B\1-RJ 

where C is a constant independent off and /?. 
For the second integral, we note that 

1 

2m 
f ^ w = Res (^ ; / | . 

J\w-p\=S W V Z" / 

Let 

, 00 

(z-p)2 (z-p) ^ 

for |z — p\ < 1 — /?, then 

-Ofn J nan 1 

z" pn(z-p)2 \pn pn+x)z-p 

for |z — /?| < 1 — p. Thus 

1 

2717 

w)
dw=3, 

pn+l 

pd 

Using Lemma 6, we obtain 

(4.8) 
I 2717 7|M 

<iw 
|w -pM W 

< i^El 

+ n 

4p 

\-p2 + A2 

Combining (4.6), (4.7) and (4.8) we have, 

(4.9) nfl„ ^ — + 
/?" «+i 

4/7 

I-P2 + n 
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624 L. LANDAU-TREISNER AND A. E. LIVINGSTON 

an < 1 

ocp pn+\ 

1 1 
< 

pn+\ 

Using the fact that l / |a p | ^ (1 +p)i/p2(l — p) from Lemma 4, we obtain for 
R>(l+p)/2. 

-Cp(p/R)nlog(l-R) + Ap + { 

n\ap\ n(\ — p1) 

Ç&- + 1 

where CRIP is a constant independent of n and/ . 
Since 

M) 

<#> 
\-p_ 

r>n+\ 

In 

we obtain from (4.9) 

1 l-p2n ^ + l" 

We thus obtain 

SUP/G/*(p) 
lim 

n—KX) 
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