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ON THE BEHAVIOUR OF THE SUP- AND INF-CONVOLUTIONS
OF A FUNCTION NEAR THE BOUNDARY

TIMOTHY R. CRANNY

The study of nonclassical solutions for elliptic and parabolic PDE's often involves
the use of regularisation processes such as the sup- and inf-convolutions. In this
note we study the behaviour of these regularised functions near the boundary
of the domain, and derive constraints on the appropriate second-order sub- and
superdifferentials on and near the boundary. Potential applications to regularity
results are also noted.

In the study of viscosity solutions for elliptic PDE problems on a domain O C K",
one common way to circumvent the lack of smoothness of a nonclassical subsolution u

is to consider instead the more regular sup-convolution uf. Such regularisations were
first given by Lasry and Lions [5], and for a fixed e > 0 are defined by

(1) u+ix)

with the natural equivalent for viscosity supersolutions and the inf-convolution u~.

As shown in [5], u+ and u~ are twice differentiable almost everywhere in fl, with

(2) \Du+\,\Du^\^Ce-1l2 -e-'l^D2^, e^I^D2^,

holding in the sense of distributions for some constant C < oo.

The importance of the convolutions in viscosity theory comes from the observation
in [4] that if a smooth function <j> touches u+ from above at a point xo, and j/o is a
point in f2 at which the supremumin the definition of uj(xo) is taken, then the function
<f>(xo — T/o + y) touches u from above at j/o • The behaviour of such convolutions near the
boundary of the domain plays an important role in the formulation of viscosity boundary
conditions, but the effect of the boundary is to introduce complications which are not
found in the interior case. We describe here some effects which are a direct consequence
of the involvement of the boundary.

If dil is differentiable at y £ dQ we shall let Ten(y) denote the tangent hyperplane
to dQ, at y. For convenience we shall say a vector v E Tgn(y) if the inclusion holds
when v is taken to be based at y.
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THEOREM. Let Q be a domain in Rn with differentiable boundary dCl, and con-

sider u G USC (Ji) . If XQ G Q is a point where u+ is twice differentiable, and the

supremum used to define ti+(xo) corresponds to a point j/o £ dfl, then:

1. Every eigenvector of D2u*(xo) which is not in Tgn(yo) corresponds to

an eigenvalue of — e " 1 , the minimum allowed by semiconvexity.

2. Every such eigenvector is also an eigenvector of D2i/)(yo) where if) touches

u from above at j/o (relative to Cl), and rj)(-) may be chosen to make the

corresponding eigenvalue arbitrarily large and negative.

The equivalent remarks hold for the inf-convolution u~ of u £ LSC (fl) .

PROOF: The second half of the result is a consequence of the first half and Lemma
2.14 of Jensen [2].

To prove the first claim, let us fix e > 0 and consider a point x<> where u* is twice
differentiable and yo G dil the (unique) point used to define u+(xo). It follows from
Jensen [2] that Du+{xo) = (yo — xo)/e. Since u+ is twice differentiable at XQ, there
exists a smooth function <f>(-) such that

(3) - o (|x - x o | 2 ) ^ («+ - <f>){x) < o(|s: - x o | 2 ) ,

so for any fixed 8 £ (0,1), the function <l>s(x) = 4>(x) + 6 \x — XQ\ satisfies

(4) - J l z - z o l ' - o ^ z - z o l 2 ) < («+-<£«) ( s ) < - * |z - zo | 2 + o ( | z - : c o I2)-

Note that unlike u+ — <j>, the function u* — <f>s attains a strict local maximum at xo
while remaining semiconvex. We may now follow the standard arguments to 'tilt' this
maximum to nearby points by looking for the maximum of (u+ — <f>s)(x) + (p,x — xo)
for small p G Rn of our choosing.

At this point the choice of <j> as the smooth approximation of u+ at xo gives some
valuable extra information. Notice that if u+ — <f>g were precisely —6\x — XQ\ , then
the maximum of («+ — <fo)(x) + (p, x — XQ) would be taken at x where 2£(x — xo) — P,

and we would have complete freedom in determining x by our choice of p . Straight-
forward calculations show that (4) is sufficient to give us 28(x — XQ) — p + o(p), or
equivalently, p = 26{x — XQ) + o(|x — xo|). (To see this, it is simplest to show that for
fixed x* sufficiently close to xo , the function (u+ — (j>f)(x) + 2S(x* — Xo,x — xo) has a
local maximum at some x satisfying |x — x*| = °{\x* — *o|)-)

This means that in a slightly more restrictive sense we may choose the direction
in which we move the supremum, since for any unit vector v G R n we may choose p so
as to make v — (x — XQ)/ \X — XQ\ arbitrarily small, while simultaneously ensuring that
\p\ is sufficiently small and u* is twice differentiable at x G ft •
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If we denote by yx the unique point in fi used to define v>t[x), it follows that
= (yx — x)/e. By the definition of a;, we have

D<f>(x) + 2S{x-xo)-p

Dj() + 25{x-x0)-26(x-x0)-o(\x-x0\)

= D<f>(x) - o(|x - Xo\).

Since Du+(xo) = D<J>{XQ) = (y0 — xo)/e, we therefore have

(6) Du+(x) - Dut(x0) = D<t>{x) - D<t>(x0) - o{\x - xo | ) ,

that is e~l{yx - x - y0 + xQ) = D<j>(x) - D<f>(x0) —o(\x - z o | ) ,

so

(7) y x = y0 + (x - x0) + e{D<j>(x) - D<j>(x0)) - o{\x - x o \ ) .

Since (j> € C2(JT) , we have

D(/>{x) - D</>(x0) = D2<f>(x0) • {x - x0) + o{\x - xo\)
(o)

so (7) becomes

(9) yx = yo + A(x0) • {x - x0) + o(\x - xo\),

where ^4(10)= I + eD2u*(xo). It follows directly from (2) that A is positive semi-
definite, and again it should be emphasised that we have almost complete freedom in
the choice of the direction of x — xo .

Let us choose the coordinate system so as to diagonalise D2u*(xo), thereby diag-
onalising A(xo)- Let e\ be an (inward-pointing) eigenvector of £)2u+(x0) which is not
in Tgoiyo) (noting that there must be at least one).

If the eigenvalue \i corresponding to e\ satisfies \\ > —e"1, then ei is an eigen-
vector of A(xo) with eigenvalue 1 + eAi > 0. By choosing p appropriately, we may
make x — XQ sufficiently close to — ei in direction (with sufficiency determined by the
spread of eigenvalues of A(x0)). Equation (9) then says that as we tilt from x0 to x,
the point at which the supremumin wj(-) is achieved moves from 1/0 G d£l out of fi.
This is not possible, contradicting the possibility that Ai ^ — e"1. U
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REMARKS. 1. One can obviously replace the differentiability everywhere of 9f2 with a
weaker condition such as a (nonuniform) exterior sphere condition.
2. The above result imphes that if u is semiconvex on 3fi then all but one of the
eigenvectors of D2ip(y0) are in Tga(y0) and the remaining eigenvector is normal to
dn at i/o • In any case, it is guaranteed that the 'normal' vector is an eigenvector of
D2u+(xo) with eigenvalue —e"1.

REGULARITY RESULTS. Equation (9) also provides some further interest in that Lemma
2.14 of Jensen [2] shows that the twice superdifferentiability of uf at x implies the twice
superdifferentiability of u at yx (with all superdifferentiability taken with respect to
Cl). Since uf is twice differentiate almost everywhere, it is reasonable to hope that (9)
might be used to obtain results implying the twice differentiability almost everywhere
of viscosity solutions.

The best known results in this direction are those of Trudinger [6] where it is
shown that a viscosity subsolution (respectively supersolution) u of Fu — 0 in Cl is
twice superdifferentiable (respectively, subdifferentiable) almost everywhere in fi if F
satisfies (for some positive constant (IQ ) either:

1. F is strictly elliptic and satisfies \F(x,z,p,r)\ ^ /*o(l + \p\ + \\r\\)t or

2. F is uniformly elliptic and satisfies \F(x,z,p,r)\ ^ /*o(l + \p\ + IMl) •

Results of this type are not yet available by our methods, but there is evidence to
suggest that such an approach is feasible. For example, let us consider a given function
u € USC(Tl), and define, for each e > 0, X>t to be the set (of full measure) in Cl

upon which u% is twice superdifferentiable. We hope to use (9) to give some indication
about the set qc(De) upon which we know that u is twice superdifferentiable. We have
added the parameter e everywhere necessary since the ultimate goal of this approach
is to show that

(10) ( J qe(T>e) has full measure in O.

It is obviously necessary for u to satisfy further constraints before (9) can be made

useful. To do so we must use the differential operator F, and so must restrict the

domain of qe to Ve
d=Ve D ^ ( f i ) . Note that {x G Ve | dist(x,dn) > e1/2} C Ve.

One significant result which is readily available is the following:

LEMMA. Let u be a viscosity subsolution of Fu = 0 in Q, where F is strictly

elliptic and satisfies the constraint \F(x,z,p,r)\ ^ fio(l + \p\2 + \\r\\) for some /x0 > 0.

Tien

1. For each e > 0 t i e mapping qe : T>e —> Q is one-to-one.
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2. Tie matrix Dqe(x) — Ae(x) defined with respect to Ve has minimal

eigenvalue Ae(z) satisfying Ae(x) ^ A > 0 for some A independent of

e > 0 .

OUTLINE OF PROOF: The first result follows trivially from the strict ellipticity

of F, since qe not one-to-one implies the existence of (p,X),(q,Y) £ Jff+U{y) with

p 7̂  q. This easily leads to a contradiction of Fu ^ 0 in fi.

The second part of the Lemma uses Lemma 2.14 of [2] to note that small eigenvalues

of A imply large negative eigenvalues of X 6 «Sn for some (p,X) £ J^u{y)- That

same result also implies an upper bound on the positive eigenvalues of X, so the

structure conditions on F and the fact that u is a viscosity subsolution rule out the

possibility that the eigenvalues of A are too small. U

While it does not follow from the above alone that (10) holds, the uniform non-

degeneracy of A suggests such a result is attainable. We conjecture that the above

structure conditions are sufficient to ensure the twice superdifferentiability almost ev-

erywhere of viscosity subsolutions (and hence the twice differentiability almost every-

where of viscosity solutions), thereby extending the results in [6]. The conjecture is

nontrivial in that qe cannot be extended to ft in a continuous manner, necessitating

the taking of limits or unions as e —» 0.

NOTE ADDED IN PROOF:. After completion of this note it was pointed out by Dr. M.

Kocan that similar issues are important in the study of viscosity solutions for PDE's

with measurable coefficients. The papers [3, 1] rely in part upon results similar to those

above, and provide example's of the usefulness of such results.
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