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INCLUSIONS FOR CLASSES OF LACUNARY SETS 

C. S. CHUN AND A. R. FREEDMAN 

1. Introduction. A sequence, ax < a2 < a3 < . . . , of positive integers is 
called lacunary if the difference sequence dn = an+l — an tends to infinity 
as n —> oo. 

In several recent papers we have made use of these sequences in analysis 
and combinatorics. In [6] we show that the class j£? of all sets which are 
either finite or the range of a lacunary sequence is "full" in the sense that 
if (tk) is a real sequence and 2 ^ G ^ \tk \ < oo for each L £ J § ? then (tk) is an 
lx sequence, that is, 

2tLi\tk\<.°o. 

In [3] the class 2£ of all finite unions of sets of ££ is shown to consist of 
exactly those sets of integers, A, whose characteristic sequence, XA> *S m 

the well known summability space bs -f c0. More recently, in [1], we study 
lacunary sequences in connection with the conjecture of P. Erdôs that, if a 
set A of integers satisfies 2 û € E ^ \la — oo, then A contains arbitrarily long 
arithmetic progressions. It turns out that Erdos' conjecture is true if, and 
only if, it is true for all sets in Jè̂  and that the conjecture is indeed true for 
all sets in ô J, a certain full subclass of ££ to be defined below. 

In this paper we introduce some natural subclasses of S£ and prove 
inclusions among them and among their closures with respect to finite 
unions and subsets. These subclasses were suggested by the combinatorial 
and analytical work done in [1] and [3]. Furthermore, the use of lacunary 
sets goes back as far as the classical contribution of G. G. Lorentz [5]. 
These statements notwithstanding, the proofs of these inclusions became 
so demanding that the results seem to generate an interest in themselves 
aside from any possible applications. 

For a class ^ of subsets of the natural numbers / we define ^ * and [S?] 
to be the "hereditary closure" and closure under finite unions of Sf 
respectively, that is, 

S?* = {A:A <z S for some S G ^ } , 

[S?] = {A\A = SY U S2 U . . . U Sk for some St e ^ a n d k ^ 0}. 

It is easy to see that [£?*] = [SP\*. Moreover, a class of sets s? is of the 
form [y*] if and only if srf = 21 or s# is a "zero-class", that is, the class 
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460 C. S. CHUN AND A. R. FREEDMAN 

of sets of zero upper density with respect to some density on / (see [2] 
and [4] ). 

We now define the subclasses of 5£ in which we are interested. For an 
integer y = 0 define S£M to be the class of all lacunary sequences for which 
s ^ t implies that dJ

s â dt + j . Further, we define J^ t o ^ e t n e 

"monotone" lacunary sequences ^M. Finally, define two subclasses of 
o^ thus: 

^2 = {A e JiH:2aeA Ma = co}, ^ = Xx - X2. 

2. Inclusions. The remainder of this paper will be devoted to proving 
the following diagrams. In every case the inclusion itself is a trivial 
consequence of the definitions. It is in proving the two classes to be equal 
or unequal, as the case may be, that the real difficulties arise. 

(i) [%] s ]&M} S WM\ e m 

where 1 ^ i < j and \S£^ and [i?3] are incomparable. If we remove the 
closure under finite unions from each of the above classes the same 
inclusions hold by definition. However we get the following for hereditary 
closure * of these classes. 

(2) & \ ç se*Mi =<e* = se 

for all / ^ 1. i f f and J£?f remain incomparable. Finally, taking both 
closures we get 

(3) [J^|] ç [jg?*] = [jg?*] ç \&i 

We omit the simple proof of our first proposition. 

PROPOSITION 1. Ifs/ c @ c 2r andstf is full, so is Si, 

PROPOSITION 2. sf c 27 is full if and only if[sf] is full if and only ifjtf* 
is full. 

Proof Us/ is full then by Proposition 1, [s/] and J ^ * are full. 
Suppose [s/] is full, and (tk) is a real sequence such that 

2r=i \*k\ = °°-
Then there exists A e [srf] such that 

^k^A \*k\ = °°-

https://doi.org/10.4153/CJM-1988-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-018-2


LACUNARY SETS 461 

Let A = Ax U A2 U . . . U ^ where 4 . G s/for i = 1, 2 , . . . , AI. Then 
there exist / such that 

2*G^. 1**1 = °°' 
Hence J / is full. 

Suppose that sf* is full. If 

sr.. w = 00, 
there exists 4̂ e j ^ * such that 

Let A a B where B G se. Then obviously 

2 * e 5 W = OO 

and B G s/. Therefore srf is full. 

PROPOSITION 3. J^ J2j, JS^ are full 

Proof. Since J2% c «2J c JSÇ we only need to show that JS% is full. Let (tk) 
be a real sequence such that 

sr.i w = °°-
For each «, there exists bn e J such that 

2*Li l ^ + ^ l = °°-
We construct two sequences (MW)^L2>

 anc* (^)^Li in ^ with the fol­
lowing properties: 

(4) Nn<Mn+l <Nn+l (n^ 1) 

(5) Nn = M„ = bn mod 2" („ i= 2) 

(6) M„ + 1 ^ ^ m o d ( 2 " + 1) (« â 1) 

(7) A/„ > bn ( « a 2) 

(8) SU^v^vj U > 1 (« ^ 2) 

(9) 2U*[2»,A,„,tf„J I/A > 1 (» â 2) 

where B[s, a, b] = {a, a + J, Û + 2y, . . . , a + [ ( i - a)/.y].s}. 
Take AT, = /3j and suppose that we have constructed two sequences 

(MXZi and (Nn)%Z\ such that (4) and (6) are true for « = 1, 2, . . . , 
ra — 2 and (5), (7), (8) and (9) are true for n = 2, 3, . . . , w — 1. Since 
2 m a n d 2 m _ 1 + 1 are relatively prime, we can find Mm e I such that 

Mm ^ bm mod 2W, 

M m ^ i V m _ 1 m o d ( 2 m - 1 + 1), 

Mm > bm and Mm > #„,_,. 
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Since 

2 r = i l̂ „,+A2™)l = °° and Mm s *„ mod 2"' 

we have 

Clearly 

Now we can take Nm large enough such that 

Nm s Mm mod 2m, 

and 

Let 

A = U^x(B[2k + l , t y , M * + 1 ] U * [ 2 * ^ M * + l , t y + 1]) . 

Clearly .4 G J^2 and 2 a G / 4 |fj = oo. 

PROPOSITION 4. TTze c&rn J^3 is waf/w//. TTzus [iff] c [j^*]. 

Proof. The sequence 1//: satisfies 

But, for any infinite set A in J^3, 

2 ^ I/A < OO. 

The last statement follows since [JSP*] is full. 

Proposition 4 also establishes the corresponding inclusion in diagrams 
( l ) and (2 ) . 

PROPOSITION 5. \£e\\ = [«Sff]. 

Proo/ Obviously [J&Pf ] c [jgPf]. For [JgPf] c [iff], we only need to show 
££x c [oSP*]- ^n ^ a c t w e show that, for any infinite set A = {aw} e J^, 
/4 c JB, u JB2, where # , , i?2 are members of JS?2- For « â 1, let 
dn = an+x — an. We know dn ~ dn+x for each n and lim dn — oo. Thus 
we can find sQ, tx e / such that 

dx ^k at — (a1 -f s0dx) < 2d{ < dt and 

2 / L i l/(fli + M ) > 1. 

Suppose that we have thus constructed s0 < sx < . . . < sm^x, t0 = 1 < 
* ! < . . . < / such that 
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dt â a, — (at + sk_xdt ) < 2d, < dt 

and 

S i T 1/K_, + jd,k_) > 1 
for k = 1, 2 , . . . , w. Again, since Jn = J n + , for each n and lim J„ = oo, 
we can find sm and tm+x such that 

J * - l < Sm a n d 'm < (m+\ 

d'm = a'n+1 - (fl'm
 + V J < 4„,+, and 

For « = 1, 2, 3 , . . . , let 

pn = R„> fl,„ + rfv - • •, a,, + s„dj 

Wn = { f l V a ( ' «+0 ' - " ' a ' » + 1 }-
Then we have, 

2 ^ 1 / a > 1 and A = U ^ , ^ r 

Let 

Bx= P,U W2U P3U W4U ...U P2n_x U W2nU . . . . 

B2 = W] U P2 U W3 U P4 U . . . U W2n-X U P2„ U 

Clearly £. e i?2 for / = 1,2 and i c 5 , U B2. 

We have shown that \^2\ = [JS?*]. We proceed to show that 

Definition 1. (1) Let a, x1} JC2, . . . , xn be positive integers with 
a = JCJ -f x2 + . . . + xn and Xj i x2 = . . . = x„. Then (x}, x2, • . . , *w) is 
called a partition of a of length n. 

(2) let (ÛJ, a2,. • •, an) be any finite sequence of positive integers 
and let 

(10) (yn, y\i>• • • ,y \ k l , y2\> y^• • • > ^ • - • >^I» • • • > W 

be a nondecreasing sequence such that (yih yi2, . . ., j ^ ) is a parti­
tion of at. Then the block (10) is called a partition of the sequence 
(a„ a2, . • . , aw). 

Definition 2. Let (x„) be a sequence and (/(«)) a strictly increasing 
sequence of positive integers with t(\) = 1. Then 

C*7(H)> X / ( « ) + b • • • > xt(n+\)-\) 

is called the n-thpart of (-x^)^! with respect to (t(n) ). 
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LEMMA 6. Let p > 2 be a prime number and let (ax, a2, . • •, ap) be the 
sequence with at = p, for all i = 1 ,2 , . . . , / ? . Lef 

(.Vn> ^12» - • • » ^ l / ^ ^21^ • • • » yik? • • • > tyi» ^ • • - ty*,) 

be « partition of (ax, a2, • • . , flp) witfi }>u > 1. Then kp = 1 a w / ) ^ = p. 

Proo/ Suppose that k > 1. Then j ^ < /? and since p is a prime, 

It follows that fei > 1 for all i < p since if kt = 1, then 

^•i = P > % > 

which is a contradiction. Furthermore, 

#1 < ytk, 

since a- = p is a prime. Therefore l < t y u < y2 x < .. . < yp\ < P which 
is impossible. 

PROPOSITION 7. JSP| ç JS?f. 

Proo/. We construct A e jSPf — S£\. Let pm be the ra-th prime number. 
Let Dm = (/>w, p m , . . . , pm) be pm repetitions of pm. Let 

{dn} =(Dl9D2,...,Dm9....) 

and finally let the sequence A = (a„) be defined such that a! = 1 and 
an+\ = û« + 4 r 

Clearly v4 e J2J c jgf*. Suppose that A e i f J and so A c B = {bu}, 
where B e JS?2. Let eM = feM+1 — 6M for M S 1. Since B is lacunary there 
exists N such that, for any k ^ N, ek ~> 1. If 

/(W) = i + sr-Y p,-. 
then {ar(m), ^f(m) +1, • • •, ^r(w+1)-1) *s t n e m " t n P a r t °^ ̂  corresponding to 
the ra-th part Dm of {d„}. Take m such that frAr ^ at(my For e a c n *> since 
A c B, some part of {eM} is a partition of Dt. Then 6^ ^ at(m) = ^ ' ^o r 

some 5, and thus N ^ s and e5 > 1. By Lemma 6, if 

at(m+\) = bu < bu+x ^ <Zf(m + 2)- l> 

then 

Pm = ew = Pm+l -

By Bertrand's postulate (i.e., /? + 1 < 2p) we get 

( 1 / 2 ) / W i < Pm = Sa­
lience ew -h ew+1 > p m + 1 . This implies that eM = p w + l . Thus A and £ are 
asymptotically equal. Hence B e j£?2 implies ,4 e JS?2. But the following 
computation shows that A £ S£2. For each n, 
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S K l L i 1/% = 2fci V{at(m) + (k- \)pm} t(m)+\ 1/uk — ̂ Jk=l l/\ut(m) 

/
Pm 

0 < J0
 l/ia,(m) + Xpm}dx 

±i0g£tf»±n 
Pm at(m) 

„2 , , „2 1 , i + />f + • • • + Pi, 
= — l o 8 T — " F T T T 2 -1 +/»f+ . . . + ^ _ , 

1 l og f l + j-& J - ) 

1 /£ 
/>m 1 +/»? + ... + /£ - ! 

1 + /,? + . . . + / £ _ , 

< 
i + 2 r 7 A:2 

Thus, using the Prime Number Theorem, 

2sa(=A ^/a = 1 + 2sm=l (2jk = t(m)+\ ^/ak) 

< >* + s 2 ^ = 
m log m 

m=\ 3 
m 

< r + s Zm=\ — < °° 
m 

where r and s are positive constants. 

PROPOSITION 8. &$ £ £>% and &% £ &$. 

Proof. Suppose that se\ c J^3*. Since &$ is full, jg?f would also be full. 
This contradicts Proposition 4. 

Suppose that ^3* c &%, then -Sf| = ^3* U ̂ f = ^ f which 
contradicts Proposition 7. 

Next we show that [J?*] S \&\ This will establish the corresponding 
inclusions in diagram (3) and (after Proposition 12 below) in diagram (2). 
First we present two lemmas. 

LEMMA 9. Let x, u and v be positive integers. Suppose that 

x + (x ~ 1) -f . . . + (x - u + 1) 
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= dx 4 d2 4 • • . + da, 

(x - u) 4 (x - u - 1) 4- . . . 4 (x - u - v 4 1) 

= 4x+l 4 . . . 4 4* + j8> 

dx ^ d2 g . . . S da+p and dx > (l/2)uv(u 4 v). 

Then we have dx < da+p. 

Proof. Suppose that dx = d2 = . • . = da+p. Then 

ux — (\/2)u(u — 1) = adx 

vx - (l/2)v(2w + v - 1) = fid{. 

It follows that 

uvx — (\/2)uv(u — 1) = avdx 

uvx — (l/2)wv(2w 4- v — 1) = f$udx. 

Subtracting, we get 

(l/2)wv(w 4 v) = (av - pu)dx. 

Thus dx divides (\/2)uv(u 4 v), which contradicts the hypothesis. 

We omit the proof of the second lemma: 

LEMMA 10. Let Mt, Ht (t = 1, 2, . . . , r), G and B be given reals which 
satisfy 

Ht+ x = Ht 4 Mt for t = 1, 2, . . . , r - 1 and 

Mt = (1 4 G)t~lMl fort = 1, 2, . . . , r. 

Then Mt = G(Ht 4 B) for t = 1, 2, . . . , r. 

PROPOSITION 11. [jSPf] ç [jgp]. 

Proof. Containment is clear since Ĵ Pf c j£?* = j ^ For m a l , let 

Dw = (ra 4 m — 1, w 4 m — 2, . . . , m). 

The sequence (dn) = (D l5 Z>2, Z>3,.. . .) will be the difference sequence for 
a set A = {an} with ax = 1. It is clear that A e Jg We will prove that 
A & [J?*]. Let us assume, otherwise, that A c ^ u ^42 U . . . U Ar 

where each At & 3[. For each /, 1 â / ^ r, we write 

^i = K ) a n d < = < + i ~ <• 

Since the ^ are lacunary sets there is an N such that n ^ N implies 

d\ â (3r)3 for all /. 

Take 
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a* = m a x { ^ : l ^ / ^ r). 

Consider the part Pm of A corresponding to Dm. That is 

^m = l û a (w) ' û a ( w ) + l ' • • • > ûa(/w+l)} 

where 

«(0 = 1 + 2 ,C{ '2 = (1/6)0 ~ 1>(2/ - 1) + 1 and 

We consider m large enough so that a* ^ tftt(Wy Let 

M0 = 3 r , £ = ( l / 2 ) ( 3 r - 1), 

G = 9r3, M, = G(m + 3r + B) and 

M, = (1 + G)t~lMl for r = 1, 2, . . . , r. 

Then we have 

Mr + M r _ l + . . . + Mx + M0 

= (1/G){ (1 + G)r - l}Af1 + M0 

= { (1 + G)r - l}(m + 3r + 5 ) + 3r. 

Since M r + . . . + M0 is thus a polynomial in m of degree 1, we can 
further choose m such that m > Mr -f . . . -f M0. 

We will partition some of Pm into r + 1 blocks Lr, Lr_x,. . . , Lx, L0 

thus: 

Lt = {^«(m + 1) - (M0 + M} 4- . . . + Mt) 

^ j ^ a(w + 1) - (M0 + M, + . . . + M,_,) }. 

Hence L,+ 1 is to the left of L, with the rightmost point of L / + 1 and the 
leftmost point of Lt equal. Furthermore, each Lt has A/, + 1 points in it 
and thus represents Mt differences of A. Finally, since 

Mr + Mr__x + . . . + M0 + 1 ^ m2 = a(m + 1) - a(m), 

it follows that ULf c Pm. Also, the rightmost point of L0 is tfa(w+i). 
Let Ht be the smallest difference dn represented in the block Lt (it occurs 

at the right hand end of Lt). Since, within Pm, the differences decrease by 
one at each point we clearly get 

Ht+X = Ht + Mt for 0 ^ t < r. 

Note that H0 = m so that Hx = m + 3r. We can apply Lemma 10 and 
obtain 

Mt = G(#, -hi?) for f = 1, 2 , . . . , r. 

Note that Mt is divisible by 3r. We now partition Lt into Mt/3r blocks 
/{, 4 . . . , /J1//3, thus: 
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I[ = {a/Mm + 1) - (M0 + . . . + Mt) + (k - l)3r 

â j ^ a(m + 1) - (M0 + . . . + Mt) + k • 3r}. 

Here 4 is to the left of I*k+X with one point in common. The number of 
elements of A in l[ is 3r + 1. Since 

4 C 4 , U yi2 U . . . U Ar 

we get that for some / 

Ml n At\ > 3. 
Let 

a
P = 4^ <y = 4+« a n d v = 4+«+/8 

be three elements of l[ n ^4,, The following equations result: 

x + (x - 1) + ... + (x - u) 

= 4 + 4 + 1 + - . . + 4 + a- l 

(x - u - 1) + (x - u - 2) + . . . + (x - u - v) 

= 4 + a + 4 + «+l + • • • + 4 + a + £- l 

where x = dp, u = p' — p, v = p" — p'. Recall 

dfj ^ </)+! and 4 > (3r)3 > (l/2)wv(w 4- v) 

(since u 4- v ^ 3r). We can apply Lemma 9 and get 

4 < 4 + a + 0 - i -

Thus we conclude that, for any I*h there exists an At such that dl
n strictly in­

creases at least once for elements of At in the interval [min Il
h max Il

k]. 
We first look at Lr the left most of the Lt. According to the last 

paragraph, since there are Mr/3r blocks Ir
k in Lr, there are at least Mr/3r 

increases of the dl
n among Al,A2,...Ar Thus there exists z0 such that, for 

points of At within the interval [min Lr max Lr], dl% increases at least 
Mr/3r2 times. Let dl£ be the largest difference of At in the interval 
[min Lr, max LJ . Clearly 

4°r > Mr/3r2. 
On the other hand 

Mr/3r2 = (3r)Mr/9r3 = (3r)Mr/G 

= (3r)(Hr + B) = (3r)(2Hr + 3r - l ) /2. 

This last number is the diameter of the interval determined by Ir
M / 3 r 

That is, 

d \ > max Ir
K/3r - min / ^ / 3 r 
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Evidently this diameter exceeds any diameter of the interval determined 
by Ij when t < r. It follows that 

\A1O n /;i g l 

for any j , t where t < r. Without loss of generality we may assume 
/0 = 1 . 

Now we look at Lr_x. Again, for the Mr_x/3r blocks, Ik , there is an 
Ai such that 

\AÈ n Ir
k'

x\ ^ 3. 

Clearly / ¥= 1 and it follows, as before, that there is an ix ( # 1) such that, 
for points of Ai within the interval [min Lr_h max Lr_x\ d1^ increases 
at least Mr_xl3r2 times. We may assume ix = 2. The largest difference 
d„ thus exceeds Mr_J3r2. So that, as before, 

\A2 n Ij\ ^ 1 for t < r - 1. 

We repeat this process r times and then look at L0 = Ix. It follows 
from the above that 

\At n /f | g 1 for all i = 1,2,...,/*. 

But this implies that 

3r + 1 = l/fl = I/? H (Ax U ^ 2 U . . . U Ar) | ^ r 

a contradiction. 

PROPOSITION 12. ^%j = J£ 

iVcw/. Let 4̂ = {^} G i^and set JV0 = 1. For any k ^ 1, there exists 
#£ > A^_i such that dn > A:2 whenever n > Nk. For each n with 
Nk < n ^ Nk+]9 we let 

d„ = #„& + rn9 where 0 ê rn < k. 

Thus 

#„A: = dn - rn > k2 - k = (Â: - 1)&. 

Hence #„ > k — 1 and d„ = (qn — rn)k + (k + Y)rn where qn — rn is 
positive. Let 

be the finite sequence (k, k, . . ., k, k + 1, k + ! , . . . , & + 1) where there 
are #„ — rw many k and rn many H I . Let 

= ( a l l > a12> • • • » al<?,> a21> • • • ' a2$2> • • • > a « l > • • • ' anqn> • • • • ) • 

It follows from the definition of a„ that, for n ^ m, 
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am g amJ 4- 1 for any i and 7. 

Hence, letting bx = ^ and fcw+1 = bm 4- em, the set # = { V * e / } G 

For any «, 

rfw = awl + . . . + a^n. 

Thus, for att G i , 

«„ = <*, + Srr,1 <*,- = a, + 2 ^ / ( 2 / L , «y> = bm, 
where 

m- 1 + 2 ? . i 9 / . 

Hence i c 5 and J2? c JS? J, . The reverse inclusion is immediate. 

Next we show that \S£M\ Ç \£M\ for / < j . We need a lemma: 

LEMMA 13. Suppose that d, m, s, t, w, v, i and j are nonnegative integers 
such that d > m2 4- w, / < y < m, s ^ m, 1 ^ v ^ m a«rf 1 â / â m, 

1) v(d 4- 7) â t(d 4- 7) -h / implies v â / W v(d 4- j) ^ /((i 4- 7), 
2) vd ^ td 4- z implies v ^ t and vd â /J, 
3) v(d 4- 7) ^ 5(J 4- j) + td + i implies v < s 4- f #«d v(J 4- 7) < 

$(</ 4- 7) 4- /d, 
4) v(J 4- 7) + sd le- td -¥ i implies v + s < t and v(d 4- 7) 4-

sd < /J, 
5) vd ^= sd + t(d 4- 7) 4- / implies v ^ s + t and vd < sd 4-

>(<* + 7), 
6) vd 4- j ( J 4- 7) ^ /((i 4- 7) 4- i implies v + s ^ t and vd 4- s(d 4- 7) < 

t(d 4- 7). 

Proof. The proofs of 2), 4), 6) are similar to those of 1), 3), 5) 
respectively. We prove only 1), 3) and 5): 

1) v(d 4- 7) ^ t(d 4- 7) + 1 < /(</ + . / ) + < /+ . / = ( * + 1)(^ + 7). 
Hence v < f 4- 1 so that v ^ /. 

3) v(d 4- 7) ^ *(</ 4- 7) + td + i < s(d -f 7) 4- t(d + j) = 
(s 4- t)(d 4- 7) which proves the first part. Now 

v(d +j)^(s + t - \){d 4- 7) 

= s(d 4- 7) 4- td 4- ( /-1)7 - d < s(d 4- 7") 4- fd 

since 

(/ - 1)7 - d < m2 - (m2 + m) < 0. 

5) Since vd ^ sd 4- /(J 4- 7) 4- i is equivalent to — i — tj = 
(s + t — v)d, we have 

— d < - m - m2 < -i - tj ^ (s + t - v)d. 
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Thus we get - 1 < (s 4 t - v) or, v ^ s 4 /. If vd è sd 4 /(J 4 7) then 
we have 

(v - *)</ > t(d 4 7). 

This implies v — s > t which is a contradiction. 

PROPOSITION 14. [ ^ ] ç [ ^ j for 0 = / < 7. 

Proof. We make the following definitions: 
Lm = (ra3 4- 7, ra3 4 7, . . . , ra3 4 7), m repetitions of m3 4 7, 
jRm = (m , m , . . . , m), m repetitions of ra , 
Bm = (Lm9 Rm9 Lm9 Rm,..., Lm9 Rm)9 m repetitions of Lm9 Rm9 

(dn) = (Bl9B29...9Bm9....)9 

A = {an} where an = 1 + ^ + . . . 4 dn_l9 

^K*> * J = {ar:m ^ r â n}9 
A(am> an) = R : m < > * < « } , 
a(ra, 0 = 1 + 2(12 4 22 4 . . . 4 (m - l)2) 4 2{t - l)ra 

for 1 ^ m, 1 ^ ^ m + 1, 
/?(ra, /) = a(ra, t) 4 ra. 

Note that a(m 4 1,1) = a(ra, m 4 1). For 1 ^ / ^ ra 4 1 define 

^ L m / = Alaa(m,t)> aP(m,t) J» ^ L m f ^ ^ (aa(m,?)> a 0(m,O ) 

^ # w f = ^[f lj8(/w,/)» û a ( w , / + l ) ] ' ^ # w / = A(aP(m9ty
 act{m,t+\))-

If we let 

Am = ^ L w l U ARm\ U v 4 L m 2 U ^ ^ ^ 2 U • • • U ALmm U ARmm9 

then ^4m is the ra-th part of A corresponding Bm. It is clear that 

A e <eMj c [ ^ . ] . 

Suppose that X = {xq} <E J/^/ and X a A. We will show that, if 7 < m 
and d = m > ra 4 m, then 

IX n ^ m J ^ 2. 

Let {j^} be the difference sequence of {x } and / b e the function on / 
such that xq = a^y Then/(,s 4 1) — f(s) equals the number of terms in 
the sum 

ys
 = df{S) + df{s) + \ + • • • + df{s+X)_v 

At first we will consider the following six cases. 
(i)If 

aa{m,t) = Xq < Xq-¥\ < Xq + 2 — a/3(m,t) 

(i.e., three consecutive elements of x are in ALmt)9 then, since x G «^/ so 
that y ^ y +x 4 /', we have 
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a/M+" " * * « ^ n *</<« + 2, - A, + • > * + -» + '• 
•x r „ i % rase n we conclude that 

where d = m3. By Lemma 13, case 1), 

/(« + V) _ J™' ~J . x A then we 
< x a r e in the interval ARml, then w 

(n) Similarly, if x < xq+\ <• *q+2 
apply Lemma 13 case 2) and we get 

, ^ ^ /•/ 4- r» - fia + 1) and yq = ?,+ >• 

(iii) If 

it follows that 

af(q+X) - fw * af^ ~ fl*«+» + '' fl + ,-
« «**> - «A,+ D + *«+» - *«"» ' 

which is equivalent to 

f;(w,o-/(,->x-^^+2)^(m'o) 

Now we apply Lemma 13 case 3) and get 

Aq+\)-f«D<f^ + 2)-fiq+l) 

and so yq < yq+\-
(iv) Similarly, if 

aa(m,t) * *q < ««»*> - X"+X " . \ t h e n we can apply 
• • A *r»a x ,_, x„+? are in ^4Rwp t n e n w c 

that is, x, is m ^Lmr a n d *«+»' A<?+2 

Lemma 13 case 4) and get 

A , + i ) - A « > < A « + 2 > - * * + 1 ) " 

(v) H 

where f ^ , thlt is, „ « d ^ are in ARmt and „ + 2 . » W > 

then we have 
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af(q+V af{q) ~ af(q+2) ~ % + l ) + ' 

^ aa(m,t+\) ~ af{q+\) + af(q + 2) ~ aa(m,t+\) + * 

or, equivalently, 

(f(q + 1) - Aq) )d ^ (a(m9 t 4- 1) - f(q + 1) )d 

+ (/(<7 + 2) - a(*i, / + \)){d + y) 4- /. 

By Lemma 13 case 5) we get 

Rq + 1) - / ( ? ) ^ f(q + 2) - /(<? + 1) and yq < yq+x. 

(vi) Finally, if 

a/3(m,t) ^ Xq < aa(m,t+\) — Xq+l < Xq + 2 — afi(m,t+\) 

then we can apply the previous lemma case 6) and obtain 

f(q + 1) - f(q) â f(q + 2) - /(<? + 1) and yq < yq+l. 

Now assume that \X n ^4#mw| = 3 and so there exist three consecutive 
elements xw, x w + 1 , xw+2 of x in ARmm. By case (ii) 

f(w 4- 1) - / (w) ^ / ( W + 2) - /(w + 1) 

and so 

2(/(w4- l ) - / ( w ) ) ^ / ( w + 1) - / ( w ) + / ( * / + 2 ) - / ( W + 1) 

= /(w + 2) - / ( W ) ^ m. 

Thus 

f(w 4- 1) - /(w) ^ (l/2)m and 

^ = ( / (* + 1) " / ("))</ ^ (1/2)™/ = (l/2)m4, 

the half diameter of ARmm. 
We claim, for any u < w and xw è #a(Wj), that >>M ^ j>w. 
Proof of claim: Since X £ SÛM, we have >>M ^ >>w 4- /. We may write 

yu = f (</ 4- j ) + vrf and yw = ^ 

and get 

/(J 4- y) 4- vJ ^ qd 4- /. 

If / > 0 (resp. / = 0), then we apply the previous lemma case 4) (resp. 
case 2) and get yu ^ yw. 

By this claim we conclude that for any u ^ w and xu è aa(m,\) w e n a v e 

j ^ ^ i (l/2)m4 = (1/2) diameter of ARmt â (1/2) diameter oiALmt for 
/ = 1, 2 , . . , m . 

Hence, for any / ^ m, v4#m/ and v4Lm, each contain at least two elements 
of X 
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Therefore we conclude that: By cases (iii) and (iv) above, if xq G A°Lmt 

and xq+2 G A°Rmt then 

f(q + 1) - f(q) < f(q + 2) - f(q + 1). 

By cases (v) and (vi), if x^ G 4 ° ^ , and x^+ 2 G A°Lm{t+X) then 

/ ( ? + 1) " / ( ? ) ^ / (« + 2) - / ( « + D-

By cases (i) and (ii) if x^, x^+1 , ̂ + 2 G v4Lm/ or x^, x^+ 1 , x^+2
 G ^ / ? ^ 

then 

/ ( * + 1) - f{q) â / ( , + 2) - f(q + 1). 

Now if we let xs be an element of X such that xs G ^ m ^ and 
x5 + 2 G ^4#W(? for </ = 1, 2 , . . . , m. Then we have for q = 1 , 2 , . . . , 
ra — 1, 

/(*, + i) - /(*,) < / ( v i + o - /<vi>-
Therefore we get 

1 ^ f(sx + 1) - / ( ^ < / (5 2 + 1) - / ( J 2 ) < . . . 

< f(sm + 1) - / ( j j ^ /(w + 1) - / (w) ^ (l/2)m. 

Since there are m — 1 strict inequalities, we get a contradiction. Therefore 
we conclude that \X n ARmm\ ^ 2. 

Finally we show that ,4 « [JS^J. Suppose that A = X{ U X2 U . . . U Xn 

where J^ G jg^ for s = 1 ,2 , . . . , /? . Since 

for any m with m > m -f m and m > y, we have 

m = M ^ J ^ 27-1 H*™ n I ; | g 2«. 
Thus m is bounded above, a contradiction. 

COROLLARY 15. For all i ^ 0, \S?M\ c [^]. In particular [£[] c [jjf]. 

PROPOSITION 16. [JSP2] Ç [^] . 

Proof. Obviously [«^j c [^] . Strictness is proved by observing that 
{n2} G sex but {«2} « [sy. 

At this point we have completed the proofs of all diagrams given at the 
beginning of this section. Some further interesting inclusions concerning 
Sex follow. 

PROPOSITION 17. S£\ ç \<£*\ 

Proof. Let A = {w2} and 5 = {w2 + 1}. Then 

,4 U B G [ j^ ] c [JSP*]. 
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But A U B is not lacunary. Thus A U B £ &\. 

Finally we will prove [S£{\ ç [jgp*]. First, we define some terms and prove 
a lemma. 

Definition 3. Let {#„} = ^ be a sequence and (as, as+h . . . , <35+/.) be a 
part of {an}. 

If (ds, ds+x,.. . , ds+r_{) is a strictly decreasing sequence, where 
dt = <2/+1 — a,, then we say that (as, as+x,..., as±r) is a consecutive de­
scending wave of length r 4- 1 in >4. Further, the d, are called the (decreas­
ing) steps of the wave. (Note that the definition of descending wave in [1] 
is more general.) 

LEMMA 18. There exists a function f(n) (depending only on n) such that, 
for any sets Ax, A2,. . . , An G J^J, and for any consecutive descending wave X 
inAxU A2U . . . U ^ , |* | S / ( / i ) . 

Proof We t ake / ( l ) = 2 which clearly works. 
Suppose there exists f(n — 1) such that for any Al9 A2, . • . , An_x in ££x, 

and any consecutive descending wave X in ^ U A2 U . . . U ^4„_1? we 
have \X\ ^ / (» - 1). 

Let A = ^ ! U ^42 U . . . U ^„_j and B = {6M} = >4„ where ^4,, 
42> . . . , An e o^. Further let 

Vu= {cŒA U f t ^ c i W . 

Suppose that X is a consecutive descending wave in 4̂ U 5, P̂  c X and 
J^+1 c X, then we prove that \WU\ < \WU+X\. 

Let ex > e2 > . . . > eq+x > q > c2 > . . . > c p + 1 be the decreasing 
steps of the consecutive descending wave Vu U Vu+X, where \WU\ — q and 
\WU+X\ = p. Since 5 e J2|, 

(a + ! ) v i - e i + e2 + ••• + V i 
= ^w+i ~~ °u — bu+2 — bu+x 

= cx 4- c2 4- . . . -f c/, + 1 ^ (/> 4- l)c, < (/> 4- 1 ) ^ + 1 . 

Therefore q 4- 1 < /? 4- 1 and so q < p. 
Next we show, ii X c A U i? is a consecutive descending wave then 

|X n £ | s / ( / i - 1) 4- 2. 
Suppose, otherwise, that \X Pi 51 > / (« — 1) 4- 2. Let 

{ f t „ 6 r + 1 , . . . , 6 , } = * n B, 

where ^ r + / ( « - l ) + 2. Then Ĵ  c Xfor all r ^ k ^ s - 1. By the 
above, 0 ^ \Wr\ < \Wr+x\ < . . . < \Ws_xl thus we have 

|H£_,| a * - r - 1 â / ( * - 1) + 1 > /( /! - 1) 
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which is a contradiction since Ws_ x is a consecutive descending wave in A. 
Finally, let X be a descending wave of A U B. Again, writing 

X n B = { f v A - H , . . . , * , } , 

we get 

X C # U P ; U . . . U ^ _ 1 U . / 

where H and / are the (possibly empty) consecutive descending waves in 
A n X which come before br9 and after bs respectively. Thus 

1*1 ^ izn +.|/i + 2 ; : ; wt\ ̂  (/(* - D + 3x/(* - i> + 2> 
and so we can set 

f(n) = (/(/i - 1) + 2X/(n - 1) + 3). 

PROPOSITION 19. [£[] Ç [jg?*]. 

Proof Let 

#w = ( ^ (n - i)w> (w - 2)/i,. . . , 2/î, w), 

ûrt = 1 +<*! + . . . + dn_, for n = 1, 2, 3, . . . . , 

fl^ = (/tz, ra, . . . , ra), with ra(ra + l)/2 repetitions of ra, 

U J = (Wl9 W29...9Wp9....) 

= ( 1 , 2 , 2 , 2 , 3, 3, 3, 3, 3, 3, 4 , . . . .), 

xm = Î + Ji + J2 + • • • + ym~\ f o r ™ = h 2, 

Then {jcn} e J2f{ and {fl„} c {*„}. Thus {an} G ^ f c [«£?*]. Since {an} 
contains arbitrarily long consecutive descending waves, by the previous 
lemma, {an} £ [Z[]. Thus [J2|] Ç [jg?*]. 
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