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WEAKLY CLOSE-TO-CONVEX
MEROMORPHIC FUNCTIONS

LAURELLEN LANDAU-TREISNER AND ALBERT E. LIVINGSTON
1. Introduction. Classes of functions, meromorphic and univalent in
A={z:]z] < 1}

with simple pole at z = p, 0 < p < 1, have been discussed in several places
in the literature ([3], [6], [8], [10], [11], and [12]). The purpose of this paper
is to discuss a class of Close-to-Convex functions with pole at p analogous to
the class of Close-to-Convex functions with pole at zero studied by Libera and
Robertson [9].

Let Z(p) be the class of functions which are univalent and analytic in A—{p},
with a simple pole at z = p, 0 < p < 1. A function f in X(p) with f(0) = 1
is said to be in A*(p) if f maps A onto a domain whose complement is starlike
with respect to the origin. The class A*(p) has been studied in ([3], [8], [10],
[11], and [12]). Functions f(z) in A*(p) are characterized by the fact that there
exists F in X*, the class of meromorphic univalent starlike functions with pole
at zero of residue one, such that

—pz

1.1 e
D T@= =50 =m

F(z2).
We let 1(0) be the class studied by Libera and Robertson [9]. Thus 4 is in 7(0),

if h is analytic in A — {0} with a simple pole of residue one at z = 0 such that
there exists G in Z* and «, |a| = 7, so that

ZH (2)
R - 0
€ (e“"G(z)) >
for 0 <|z| < 1.
Analogously, if 0 < p < 1, we let I(p) be the class of functions f, analytic

in A— {p}, with a simple pole at z = p and such that there exists g in A*(p),
an o, |a| = m, and a §,0 < § < 1, so that

(1.2) Re( 7'e) ) >0

e'*g(z)
foré < |z| < 1.
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In what follows we let P* be the class of functions P(z), analytic in A
satisfying ReP(z) > 0 for z in A.

TheoreM 1. If f is in I(p), there exists g in A*(p), an a,|a| < 7 and a P(z)
in P* such that for z in A — {p},

o

13 floy= 8(2)P(2).

(z —p)(1 —pz)

Proof. There exists g in A*(p), an «, |a| = 7, and a §,0 < § < 1, such that
(1.2) holds.
Let 6 <r <1 and f,(z) = f(rz) and g,(z) = g(rz), then

(1.4) Re( #, @) > >0
e'%g,(z)

for |z| = 1. The function zf/(z)/e'®g,(z) in analytic in A except for a simple
pole at z = p/r. Let

pry= = (g0,
z e'%g.(z)

Since (z — p/r)(1 — pz/r) is real and positive for |z| = 1, it follows from (1.4)
that ReP,(z) > O for |z| = 1. Since P,(z) is analytic for |z| = 1, it follows
that ReP,(z) > 0 for |z| < 1. Since P,(0) = —pf'(0)e'® is independent of r,
there exists a sequence r, tending to 1 such that P, converges uniformly on
compact subsets of A to P(z) in P*. Since f, (z) and g, (z) converge uniformly
on compact subsets of A — {p} to f(z) and g(z) respectively, it follows that

(z =p)1 —pz) ( f'(@) )

P(Z) = - eiag (Z)

from which we obtain (1.3).

CoroLLARY 1. If f(z) is in I(p), then f'(z) # O for z # p.

Because of the corollary, there is no loss in generality in assuming that f'(0) =
1 for f(z) in I(p),0 < p < 1. In the sequel we therefore make the added
assumption that f'(0) = 1 for f in I(p),0 <p < 1.

Because of Theorem 1, we also define another class of functions /*(p). We
will say that f(z) is in I*(p),0 < p < 1, if it is analytic in A— {p} with a simple
pole at z = p and f'(0) = 1, and there exists g(z) in A*(p), a P(z) in P* and
an a, |a| = 7, so that

ia

(1s)  f'@= 8(2)P(2).

(z =p)1 —p2)
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A function f is said to be in /*(0) if it is analytic in A — {0} with a simple
pole at z = 0 and there exists g(z) in £*, P(z) in P* and «, |a| = , such that

(1.6)  f'(2) = "*g(2)P(2).

Thus, by Theorem 1, I(p) C I*(p). Also, 1(0) = I*(0).

We widen the class /*(p) to allow for logarithmic singularities at z = p. In the
sequel the statement “f’(z) is analytic in A — {p}” will refer to a function f(z)
which is analytic in A — {z : p = z < 1} and such that f'(z) can be analytically
continued in A — {p}. In what follows A*(0) = X*.

We will say that f is in J*(p),0 < p < 1, if f'(z) is analytic in A — {p} and
there exists g in A*(p), and «, |a| = 7 and P(z) in P* such that

eia
(1.7) "(2) = —————=2@)P ().
FO= i
The essential difference between J*(p) and I*(p) is that in J*(p) we are
allowing the function to possibly have a logarithmic type singularity at z = p.
That is, for zin {z: |z —p| <1 —p}—{z:p =z <1}

¢4

f@) =

T p +Blog(z —p)+ Y calz —p).
n=0
If f satisfies (1.7) with 0 < p < 1, then it is easily seen that f'(z)/f'(0) has
the form (1.7). We will thus assume, without loss of generality, that f/(0) = 1

for all f in J*(p),0 < p < 1. Similarly we may assume with loss of generality
that

Res(zf';0) = —1 for all f in J*(0).

The following two functions will be important in the sequel. Let F| and F;
be defined by

p*1—z)
(z —p)*(1 — pz)’(1 +2)

(1.8)  Fi(z) =

and

pi(1+2)}
(z = pP(1 —pz)*(1 —2)°

Both functions F(z) and F(z) are members of J*(p) but not of I*(p).

(1.9)  Fe) =

2. An alternate definition of /*(p). In [8], functions of A*(p) were defined
by their relationship with functions of Z*. A somewhat different relationship can
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be found between functions of J*(p),0 < p < 1, and J*(0). We first need the
following lemma.

Lemma 1. If g is in A*(p) and (3, = Res(g; p) then
1 —p? z+p
G(z) =
@ 5, 8 (1 +pz

is in £* and B, = (1 — p?)/G(—p). Conversely, if G is in * and B, = (1 —
p»)/G(—p), then

_ B z—p
80 =720 (1 —p2>

is in A*(p) and B, = Res(g; p).

Proof. The proof follows from the fact that a properly normalized function
is a member of £* or A*(p) if and only if it maps A onto a domain whose
complement is starlike with respect to the origin.

Theorem 2. If f is in J*(p)U*(p)] and a, = —Res((z —p)f’;p)[ap =
Res(f; p)] then there exists h in J*(0)[I*(0)] such that

o z—p
2.1) f(z)—l_pzh(l_pz).

Conversely, if h is in J*(0)[I*(0)] and o, = I/h’(—p), then f(z), defined by (2.1)
is in J*(P)U*(P)].

Proof. We will prove the statement about J*(p). The proof concerning I*(p)
is similar. If f is in J*(p) then there exists g in A*(p), P in P* and an «, || = T,
such that

(z —p)1 —p2)f'(z)
ei%g(z) '

P(z) =

Thus

1 Z+p
Piz)= — P
&= 1 (1+pz>

is also in P *. Now consider the functions

2
h(z)zlapf(z+p)

» 1+pz

where a,, = —Res((z — p)f’; p) and

hl—pz zZ+p
o0 =5 (75)
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where (3, = Res(g; p). Then,

F1/4¢3)
e"G(z)

a, zH(z) @
22 Pi(z) = £ = = |2
2.2) 1(2) 5, GG |3,

for a suitably chosen 7.
Since g is in A*(p), G is in T* by Lemma 1. Also /' is analytic in A — {0}
with a pole of order 2 at z = 0 and Res(z#; 0) = —1. From (2.2) we have

iy
o = 200

where Q(z) = |B,/a,|P1(z) is in P*. Thus h is in J*(0) and (2.1) holds. The
proof of the converse is similar.

Remark. Since functions in 7*(0) need not be univalent [9], it follows from
Theorem 2, that functions in /*(p) need not be univalent.

3. Integral means. In this section we use a technique of Baernstein [1] as
employed by Leung [7] to obtain bounds on the integral means of |f’|. For this
purpose we first mention some results that will be used.

For g(x), a real valued integrable function on [—m, 7], the Baernstein *-
function is defined by

g"(0) = sup /g,
|E|=20 JE

for 0 < 6 = m, where |E| is the Lebesque measure of the set E in [—m, ).
Statements A, B and C of the following Lemma were proven by Baernstein
[1}] and statement D was proven by Leung [7].

Lemma 2. (A) For g, h in L'[—m, 7], the following are equivalent:
(i) For every convex non-decreasing function ® on (—o00, 00)

us s

D(g(x))dx = / D(h(x))dx.
(it) For every t in (—o0, 00)
/W [g(x)—t]"dx = ’ [ACx) — t]*dx.

-7

(iii) g*@) = h*@) for 0= 0 = 7.
B) IffisinS = {f : f is analytic and univalent in A with f(0) = 0 and
f'(0) = 1}, then for each r, 0 <r < 1,

(F1log|f(re”))* < (£log |K (re')))*
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for any Koebe function K(z) = z/(1 — e'*z)>.
(C) For g in L'[—m, 7, if 3(x) is the symmetric non-increasing rearrange-
ment of g (4], then

0
8O = /0§(X)dx =®)O.

(D) For g, h in L'[—m, 7],
[g(0) + (O] = g*(0) +h*(0)

with equality if and only if g and h are both symmetric and non-increasing on
(0, m].

THeOREM 3. For any f in J*(p) and every convex non-decreasing function ®
on (—00, 00),

/ " D(+log | f'(re)))dd < ’ O(+ log |F5(re'®)|)dd

where F, is in J*(p) and is defined by (1.9).

Proof. 1f f is in J*(p) then combining (1.1) and (1.7), there exists G in Z*
an a, || =, and P in P* such that

_pelaz

F& = o yra =y

G(2)P(2).
Thus

3.1)  logl|f'(re®)| =1 . P .
3.1 og |f'(re™)| = log [rei? — p[2|1 — pret®|?

+log |G(re')| +log |P(re®)|.

The first term on the right side of (3.1) is symmetric and non-increasing on
[0, 7r]. For the second term, since G is in X*, 1 /G is in S and by Lemma 2 (B)

[log |G(re®)|1* = [— log < [~ log [K (re™)|]".

l *
[G(reig)l]
Choose K(z) = z/(1 +z)%, then

i9121*
(3.2) [log|G(re™)|]* < [log “_+§€_|]

For the third term, since p~!P(z) is a function of positive real part and
lp~'P(0)| = 1, by Corollary 1 of [7]

1 +re®

(3.3)  [log|P(re®)|]* < [logp‘

1 —reit
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Using Lemma 2 (D), we have from (3.1)

1 ! IUNRE § 1 : pr :
[Og|f (re )|] [og lre;()_p|2“ —pre‘9|2

+ [log |G(re)[]* + [log |P(re")|]*.

Now using (3.2) and (3.3), we obtain

34)  [log|f'(re®)]* £ |log —— L~ .
(34)  [log|f'(re”)] [og lrel® — p|2|1 — pre|?

I1+re®2]" 1+re
+ [log — | + [logp -
r 1 —re

i0

Since all three functions on the right of (3.4) are symmetric and non-increasing
on [0, 7], by Lemma 2 (D)

; 21 +re? :
tog | f'(re™T* < [10g — 2] . ,
e

= [log |F5(re')|]*.

By Lemma 2, Part A
D(log | f'(re)|)do < / d(log |Fh(re™®)|)db.
The proof of the inequality

/ D(—log |f'(re®))dd < |  D(—log |Fj(re'®)|)dd

-7
is similar.

COROLLARY 2. For any f in J*(p) and any real )\,
(3.5) / If're®*do < | |F@re'®))db.

Proof. Apply Theorem 3 with ®(x) = ™, t > 0.
CoROLLARY 3. Iff is in J*(p), then for r # p
(3.6)  Fy(—r) = |f'(re")| £ F(r)

where F'(2) is defined by (1.9).
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The bounds in (3.6) are of course sharp in J*(p) and the upper bound gives
1
10y —
max |f'@)] = 0 (1 _r>

for f in J*(p) and hence for f in /*(p). The order estimate O(1/(1 —r)) can not
be improved in 7*(p).

To see this we will construct a function f, for each ¢, 0 < € < 1, such that f;
is in I'*(p) and

lin}(l — )| fl(r)| = co.
r—
Given any ¢, 0 < € < 1, choose € with ¢ < ¢’ < 1, then

_ \l=€ 1+€
G.(2) = (1—2z)"(1+2)

is in ¥, and

—p(1 — )¢ (1 +2)1* pz
€ = - — GE
8O = Cpa @
is in A*(p). Let
1
fe(2) = mge(z),

then f; is in /*(p) and

}El}(l — )£ (r)] = oo.

4. Coefficient estimates.

Lemma 3. If g is in A*(p) and
o0
g2y =1+ b,"
n=1

for |z| < p, then for n Z 1

(L+p)(1 = p™)
4.1 by| & ——————
@Ol =

Equality is attained in (4.1) by the function

—p(1 + z)?

8@ = Ty
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Proof. Using a result of Jenkins [5] it was pointed out in [10] that (4.1) would
be true for all n for which the Bieberbach conjecture is true. Thus, due to the
proof of the conjecture by L. deBranges [2], we can say that (4.1) is valid for
all n.

Using a comparison of coefficients, some detailed computations and Lemma
3, we can prove the following theorem. We omit the proof, choosing instead
to prove a slightly different type of inequality in Theorem 5, which relates the
coefficients of a function in J*(p) to those of a function in /*(p).

THEOREM 4. If f is in J*(p) and

f(z):a0+z+Za,,z"

n=2

for |z| < p, then for n 2 2

n—1
p" . 2+ D}
< 1,2 2y 7
o a2 = i 3 ey - 2R
_1-p¥ (1+p) [1_ 4p(1 —p") ]
p' A—-py n(1 +p")(1 —p?)

where a'?) is the n-th coefficient of Fy in J*(p) defined by (1.9).

In what follows we let o, = —Res((z — p)f’; p). Note that for f in I*(p),
o, = Res(f; p).

Lemma 4. For f in J*(p)

P’(1=p) _ oy <2 p*(1+p)
= P

4.2
@2 Ty aT—pp

These bounds are sharp, being attained by F and F, given by (1.8) and (1.9).

Proof. For f in J*(p), there exists G in £*, an «, |a| = 7, and P in P* so
that

__pellXZ

F® = ppa—pp

G(2)P(z2).
We then have
o = lim(z = p)f'(2) = [=p’e* /(1 = P*Y'IGPIP(P).

Using well known bounds on |G(p)| and |P(p)|, we obtain (4.2).

https://doi.org/10.4153/CJM-1989-027-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1989-027-7

MEROMORPHIC FUNCTIONS 621

LemMA 5. If h is in J*(0) and
1 [e¢]
h(z) = - "
(z) . +dlogz+Zc,,z
n=0
for 0 < |z| <1, then
|d| = 4.
Equality is attained by h in J*(0), defined by

—(1+2)

H@z) = 20=7)

Proof. There exists G(z) = 1/z+Bo+Bz+---in Z*, and P(z) = po+p1z+-- -
in P* so that
H = e *G(2)P(2).
It follows that
43)  d=e“Bopo+py).

It is well known that |Bg| = 2 and |p;| = 2|po| = 2. We thus obtain |d| = 4,
from (4.3).

LEmMMA 6. Iff is in J*(p) and

ap
(z—p)

f@)= +dlog(z—p)+ ) calz —p)’

n=0
for{z:|z—p|<1—=p}—{z:pSz< 1}, then

d

o

4
-

and the bound is sharp.
Proof. By Theorem 2 there exists 4 in J*(0) so that

f@ 1 z—p
o Of_p_l—pzh(l—m)'

Let

1 [e o]
4.5 k2= - +clogz + ZO dpz"

https://doi.org/10.4153/CJM-1989-027-7 Published online by Cambridge University Press


file:///1-PZJ
https://doi.org/10.4153/CJM-1989-027-7

622 L. LANDAU-TREISNER AND A. E. LIVINGSTON

for {z : |z] < 1} —{z : 0 = z < 1}. Substituting (4.5) in (4.4) and equating
coefficients, we obtain

d c

o 1-p*

Lemma 6 now follows by applying Lemma 5.
For sharpness, consider the function

_ % z—p
=20 (77)

where 4 in J*(0) is the function given in Lemma 5 and o, = 1//'(—p). For this
function we have

dla, = —4/(1 — p).

THeorReM 5. If f is in J*(p) and

f(@ :ao+z+2a,,z”

n=2
for |z| < p, then
) SUPfes(p) i‘p‘
li =1
n—00 a)
D

where a' and a},') are the coefficients in the expansion about z = 0 and the
residue at z = p of

—p*(1 —2)°
(1 —p)*z—p)1 —pz)’
which is in I*(p).

filz) =

Proof. For 1320 < R < 1 and sufficiently small &,

4.6) na, = —1_ f_(W_)dw _ _1_/ f (W)dW.
[w=pl

2mi |w|=R wh 27 =5 wh

The first integral on the right side of (4.6) can be bounded by using Corollary
2 and the inequality

4 do 1
— _ =Cl1
/;,rll——re’(ﬂ COgl—r’
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where C is a constant independent of r [13].

27i |w] r W'

4.7)

1 f'w) dw)

= o Rn — / |F5(Re')|d0

1 /” p*|1 +Re”|*df
2nR"1 J_ . |Re®® — p|2|1 — pRe®|2|1 — Re'|

< pA(1+R) /” do

© 27nR"NR —p)y*(1 — pRY? J_; |1 — Re™|

<

c] 1
B\T=Rr

where C is a constant independent of f and R.
For the second integral, we note that

! / P 0 e (f'(z),)
~ - - —ap .
270 Jjpl=s W" "

/ — ap o\
O (Z_p)+2cn<z p)

for |z — p| < 1 —p, then

'@ _ - N (_d_+ na,,) 1
Zh p"(Z __p)2 pn pn+l

for |z — p| < 1 —p. Thus

! d
L L e
27 Jjy—pl=s W" | ap

Using Lemma 6, we obtain

!
—1—-/ f——(w)dw’ = 2| [ 4 +n] .
2 w—p|=8 wh pn+l 1 _p2
Combining (4.6), (4.7) and (4.8) we have,

—Clog(1=R) o] [ 4p
4.9) n|a,,| = _—k—”— + nfl 1— +n .

4.8)
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Using the fact that 1/|a,| < (1 +p)*/p*(1 — p) from Lemma 4, we obtain for
R > (1+p)/2.

an

< | [—Cp(p/R)”log(l—R) 4p

= +
p™! njap| n(l —p?)

1
pn+l I:C_:E + 1]

@p

A

where Cg, is a constant independent of n and f.
Since
aM

(1)
%

1— p2n
pn+1

we obtain from (4.9)

a,
SUPres(p) | ay 1 C
< =R 4
ath 1— pz" n
)
)
We thus obtain
a,
. SUPrer) |,
Iim ——— =1.
n—o0 al
oD
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