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ON A THEOREM OF KUIPER

ROBERT WELLS AND LUIZ A. FAVARO

1. Introduction. Let A,;; be the standard (n + 1) simplex with its stan-
dard triangulation. By the Generalized Poincare Conjecture, if # = 5 and
2" is a smooth homotopy n-sphere, then there exists a smooth triangulation
[+ K — 2" where K is a suitable subdivision of d4A,,;. On the other hand,
in [3], N. Kuiper proves the following theorem.

TureorEM (Kuiper). If =" is a smooth homotopy n-sphere and there exists a
smooth triangulation f: A, .1 — 2", then Z" 1s diffeomorphic to the standard
sphere.

The object of this paper is to give an easier proof of Kuiper’'s Theorem, and
to extend that theorem in a rather special setting. To arrive at that setting,
we define a subset S(n + 1) C R**!' = Euclidean (z + 1)-space by induction
onn: Forn = 0 weset S(1) = [0; 00 ); assuming S(n) C R has been defined,
we set

Stn+1) = (S(n) X 10,1]) UR* X (—0,0] C R* X R = R*1,

The set S(n + 1) is an (n + 1)-submanifold of R**' and we call it the solid
model in dimension n 4+ 1. We set M(n) = dS(n + 1), and we call M(n)
the model in dimension n. Let .#(n) be the pseudogroup defined by
M(n) ={e|le: U— ¢(U) is a homeomorphism, Uand ¢(U) are open inM (n),
and ¢ extends to an affine isomorphism of R**1}. Similarly, let ¥ (n + 1) be the
pseudogroup defined by ¥ (n + 1) = {¢|l¢ : U — ¢(U) is a homeomorphism,
U and ¢(U) are open in S(n + 1), and ¢ extends to an athne isomorphism of
R 1}, Then wesay thatan M (n) manifold P is an n-manifold | P| together with a
maximal atlas & modelling |P| on M (n) with coordinate transformations in
M (n); thus P = (|P|, ). Similarly, an S(n + 1) manifold X is an (n + 1)-
manifold |X| together with a maximal atlasZ” modelling |X| on S(z + 1) with
coordinate transformations in % (n + 1); thus X = (|X|, Z7). Clearly the
boundary of an S(z 4+ 1) manifold is an M (n) manifold. In the usual cate-
gories, every closed manifold is the boundary of a manifold, but since the
product of an M (n) manifold with [0, 1) does not appear to have a canonical
S(n 4+ 1)-structure, it is not clear that every M (n) manifold is the boundary
of some S(n + 1) manifold. To repair this deficiency, we introduce the notion
of a sided M (n) manifold. To begin with, for x € M (n) we say that dim (x) = r
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if there exists an affine r-plane H such that x € inty (H /M M(n)), and we
set dim (x) = max {r| dim (x) = r}. If P is an M (n) manifold and y € P, we
set dim (y) = dim (¢(x)) where y € U and (U, ¢) € & is a chart of P.
Clearly dim (y) is well defined. Then we set P" = {y € P|dim (y) < r}.
Clearly ¢ = P1 C P C ... C P" = P isa filtration of P by closed subsets;
PT— P™! is an r manifold and (P" — P™1!)" = ¢ for ¢ < r. Suppose
y € P=tand (U, ¢), (V,¢) € & withy € UM V. Then the homeomorphism

1

SN ¥l v

extends to a umique affine isomorphism 4 : R"*! — R**1 and for W a suffi-
ciently small open neighborhood of ¢(y) in R**!, we will have either

At S+ 1) N W) CintSm + 1) N A(W)
or
AGnt S+ 1) N W) C A(W) — S + 1).

In the first case we set s(¥, ¢) = -+1 and in the second case we set s(y, ¢) =
—1. In the standard way, the function s determines a {+1, —1}-bundle ¢(P)
over P"=1, If this bundle is trivial, we say that P is sideable; in that case a
section ¥ of P is a side and the other section —% is the opposite side. A side-
able M (n) manifold P together with a side.? is called a sided M (n) manifold,;
we will abuse notation sometimes by writing (P,.) = Pand — P = (P, —.%).
Clearly, if X isan S(z 4+ 1)-manifold and P = 9X, then P inherits a side from
X. Examples of sided M (n) manifolds are dA,,,, 9[—1, 11"+, and 9 —1, 1]"*1/
(—1).
If X is an S(#n + 1) manifold, then the ring

C*°X) ={f: X > R|foe':e(U) > Ris C°for any (¢, U) € 4}

is well defined. If P is an M (n) manifold, we say that an open r-fucet of P is
a component of P" — P! and a closed r-facet is the closure of an open r-facet;
a closed r-facet inherits an S(r) structure, and with that structure we call it
anr-facet. Letthering. #m(P) = {f: P — R| f|F € C*(F)for Fanyfacetof P}.
Similarly, if N is a smooth manifold or an S(k) manifold, we may define
C*(X, N) and m (P, N). For y € P, let Z,(P) be the set of derivations of
Fm(P) at y. It follows from Thom’s Lemma below that

Fm(M#n)) = {f: M(n) = R|f = g|M(n), g: R — Ris C};

then for x ¢ M (n) we have that Z,.(M (n)) is a real vector race of dimension
n + 1if dim (x) < n — 1 and of dimension #z if dim (x) = n. If (U, ¢) is a
chart of P with ¥ € U, then we define de(y) : 2,(P) — D, (M(n)) in the
usual way; clearly de(y) is an isomorphism, so &, (P) is a real vector space of
dimension # + 1 if y € P*! and of dimension » if y € P — P"', For x €
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M (n) we may identify the tangent cone to M (n) at x with a subset 7C,(M(n))
of D.(M(n)); then for y € P and (U, ¢) as above we set

7Cy(P) = do(y)7Coty (M(n)),

and 7C,(P) is well defined. Then 7C,(P) is a subcone of & ,(P), piecewise
linearly isomorphic to R*. For N a smooth manifold and f € #m (P, N), the
linear map df (y) : Z,(P) — ry(N) is defined in the usual manner. We will
say that P — N smooths P to N if

i) f € $m(P, N),

ii) f is a homeomorphism, and

iit) df (y) : 7C,(P) — 7,(N) is 1 — 1 onto.
In that case we will say that P subdivides N, that P is a subdiwision of N, and
that IV is a smoothing of P. We may extend the notion of subdivision to a pair
of M (n) manifolds. If P and Q are M (»n) manifolds, we set

yofoe !

AIE (P, Q) = {f: P— Q| themap ¢ (U N f7 (V) (V)

extends to an affine map R*" — R*" for (U, ¢) a chart of P and

(V, ¢) a chart of Q} .

For such f, the map df (y) : 7C,(P) — 7C;,(Q) is defined. If [ € Aff (P, Q)
we will say that if subdivides Q if

i) f is a homeomorphism,

ii) for each open facet 0 of P there is an open facet 0/ of Q with f(0) C 0/,
and

i) df (v) : 7C,(P) = 7C,y(Q) is 1 — 1 onto.
If (P,.%) and (Q,9) are sided M (n) manifolds, and f : P — Q subdivides Q,
then f pulls the side. 7 of Q back to a side f*7 of P. lf f*7 = %, we say
of the map f that it M (n)-subdivides (Q,.7 ), and we say that (P, Y)’is an
M (n)-subdivision of (Q,. 7). It is straightforward that if g : P — Q subdivides
or M(n) subdivides Q and f: Q — N smooths Q, then f o g smooths P. The
natural equivalence relations on M (n) manifolds are M (n)-equivalence and
equivalence: (Q,.7 ) is M(n)-equivalent to (Q',.7 ") if there exists (P,.¥) that
is an M (n) subdivision of both (Q,.7") and (Q’,.7); the definition of equiv-
alence is similar except that sides do not enter. Neither of these relations is
very tractable, so we will introduce a coarser (by PProposition 3 below) equiv-
alence relation on a certain class of sided A7(n) manifolds. To introduce the
coarser equivalence relation, we let

//.f-(n) = {¢le: U—¢(U) isadiffeomorphismand U, ¢{U) open C M (n)}
and FL(n+1) = {ole : U — ¢(U) is a diffeomorphism and U, ¢(U)
open C S(n + 1)}.

Then smooth M (n) manifolds are those modelled on A (n) with coordinate
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transformations in -#(n) and smooth S(n + 1) manifolds are those modelled
on S(n 4+ 1) with coordinate transformations in . (n 4+ 1). As in the affine
case above, we may introduce the dimension filtration, siding, facets, tangent
cones, smoothing and subdivision. Moreover, an M (n) or S(z 4+ 1) manifold
relaxes to a unique smooth M (n) or smooth S(z# 4+ 1) manifold, and closed
smooth manifolds are automatically smooth M (z) manifolds. If P and Q are
compactsided smooth M (n) manifolds, we will say that P is strongly cobordant to
Q if there isasmooth.S(n 4 1) manifold X such that X = P | | —Q,and Xis PL
isomorphic to P X [0, 1]. Let ¥ = {P|P isstrongly cobordant to a smooth mani-
fold}.Suppose P ¢ % and that X isa strong cobordism from P toa smooth mani-
fold N. There is a smooth vector field A on X, transverse to P. By the Cairns
Hirsch Theorem, there is a smooth submanifold N’ C int X which is transverse to
A. We may push P into the region of X between N’ and N by means of a solution
of 4. Thus we have a copy P’ of P between N and N’. Let Y be the closure of
the region between N and P’, and let Z be the closure of the region between P
and P’. Then Y defines a strong cobordism from —P to N and Z from P to P.
Thus, writing ~ for strong cobordism we have P € % implies —P € % and
P ¢ % implies P ~ P.Suppose X is a strong cobordism from P to (. As above,
we may insert a smooth manifold NV in int X (transverse to a smooth field
transverse to P). We may put a copy P’ of P between N and Q, and a copy
Q' of Q between P and N so that the closure of the region between P’ and Q'
is a strong cobordism from P’ to Q’. But with the inherited sides, it is a strong
cobordism from —P to —(Q; that is, a strong cobordism from Q to P. Thus
P ~ Qimplies Q ~ P. Finally,if P ~ Qvia X and Q ~ T via ¥, we may put
smooth manifolds V and N’ in int X and int ¥ respectively so that the closures
Xy, X1, Yo, V5 of the regions between P and N, between N and Q, between Q
and N’ and between N’ and 7T are strong cobordisms. From Proposition 3
below we conclude that N and N’ are diffeomorphic. Then glueing X, and ¥,
smoothly by a diffeomorphism N — N’, we obtain a strong cobordism Z from
P toT.Thus ~ is transitive. Finally, if P ~ N via X with N smooth, X Uy X
is a strong cobordism from P to —P. Thus ~ is an equivalence relation on %
and P ~ —Pfor P ¢ ¥.

Now, the theorem we wish to prove is most naturally stated in five proposi-
tions.

ProrosiTioN 1. If two compact smooth manifolds are strongly cobordant to the
same M (n) manifold, and n = 6, then they are diffeomorphic.

PROPOSITION 2. Let P be a sideable M (n) manifold, and M a smooth manifold.
Then there 1s a smoothing from P to M if and only if P and M are strongly
cobordant.

ProrosITION 3. If two smoothable sided M (n) manifolds are M (n)-equivalent,
then they are strongly cobordant.

ProrosiTiON 4. If n = 5 and M 1is an orientable compact closed smooth n-
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manifold smoothly immersible in R"+1, then there exists an M (n) manifold strongly
cobordant to M.

ProrosiTiON 5. If the smooth compact closed homotopy n-sphere T bounds a
smooth compact parallelizable manifold, then there exist a polyhedron P C R**?
which 1s an M (n) manifold strongly cobordant to Z.

From these propositions we conclude that for each smooth homotopy n-
sphere Z, the classes

K(Z) = {Q|Q is an M (n) manifold, Q strongly cobordant to Z}

are each non-empty, and mutually disjoint. Also, if Z is a non-standard
OP,;1 sphere, then the polyhedron P supplied by Proposition 5 supplies two
examples: 1) the cone CP is a polyhedron, PL isomorphic to I"*!, but not
smoothable, and 2) the suspension SP = CP \Up CP is a polyhedron, PL iso-
morphic to I, but not smoothable.

2. Proofs. Proposition 1 is the result that an M (n) manifold has at most one
diffeomorphism class of smoothings. It may be obtained as a corollary of a
‘““Boundary Collar Theorem’’ for smooth S(z 4+ 1) manifolds, and that in turn
is an immediate consequence of a lemma of Thom [4]. In addition, we will
require a simple proposition about S(z + 1).

PRrROPOSITION 6. Suppose p € S(n + 1) with dimgnp = v = n. Then there
is a basis ey, . . ., eyp1 of T,(R*Y) such that the n-facets of S(n + 1) containing p
are Fy, ..., Fopr—y with ,(F;) = span (eq, . .., &4 .. .. €up1).

Proof. The proposition is true for n = 0. We prove it inductively in dimen-
sionn + 1. Wemay write S(n + 1) =S =7 X [0,1] U R* X (—o00, 0] with
T = S(m). If dimg(p) = n, the proposition is immediate. If dimg(p) = r < =,
then p = (g, t) with ¢ € T"and 0 =t = 1. If 0 <t < 1, then dimg(p) =
1 4+ dimz(g). Let e/, ..., ¢,/ be the basis of 7,(R") given by the proposition
in dimension n. Let ey, . . ., ¢, be the parallel vectors at p = (g, t) and let ¢,
be the vertical vector at p. Then near p, the n-facets are /' X [0, 1], ...,
Fo—eony! X [0, 1] where F/, ..., F,_¢,—1 are the (n — 1)-facets of 7" con-
taining ¢, and clearly we have 7,(F;/ X [0, 1]) = span (e1, . . ., &; - - ., €p1)-
If t = 0or 1, then dimg(q, t) = dimz(q); let e/, ..., ¢,/ be the basis given by
the proposition in dimension #, for 7,(R"). Let ey, . .., é,4/—1, - - ., €1 be the
parallel basis at p, and let e,_,,1 be the vertical vector there. Then, near p,
the n-facets of Sare ' X [0,1],..., F,—,/ X [0, 1], F_ry1 where F\,_, ;1 = T
1ift=1and F,_py1 =clos (R* — 1) X 0if t = 0. But 7,(F/ X [0, 1]) =
span (er, ..., 84 ..., 1) and 7,(Fp_rp1) = span (€1, . .o, éerity -+« €op1),
so the proposition is proved.

ProrositioN 7 (Thom’s Lemma). Let e1, ..., e,41 be a base of R'1, let
C C Ufspan (e1, ..., 84 ..., )|l =1 =71}, and let f: C — R be such that
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each restriction f|C M span (e1, ..., &4 ..., €y1) 158 C° for 1 =1 = r. Then
there is a C* function F : R**' — R which restricts to f.

Proof. The proof proceeds by induction on r. For r = 1, there is almost
nothing to prove. Suppose the lemma has been proved for » — 1. Then

g=flCMN Ufspan (e1, ..., 84 ...,€41)|]1 <4 <7 — 1}

extends to a C* function G : R"t1 — R. To extend f, it suffices f — G|C. Thus
we may assume that f|[C N span (er, ..., é4 ..., €41) =0for 1 =7 <7
But then we may assume in addition span (e1, ..., & ..., €,1) C C for
1 £4<r. Andinthiscase F(x1,...,%01) = f(®1, ..., %r—1,0, %41, . - ., Xpt1)
is the desired extension, and the lemma is proved.

THEOREM 1. Suppose My and M, are smooth S(n + 1) manifolds; N1 and N,
are components of IM, and d M, respectively; and f : Nv — Nq 1s an isomorphism
of smooth sided M (n) manifolds. Then f extends to an isomorphism of smooth
S(n + 1) manifolds from an open neighborhood of N1 in M, to an open neighbor-
hood of Ny in M.

Proof. Suppose x € N, with dimy,(x) < n. Then there exist charts (U, ¢) of
Niatxand (V, ¢) of Ny at f(x) such that f(U) C Vand ¢(U) C M(n) and
Y(V) C M(n). Then dimy, (x) = dimpype(x) = dimyey(f(x)) and f induces
a smooth map g : ¢(U) — ¢(V); that is, g is C* on each facet. By Proposition
6, there is a basis (e, ..., €,41) of R*! at ¢(x) such that the hyperplanes
spanned by the n-facets of ¢(U) at ¢(x) are span (ey, ..., &;, ..., e,41) for
1 =17 = r. Regarding (e1, ..., €,41) as a basis of 7,,HK*!, we see that for
1=1,...,n 4+ 1thevectorsdg(e(x))e; = e/ are defined, that (e//, . .., e,41’)
is a basis of R"* at g(e(x)) = ¢ (f(x)), and that the hyperplanes spanned by
the n-facets of ¢ (V) at g(p(x)) arespan (e, ..., 8/, ..., 1) forl1 <7 < 7.
Now o(U) C Ufspan (e1, ..., &1 ..., eyy1)]1 £ 1 = 7} and gle(U) N
span (ey, ..., &84 ..., €41) 18 C* for 1 =1 =< 7. By Thom’s Lemma, there is
a C” extension G : Rt — R"*1 Returning to the charts (U, ¢) and (V, ¢),
we may assume that there exist charts (0, ®) of M, at x and (P, ¥) of M, at
f(x) such that ®(0) C S(» + 1), and 0N N, = U with ®|U = ¢, and simi-
larly for (P, ¥) and (V, ¢). By means of the Euclidean metric and its exponen-
tial map we see that it follows from the hypothesis that f preserves siding that
G(®(0)) C ¥ (P) so that f|U extends to a C* map 0 — P. It follows that there
exist open neighborhoods Ay’ and A4 of Nyt and N,~! in M; and M,
respectively, and a C® map F': A —. A extending fl#, M N,. Since
x € N,"! was arbitrary and dg(e(x)) carried the base e to the base ¢, it
follows that dF’(x) is non-singular for x € N,"~!. Thus we may assume that F’
is a diffeomorphism .4’ —.4,'. Finally, by means of open collars of the open
n-facets we see that F’ may be extended to a diffeomorphism F : Ay — A,
where 4, is an open neighborhood of N; in M. The theorem is now proved.

CoroLLARY (Proposition 1). If two compact smooth manifolds are strongly
cobordant to the same M (n) manifold and n = 6, then they are diffeomorphic.
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Proof. Let the two smooth manifolds be Ny and N,. We are assuming that N,
is strongly cobordant to the M (n) manifold N and that N, is strongly co-
bordant to #N. Replacing N if necessary with —N,, we may assume that
N, and N, are strongly cobordant to N. Let M ; be the strong cobordism from
N;to N. By Theorem 1, the identity map N — N extends to a diffeomorphism

./Vl-(—p%/‘/‘z

where A4, is an open neighborhood of N in M, By Siebenmann’s Collaring
Theorem, we may find 4, compact C A1 such that 44, = N\UN,’ with N)’ a
smooth boundary of 4; and N, = frA4y — A, C A, — A, a homotopy
equivalence. We may assume that M; — 4, is a smooth s-cobordism from
Ny to N;. Then Ny and N, are diffeomorphic by the k-cobordism theorem.
PPassing to PL structures, we see that 4, is an s-cobordism from N to N/, so
¢(A,) = A, is an s-cobordism from N to ¢(N,) = Ny'. But since M, is an
s-cobordism from N to N, it follows that M, — A, is a smooth s-cobordism

from Ny’ to No. Thus N, and N, are diffeomorphic, and the corollary is proved.

Next we obtain Proposition 2 and half of Proposition 3 as corollaries of a
theorem on subdivision of smooth M (n#) manifolds. Notice that subdivision
becomes smooth subdivision upon relaxing M (n) structures to smooth M (n)
structures, and that if the map f : P — N smooths P to N, then it (smoothly)
subdivides N.

THEOREM 2. Suppose M is a compact sided smooth M (n) manifold, N 1is a
smooth manifold, and f: M — N 1s a map that smoothly subdivides N. Then
M and N are strongly cobordant.

Proof. Suppose (U, ¢) is a chart of M and v : N — (0, o) is a function on
N. Let T'(y): N >N X (0, o) be the graph of v, and for X C N, let
L(y)(X) = {(x, )|x € X, t = v(x)}. Then we have a bijection g: o(U) —
AL(v)(e(U)) defined by ¢ = T'(y) of o ¢~'. We will say that v is admissible
over (U, ¢) if g extends to a diffeomorphism G : V' — V where V’ is an open
neighborhood of ¢(U) in S(n 4+ 1) and V is an open neighborhood of
AL(y)(e(U)) in L(y)(e(U)).

LeMmMmA 1. Suppose p € M(n). Then there is an open set of n-planes H through
p such that the orthogonal projection wy : R*' — H carries a neighborhood 0 of
p in M(n) homeomorphically onto a neighborhood 0' of p in H so that wg|0
smoothly subdivides ().

Proof. The lemma is clear for n = 1. The existence of such planes may be
established inductively, and the openness is clear.

Given such a plane H, there is a (unique) unit normal #, at p which points
into S(m + 1). Then there is a continuous function vy45 : 0 — R such that
{x 4+ yu(x)uylx € 0’} = 0 and such that near p the two sets S(z + 1) and
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{x + tug|x € 0/, ¢t = yu(x)} are equal. Since the manifold M is M (n) oriented,
we have an atlas &7 of charts of M such that (U, ¢) € &/ implies ¢(U) C M (n)
and such that (U, ¢), (V, ¢) € & with UN V N\ M*! # ¢ implies that the
map

—1

UNMEunv ¥ pwnm

extends to a diffeomorphism from an open set of S(z + 1) to an open set of
S 4+ 1). Let (U, ¢) € . and x € M™! N U. Consider the composition

o) 2 U L 5y open C WV

Since f 0 ¢! is smooth on ¢(U), by Thom’s Lemma it extends to a C* map
F: V' —f(U). The differential dF(¢(x)) : 7oKt — 7,»N is onto. By
Lemma 1, we may choose an zn-plane H through p = ¢(x) so that 7y : 0 — 0’
is a homeomorphism, 0, 0’ C ¢(U), and d(F|H)(¢(x)) : 7onH — 77N is an
isomorphism. Thus we may assume that F: 0 — 0 is a diffeomorphism. Let
W be an open neighborhood of ¢(x) in R**! on which F is defined. We may
assume W is small enough that dim ker dF(y) = 1fory € W, and (by reducing
0 and 0" about ¢(x)) that 0’ = W M H. Then ker dF is spanned by a smooth
unit vector field with solution ¢s; we may assume that o,(y) is defined for
|s| < efor some e > 0 and y € 0 \U (/, and that for y € 0’ there is £(y) such
that |{(y)| < eand ¢,4,)y € 0. Let = be the map 7 : 0 — 0’ defined by = (y) =
71»Y; We may assume 7 is a smooth homeomorphism. Notice that the function
¥1: 0" — R defined by v;:y — —t(r"1(y)) has the property that 0 =
{7100 (@)|y € 0’} and that, after reversing the direction of the vector field
if necessary, {o,(y)|y € 0/, v1(y) £ ¢, o,(y)} defined is an open neighborhood
V' of 0 in S(n + 1). Now define a function v, : F(0') — R by v:(F(y)) =
v1(¥). By reducing 0’ again, to a relatively compact subset, we may assume
that for some ¢ > 0 we have y = y2 4+ ¢ : F(0') — (0, o). It is straight-
forward to see that Fox = fo (¢7!|0). Then it is clear that v is admissible
over (¢71(0), ¢|¢~1(0)) with G defined by G(,(y)) = (F(y), t + ¢) for y:1(y) = ¢
with ¢,(y) defined and y € (. Since we may assume (¢=1(0), ole=1(0)) € .27,
we have obtained Lemma 2 (notice that it is immediate for x € M — M"1):

LeMMA 2. Let o/ be the orientation atlas of M chosen above. Then for any
x € M there exist a chart at x, (U, ¢) € &, and v : N — (0, ) admissible
over (U, o).

This lemma states that locally admissible functions exist. We wish to glue
locally admissible functions to obtain globally admissible functions. For that
purpose we use Lemma 3:

LEMMA 3. Suppose v, v' : N — (0, o) are both admissible over (U, ¢); then
foranyx € U,v + v 1s admissible over (V, ¢) wherex € V open C U.Suppose
u: N — (0, ©0) s C°. Then uy is admissible over (U, ).
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Proof. As in the discussion before Lemma 2, by taking V' small enough about
x, we may assume that there exist a n-plane H through ¢(x) € M(n), on open
set W C R"! containing ¢(V) = 0, open subset 0’ of H containing ¢(x),
and a C” extension F: W — f(V) of fo ¢~'. As in that discussion, dim ker
(dF(y)) =1 for y € W so that ker dF is spanned by a C” unit vector field
whose direction we may choose so that it points into S(z + 1) on M (n) N\ W;
we may assume that vector field is transverse to 0 and 0’, and we may assume
that the solution ¢, of that vector field is defined for |{{ < e on 0 \U 0/, that
for each y € 0 (respectively y € 0) there is {(y) with |¢(y)| < e (respectively
¢ (y) with |t/ (y)] < €) such that ¢, (y) € 0’ (respectively ¢, (y) € 0). We
may assume F : 0’ — F(0’) is a diffeomorphism. Finally, we may assume that
amap m: W — 0 is defined by 7#(y) = the unique point on 0’ that is on the
integral curve through y. Then 7 is C* and #|0 : 0 — 0’ is a smooth homeo-
morphism such that F or = f o ¢~'. Granted these constructions, let

G:(W,WNSn+ 1))
- GW), L) NGW) C (N X (0,0), N X (0, 0))

be the diffeomorphism defined by G(y) = (F(x(y)), ¢ + ¢ (x(y))) where
¢ > Oissufficiently large thaty = ¢+t on: W — (0, 0 ). Let G : (W, WN
Sn+ 1)) - (GW), L(yv) N\ G(W)) be a diffeomorphism making v admis-
sible over (F(0'), ¢) so that G(y) = (F(y), (F(y))) for y € 0. Consider the
diffeomorphism G o (G)~; it satisfies

Go (G)"'(z,7(2)) = (2, v(z)) for z € F(0').

It follows that there is a horizontal vector field A on G(W) such that A = 0
on G(W) N T(4)(F'(0)) and exp A(z, t) = pr (Go (G)~'(z, t)), t) where
pr: N X (0, o) — N is the projection (of course, it may be necessary to
reduce the size of W about ¢(x)). Notice that on M(z) N W we have
(expA)loG =G = (foe™) X (yofoe?), and that on all W we have
pro (exp A)~'o G = Fow. Thus, replacing G with (exp A)~! 0 G we see that
we may assume that pro G = Fo . Doing the same for 4" and (U, ¢), we
see that we may assume proG = Fow. But then G' o G™': (G(W),
L(y)(F(0))) — (G'(W), L(y")(F(0"))) is a diffeomorphism and G’ o G~!(z, ¢)
= (z, h(z t)) for some C® function k. Since L(y)(F’(0)) is carried to
Ly )(F(0')), we have 9.k(z, v(z)) > 0 for all z € F(0"). Consider the map
H(z, t) = (2, t + h(z, t)) defined on G(WW). Clearly H is smooth, and at any
point (z, y(z)) we have dH(z, v(2))d, = ad, with ¢ > 0. Since pro H = pr,
it follows that dH (z, y(z)) is non-singular for z € F(0’). Thus, there is an open
set W’ C W such that 0 C W’ and such that H: G(W’') > Ho G(W') is a
diffeomorphism; thus Ho G : W’ — H o G(W') is a diffeomorphism. But for
yeMmn)NW =Mmn)N\W=0,wehave Ho G(y) = H(F(r(y)),vF(x(y)))
= (foe ', v(foe()) = (foe (), v(fo ¢ () + k(fo ¢ (y),
y(fo e™l()))) = (fo ¢ (), v(fo ¢ () + 7' (fo ¢ Yy))). Similarly one

https://doi.org/10.4153/CJM-1976-004-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-004-8

A THEOREM OF KUIPER 33

checks that Ho G(W' N S(n 4+ 1)) C L(y + v')(F(0")) so that H o G makes
v + 7' admissible over (V, ¢) where V = f~1(F(0’)), and the first half of
Lemma 3 is proved. The proof of the second half of Lemma 3 is straight-
forward.

Now Lemmas 2 and 3 fit together with a suitable C” partition of unity of N
to complete the proof of Theorem 2.

CorOLLARY 1. (Proposition 2). Let P be a compact M (n) oriented manifold
and N a smooth manifold. Then there is a smoothing from P to N if and only if
P and N are strongly cobordant.

Proof. Let f: P — N be a smoothing. Relax the M () structure on P to a
smooth M (n) structure. Then f smoothly subdivides N, and Theorem 2 applies
to imply that P and N are strongly cobordant. The other direction is an appli-
cation of the Cavins-Hirsch Theorem: Let X be the strong cobordism from P
(relaxed to a smooth M (%) manifold) to V. There exists a smooth vector field
transverse to P, and pointing into X along P. By the Cairns-Hirsch Theorem
there is a smooth compact manifold N’ C int X transverse to the field, and

the solution curves of the field define a map P i N that smoothly subdivides
N’. Relaxing further to PL structure, we see that X = X; U X, where
X1 M X, = N’ and both X, and X, are cobordisms, from P to N’ and N’ to N
respectively. But we see that X; is PL isomorphic to P X [0, 1] by means of
the integral curves, and X also is PL isomorphic to P X [0, 1]. It follows that
both X and X, are regular neighborhoods of P, so that X, is PL isomorphic to
N’ X [0, 1]. Then there is a unique smoothing on N’ X [0, 1] extending that
on N’ so X, is diffeomorphic to N’ X [0, 1]. Finally, if ¢ : N — N is a diffeo-
morphism, ¢ o f is a smoothing from P to N and the corollary is proved.

CoroLLARY 2 (Proposition 3). Suppose that Py and P, are compact sided
M (n)-manifolds such that each admits a smoothing. If they are M (n)-equivalent,
then they are strongly cobordant.

Proof. We may assume that there exists a map f: Py — P, which M (n)-
subdivides P,. Let g : P, — N be a map which smooths P, to N. Then go f
smooths P; to N. By Theorem 2, both P, and P, are strongly cobordant to V.
Since strong cobordism is an equivalence relation, P; and P, are strongly
cobordant, and the corollary is proved.

To prove Proposition 4, we need to introduce some constructions and ter-
minology. We will say that a set of the form [a,, bo] X ... X [a,, b,] C R X
... X R = R"!is a hyper-rectangle. Suppose € is an (open) (n 4+ 1)-mani-
fold and F: & — R*"! an immersion. We will say that a subset C C & that
F maps homeomorphically onto a hyper-rectangle is an F-hyper-rectangle.
Then a finite union P of F-hyper-rectangles has an obvious generalized poly-
hedral structure making F|P an affine map.
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Suppose that @ and F are smooth, and that M is a compact smooth sub-
manifold of @. An F-simple neighborhood of M will be a finite union N of
F-hyper-rectangles such that (1) N is a manifold, (2) M C int N, and (3) the
inclusion M C N is a simple homotopy equivalence. For a relative version of
this definition let { : R**' — R be projection on the last factor. Suppose that
both ¢ o FIM and ¢ o F|oM are Morse functions with neither «, 8 € R a
critical value. Let g = { o F|M. Then an F-simple neighborhood of g~'[a, 8] is
a finite union of hyper-rectangles in (¢ o F)~'[e, 8] such that [1) N is a mani-
fold, (2) g~'[ea, B8] C int N, where the interior is with respect to the topology
of (¢ o F) Ya, 8], and (3) the inclusion (g~ e, B8], g e, B}) C (N, NN
(¢t o F)~Ya, B8}) is a simple homotopy equivalence.

It seems intuitively clear that at least codimension 1 closed compact smooth
submanifolds of & have F-simple neighborhoods — in fact arbitrarily small
simple neighborhoods. But we will settle for less.

From now on M is always a compact smooth submanifold of &. Let Z be
an open subset of & containing M. Let the pair of rotation groups (SO(n + 1),
SO (n)) act on R**t') R" in the usual way, where R* = R" X 0 C R"*'. Notice
that for B € SO(n + 1) the composition BF = B o F is also a smooth im-
mersion of . Then define the open subset U(M, F, %) of SO(n + 1) to be

{B € SO + 1)|There is a B F-simple neighborhood N of M with
N C ;.

Instead of proving that arbitrarily small F-simple neighborhoods of M exist,
we will prove the following theorem. Then Proposition 4 will follow as a
corollary.

THEOREM 3. If M s a smooth closed compact n-submanifold of the smooth
open (n + 1)-manifold &, and F : & — R*"'is a smooth immersion, then for U
an open neighborhood of M in O the set U(M, F, U) is open and dense in
SO(n + 1).

Proof. Clearly U(M, F, %) is open, and clearly the theorem is true in the
zero dimensional case (# = 0). From now on we make the inductive hypothe-
sis that the theorem has been proved in the (# — 1) dimensional case.

It is straightforward to see that {C € SO(n + 1)|f o C o F|M is Morse} is
an open dense subset of SO(z 4+ 1). We fix C in that set and write go =
{oCo F|IM. For a, 8 € R such that neither is a critical value of g., write

V(la,B), F, C,%) = {B € SO(n — 1)|There is a [BO] o C o F-simple

01
neighborhood of g¢ e, 8] in %}.

G
Lemma 1. If P — R" is a smooth immersion of « smooth n-manifold %, and
P is a smooth compact n-submanifold of &, and O is an open neighborhood of P
in P, then U(P, G, O) is an open dense subset of SO(n).
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Proof. By the induction hypothesis, U(dP, G, @) is open dense in SO(n).
Suppose B € U(dP, G, ©). Then there is a BG-simple neighborhood N of 9P
in . But then P C N\U P, and N U P is a BG-simple neighborhood of P
in @, and the lemma is proved.

LEMMA 2. The intersection of V([a, 8], F, C, %), V(B, ], I, C, %) and
V(le, v, F, C, %) is dense in V(le, B, F, C, %) N\ V(B, 7], F, C, %).

Proof. Suppose that B ¢ V(le, 8], F, C, )N\ VB, ], F, C, %) and let O
be any open neighborhood of B in that intersection. Then there exist

[BO:I o C o F-simple neighborhoods N; of g¢—[a, 8] and Nsof g[8, v] in %.

01
B0 B0
LetG = I:OI o1

that g¢=1(8) is an open smooth z-manifold &, and that [113(?] oCo F|? =

]oCoFandleta=§o[ :IOCOF=§'OCOF. Notice

G|P : PP — =1(B) is a smooth immersion; and the SO(n) space {~1(8) identi-
fies canonically with the SO(n) space R". Recall the basis (e, ..., ¢,), and
for x € ¢=1(B) define (x, t) € & by G(x, t) = G(x) + te,. This point is well
defined for ¢ sufficiently near 8; if X is compact and ¢, § are sufficiently near 8,
then X X [¢, 8] is well defined by X X [¢, 8] = {(x, t)|x € X, r € [¢, 8]}.
A similar construction is this: for D € SO(n + 1) and x € @, then Dx is well
defined by G(Dx) = DG(x) provided D is sufficiently near the identity. And
for X compact C &, there is a neighborhood of the identity such that D - X
is well defined in that neighborhood. In the same way, for 4 € SO(n) near the
identity and X compact C &, 4 -X = {Ax|x ¢ X} is well defined by
A(G)2)(x) = G|Z(Ax). Now, there exist ¢ and & with o < ¢ < 8 and 8 <
8 < v, sufficiently near 8 that

B
01
neighborhoods of g¢7'[e, 6] and g ![¢, 8] respectively.

(1) NiMN e Yea, 8] and N2 M a7, v] are [ 0] o C o F-simple

(2) There is a compact #-submanifold P of & such that
(i) g[8, €] C int Q X [5, €] C (intaNy' M intaNy') X [8, €]
where N/ = N; M ¢ '(B), and

(ii) the inclusion g—*(8) C Q is a simple homotopy equivalence.

Then by shrinking O about B suitably, we may extend (1) and (2) to the
following:

BE' 0

—1
BE 0] Ny O\ o1a, 8] and [ . 1] No O o=1[e, 7]

an ForEEO,[ 0 ]

are [OE (1):' o C o F-simple neighborhoods of go'[a, 6] and

2o~ e, v] respectively.
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(2’) For E € O,

e ac| Py amexsac|® Y]

[(inteN1y") M (inteN2') X [, €]]
BE-1 0

0 1:' Q is a simple homotopy

(i) the inclusion g¢=1(8) C |:
equivalence.

Let ¥ be open in &, such that ¥ is compact, and Q X [3, ] C¥ X
[6,¢] C¥ X [8, ¢l C (intaNy') N (intpNy') X [8, €]. By shrinking O about B
again, we may assume E € O implies

BE-!

V_x[a,e]c[ 0

(1)] [(inthl’) N (inthzl) X [6, 6]]

By Lemma 1 carried over to {~!(8) in place of R", and B-'o (G|?) : ¥ —
¢1(B), we have that U(Q, B~'o (G|Z),¥") is open dense in SO(n). Thus,
there is some E € 0N\ U(Q, B~'o (G|2), ¥"). It follows that there is an
EB-10 (G|?)-simple neighborhood N’ of Q in¥".

—1 —1
From (1) it follows that ([BE (1)] N;) A o-[«, 5] and ([BE 0] N2)

° “\L oo 0 1
EB™' 0
0 1

respectively. But N’/ X [4, €] is a union ofl:

M o™, ] are o G-simple neighborhoods of g¢~[e, §] and g, v]

EB-1 0
0 1

N = [( BE! 0] Nl) A o=, a]] U N

0 1
o ad[([75 ) nri]

] o G-hyper-rectangles. And since

:| o G-hyper-rectangles, so

EB-! 0

is a union of I: 0 1

1 BE_I O — 7’ M ’
N X [8, )M 0 1 NiN oY, 8] = N” X 8 C (inteNy') X,
and
—1
N"[5, ] N [B% (1)] N2 Mo~ lle,v] = N X e C (intgNy') X ¢,

EB~1 0
0 1
M (n)-manifold. Finally, the inclusion

(gC_l[ar 7]1 gC_l{av 7}) C (Nr NN U_l{ar ’Y})

it follows that the I: :I o G-polyhedral structure on N makes it an
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is a homotopy equivalence, so N is a (relative) [(l)’: (1)]0 C o F-simple

neighborhood of g¢=![a, v]. Thus E € V({(a, v], F, C, %) and Lemma 2 is
proved.

LeMMA 3. If [a, B] C ge(M) contains no critical values of g¢, then V([a, 8],
F, C, U) is open and dense in SO(n).

Proof. Clearly V([e, 8], F, C, %) is open. We set
I = {x € [a,B8)|V(la,x], F, C, ) is open dense in SO(n)}.

By the induction hypothesis, @ € T. Now we show that I' is open in [«, 8].
Suppose x € T'; we may assume that x < 8. Let G = Co F: & — R*! and
¢ =¢0G, and g = { 0o G|M. Let ¥" be an open subset of & = ¢~1(x) with
g (x) C ¥ C ¥ compact C %. We may define’?” X [x, b] C @ as in the
proof of Lemma 2, for b sufficiently near x. Then for some b with x < b £ 8
and ¥~ X [x, b] C % there exists a compact smooth # submanifold Q of &
such that

(i) g7 x, 5] Cint Q X [x,b5] QO X [x,8] C¥ X [x,b], and

(i1) the inclusion g~!(x) C Q is a simple homotopy equivalence.
By Lemma 1, the set U(Q, G|2°,¥") is open dense in SO(n). Suppose B €

U(Q, G|?,¢"). Then there is a |:OB (1):| o (G|2)-simple neighborhood N’ of

Qin?? . But then N’ X [x, b]isa [5
of g'[x, b] in¥” X [x, b]. Thus U(Q, G|Z?,?") C V(x,b], F, C, %) and the
right hand set is open dense in SO(n). But already V([a, x], V, C, %) is open
dense, so V([e, x], F, C, %) C V([x, b], F, C, %) is open dense. Finally, an
application of Lemma 2 shows that V([a, b], F, C, %) is open in SO(xn). Thus
b € T, and T must be open in [«, 8].

To see that T is closed, suppose a; < a; < a3 < .. .isan increasing sequence
in T' with limit y. We must show that y € T'; we have a < y < 8. As above,
there will be some ¢ with @ < a < y such that V([a, y], F, C, %) is open dense
in SO(n). Since a € T, we have that V ([, a], F, C, %) is already open dense
in SO(n), and an application of Lemma 2 shows that V([a, y], F, C, %) is open
dense. Consequently y € T, and T is closed in [a, 8].

Since T was already non-empty and open, it follows that I' = [«, 8], and
the lemma is proved.

(1):| o G-simple (relative) neighborhood

LEMMA 4. Suppose x is a critical point of g = ¢ 0 C o F|M. Then there exists
e > 0suchthat V([x — ¢, x + €], F, C, X) is open and dense in SO(n).

Proof. Let G = Co Fand ¢ = { 0 Gand g = { o G|M. The canonical form
of a Morse function at a critical point allows us to find a compact smooth
n-submanifold P of & = ¢~!(x) and y > 0 such that x is the only critical
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value in [x — v, x + v], and

e —yvx+v]Cint PX [x—v,x+v]CPX[x—v,x+7]C%,
and such that g~!(x) C P is a simple homotopy equivalence. Let ¥~ be an
open subset of Z suchthat P X [x — v,x +y] C¥ X [x — v,x + v] C ¥.
Then by Lemma 2, we have that Uy, = U(P, G|2,?") is open dense in SO(n).
Now choose ¢ > v such that [x — ¢ x — y] U [x + v, x + €] contains no
critical values of g. Then U_ = V(x — v, x — ¢}, C, F, %) and U, =
V(x 4+ v, x + €, C, F, %) are open dense in SO(n) by Lemma 3. Now we
argue as in the proof of Lemma 2: Suppose B € U_ M Uy M U,. Then there

exist [5 (1)] o G-simple neighborhoods N_, N X [x — v, x 4+ v], and N, of

g x—e¢x—7v], PX[x—17v x4+ ], and g~ [x + v, x + €] respectively.
Let N = N_No¢(x —v) and N/ = N, N o (x + v). Now we need to
complicate notation somewhat more: There exist @, b such that 0 < a < v
< b < e and compact smooth n-submanifolds Q_ and Q, of ¢~!(x — v) and
o~ '(x + v) respectively, such that
() g'x—bx—a C(@intQ) X[x—b,x—al CQ-X[x—bx —a]
C@ntN'Nint N X (x —v) X [x — b, x — a],
the same for + in place of —, and
(ii) the inclusions g='(x — v) C Q- and g~ '(x + v) C Q. are
simple homotopy equivalences.
Let? _ and ¥4 be open in o' (x — v) = Z_and o '(x + v) = £, respec-
tively, such that?”, are compact and Q, C¥ L C¥# L Cint N/ Nint N X
(x & v). Let 0 be an open neighborhood of B in U_ M Uy, M U,. By shrinking
0 about B suitably, we may assume that for £ € 0 we have

0 1

—1
[B]g (1):! NyNoYx+ b, x + ¢ are [(J)E (1)] o G-simple

(relative) neighborhoods of g=1[x — ¢, x — b] and g~ [x + b, x + €]
respectively in %.

2) NyNeoYx £b,x £v] =N, X[x £b,x % v]. In particular,
N, X[x £v,x £ 0] isa[B

) [BE_I 0} N_N o-lx — ¢ x — b] and

0 (1) o G-simple neighborhoods of
g x £ v,x £b]in¥.
BE™* 0
@ voc|" Y

Now
U_N Uy Uy N U(Q_, [g ‘1)] ° GW_,V_)

]int NS/ Nint N X (x £ v).

A U(Q+, [OB ‘1’] o GI%,%)
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is open dense in SO(n), so the intersection of this set with 0 is non-empty;
let E be in that intersection. We apply Lemma 1 to G, = G|#, : P, —
~1(x * v) and we see that we may assume in addition that there exist
E o Gy-simple neighborhoods N,"" of Q. in ¥",. Finally then, the inclusion

@ —ert+ed gt —exte) C ([[Bﬁ—l (1)] V-

—1
ma—l[x—e,x—b]:IUN_"x[x—b,x~a]u[[3'§ ?]N

X [x—a,x+a]:|UN+” X [x—l—a,x-l—b]U'iBlOE_1 (1):|N+
BE-!

f\a[x—l—b,x—l—e],l: 0

(1’] (N_ N o=l — &) U (N,
N oi(x + e)))

is a simple homotopy equivalence. But then E € V([x — ¢, x + €], F, C, ).
Thus V([x — ¢, x + €], F, C, %) is dense; since it is already open, the lemma
is proved.

Proof of theorem. By Lemmas 3 and 4, we may write g(M) as a finite union
of consecutive intervals [«, 8] such that for each [, 8] the set V([«, 8], F, C, %)
is open and dense in SO(n). It follows that their intersection is open and dense,

. .. . B 0 . o
so we may choose B in their intersection so that |: 0 1] - Cis arbitrarily close

to C and there exists a I:OB (1):| o C o F-simple neighborhood of M in %.

Thus U(M, F, %) is dense. Since it is already open, the theorem is proved.

smooth n-manifold that immerses smoothly in R"t', then there exists an M (n)-
oriented manifold strongly cobordant to M.

CoroLLARY (Proposition 4). If n = 5 and M is an orientable closed compact

Proof. By taking the normal bundle of a smooth immersion f : M — R*t1 we
obtain a smooth open (7 + 1) manifold ¢ D M and a smooth immersion
F: O — R**, By the theorem, there is C € SO(n + 1) such that there exists
C o G-simple neighborhood N of M in @. Then N is an S(n -+ 1) manifold
and AN is an M (»n) manifold. Moreover N = ¢,N\ U, Nand N = Ny U N,
with Ny an s-cobordism from M to d,N. Since n = 5, N, is a strong cobordism
and the corollary is proved.

Finally, we sketch the proof of Proposition 5 since the tilting details are
fairly similar in technique to those of Theorem 3.

PROPOSITION. Let 2 be a smooth homotopy n-sphere that bounds a parallelizable
manifold. Then there is a polyhedron P C R"*? that is an M (n) manifold strongly
cobordant to 2.
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Proof. If n £ 6 there is nothing to prove so we may assume # = 7. We have
n =2r —1land £ = 80X where X consists of an (z + 1) disk with 7-handles
attached so that X is parallelizable. We may immerse X in R**! so that the
disk lies in R* X (—oo, 0] and contains D" X (—1, 0], so that each handle H
is embedded and near D* X 0 coincides with Ty X [0, 00 ) for some copy
I'y C int D" of S™~! X D’. We may assume that two handles intersect cross-
wise in a disjoint union of copies of D™ X D7 so that the double point manifold
of the immersion F : X — R**! consists of a disjoint union of copies of D" X
D", which are pairwise interchanged by the double point involution. We may
assume further, by cutting the embedded handles with affine n-spaces parallel
to R" X 0 that there exist 'y, Ty, ..., I'y C X such that each F(T,) is the
translate of some I'y, and such that each component of X — T'; — I', — ...
— T contains exactly one component of the double point manifold. For each
pair of components of the double point manifold paired by the double point
involution, assign +1 to one member and —1 to the other. Thus we may assign

41 or —1 to the corresponding component of X — T'; — ... — T}%; to obtain
a smooth embedding X C R"*? we may find a C” function & : X — R, positive
on each +1 component of X — I';,— ... — T, and negative on each —1

component. Then x — (F(x), k(x)) is an embedding. Instead we let & = int X
and we identify ¥ with the boundary of an open collar of X. We may assume
that £ meets each T'; transversally in a copy of S™! X S™L After suitable
tilting, we find F|& N T;simple neighborhoods Ny, ..., Nyof ZN Ty, ...,
2 M Ty. These give rise to relative F-simple neighborhoods N; X [ay, b4],. . .,
Ny X [ag, by] of (T'y X [ay, b1]) M 2, ..., (T X [ax, bi]) M Z respectively,
where [a;, b;] is a suitable closed neighborhood of x;, and T'; C R* X x;. After
another tilt, we may suppose that we have as well a relative F-simple neighbor-
hood Mof ZN [0 — Ty X (a, b)) — ... — Ty X (¢, b')] where (a/, b/)
is a suitable open interval containing [a;, b;]. Finally, we have relative F-simple
neighborhoods R; X [a), a1, ..., Ry X [ai’, ax] of 2N (T X [a), a1)), ...,
2N (T X [a, a;]) respectively, and L; X [b1, bi'], ..., Ly X [by, b'] of
ZMN (T X [by, 4']), ..., 2N (T X [by, by']) respectively. We may assume
that each R; X a; and L; X b, is contained in the interior of a corresponding
n-facet of M, and that R; X a;\Uint N; X a; and L; X b; C int N; X b;.
Then

(U{Ri X [ad, ai] UN; X [aiybi] U L; X [by bil]|7: =1,..., k})
UM=Y7Y

is an F-simple neighborhood of Z, and its boundary is strongly cobordant to 2.
Notice that each component of M is in some component of X — I'; — ...
— T and so inherits +1 or —1. Let M, be the union of all those components
inheriting 41 and M_ the union of all those inheriting —1. Each R; and L;
is in one of these components and so inherits ¢ +1 or a —1, which we write as
O(R;) or O(L;). Defineamap G: ¥V — R X R by G(x) = (F(x), +1) if
x € M, and G(x) = (F(x), —1) if x € M_, and G(x) = (F(x), 0) if x €
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U {N; X [a;, b3l =1, ..., k}. For (x,t) € R; X [a/, a}], set

66s,0) = (s, 0,0) + (058D )
and for (x,t) € L; X [by, /], set

60 = (50,00 + (05550 0 - 1)

Then G determines an affine isomorphxsm from 4V to P = G(dY), and P is
a subpolyhedron of R**!. The proof of Proposition 5 is complete.
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