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The effect of hitch-hiking on neutral genealogies

N. H. BARTON*
Institute of Cell, Animal and Population Biology, Uni�ersity of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland

(Recei�ed 18 December 1997 and in re�ised form 12 May 1998)

Summary

When a favourable mutation sweeps to fixation, those genes initially linked to it increase in

frequency; on average, this reduces diversity in the surrounding region of the genome. In the first

analysis of this ‘hitch-hiking’ effect, Maynard-Smith and Haigh (1974) followed the increase of the

neutral allele that chanced to be associated with the new mutation in the first generation, and

assumed that the subsequent increase was deterministic. Later analyses, based on either coalescence

arguments, or on diffusion equations for the mean and variance of allele frequency, have also

made one or both of these assumptions. In the early generations, stochastic fluctuations in the

frequency of the selected allele, and coalescence of neutral lineages, can be accounted for correctly

by following relationships between genes conditional on the number of copies of the favourable

allele. This analysis shows that the hitch-hiking effect is increased because an allele that is destined

to fix tends to increase more rapidly than exponentially. However, the identity generated by the

selective sweep has the same form as in previous work, h[r}s] (2 Ns)−#r/s, where h[r}s] tends to 1

with tight linkage. This analysis is extended to samples of many genes ; then, genes may trace back

to several families of lineages, each related through a common ancestor early in the selective

sweep. Simulations show that the number and sizes of these families can (in principle) be used to

make separate estimates of r}s and Ns.

1. Introduction

The coalescent process provides a powerful method

for approximating the effects of random drift on a

sample of neutral genes (Hudson, 1990; Donnelly &

Tavare, 1995). As one traces a set of lineages back in

time, pairs of lineages will coalesce into one ancestral

line at a rate which is the inverse of the effective

number of genes in the population (1}2N
e
). This

simple approximation to the distribution of

genealogies is accurate provided that the lineages of

interest make up a small fraction of the population.

The coalescent provides a natural tool for under-

standing the statistics of samples of DNA sequences

and, moreover, allows very efficient computer simu-

lations.

Real populations are structured, both spatially and

genetically. Even if a gene does not itself affect fitness,

its fate depends on where it is, and on which genes it
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is associated with. Classical population genetics shows

that spatial subdivision has two opposing effects on

neutral variation. Subdivision into partially isolated

demes of constant size preserves variation, and so

increases the effective size of the whole (Wright, 1939;

Nagylaki, 1982). However, if populations fluctuate in

size, then genes which happen to be in successful

locations contribute disproportionately, leading to

loss of variation and a smaller effective size (Whitlock

& Barton, 1997). In genealogical terms, subdivision

increases mean coalescence times, whilst fluctuations

reduce them.

Provided demes are sufficiently large, the ancestry

of samples drawn from a subdivided population can

be approximated by the ‘structured coalescent ’

(Kaplan et al., 1991 ; Notohara, 1990; Hudson, 1990;

Hey, 1991 ; Herbots, 1995; Nordborg, 1997). Tracing

backwards in time, each neutral lineage is associated

with a location which can change as a result of

migration. At any given time, a lineage may coalesce

with other lineages that are currently in the same
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place, with a probability inversely proportional to the

number of genes reproducing there. Exactly the same

process can describe the evolution of a gene through

a population which is structured by the existence of

gene combinations with different fitnesses (Kaplan et

al., 1988; Hudson & Kaplan, 1988). A neutral gene

may find itself associated with various combinations

of selected genes, each with a different fitness. Tracing

back, each neutral lineage may be associated with a

genetic background that can change with time as a

result of recombination and mutation of the selected

genes. At any given time, a lineage may coalesce with

other lineages that are currently in the same back-

ground. This approach has been used to derive

analytical and simulation results for the effect of

various kinds of selection: balancing selection, where

a constant allele frequency is maintained (Kaplan et

al., 1988; Hudson & Kaplan, 1988) ; ‘ selective sweeps’,

where a single favourable mutation sweeps through

the population (Kaplan et al., 1989) ; and ‘background

selection’, where selection continually eliminates

deleterious mutations (Charlesworth et al., 1995;

Hudson & Kaplan, 1995).

Application of this approach to genetic structure

raises several mathematical difficulties that are not

immediately apparent from the analogy with spatial

structure. First, transfer of the neutral marker between

different selected backgrounds occurs by recombi-

nation, rather than migration. Though both processes

can be described by a linear matrix equation, the

geometry of recombination is considerably less trac-

table than for migration on a one- or two-dimensional

lattice : transfer can be to any of very many gene

combinations. Second, and more seriously, almost all

existing results are for one selected locus. However,

very large numbers of genes are under selection, and

substantial effects are only likely to be observed

through the cumulative effects of many loci. Then,

each genetic background may be present in small

numbers, if at all. This leads to two related violations

of the assumptions underlying the classical coalescent :

the numbers of each particular genotype actually

found in a population may be small, and may vary

randomly. In the classical models, an individual’s

ancestor can be sampled from a known deterministic

distribution; with genetic structure, this approxi-

mation is only reasonable if the total population size

is large compared with the number of genotypes. When

the approximation fails, we must incorporate sto-

chastic fluctuations of the background genotypic

array, and must allow for interactions between the

lineages that descend through a rare genotypic class.

In this paper, I explore these two difficulties in the

simple case of a ‘selective sweep’ at a single locus. In

their original analysis of this problem, Maynard

Smith & Haigh (1974) supposed that the only

randomness was in which neutral allele was first

associated with the new mutant ; subsequently, the

selected allele increases exponentially at a rate s, and

its association with the neutral marker decays

geometrically by recombination, at a rate r. However,

subsequent random drift, and random fluctuations in

the numbers of the selected allele, can have a

substantial effect. In particular, the expected frequency

of an allele gi�en that it will fix is accelerated above the

unconditional expectation of ?st}2N by a factor 1}2s.

This problem was discussed by Maynard Smith &

Haigh (1974) and Kaplan et al. (1989); however, while

Otto & Barton (1997) take it into account in

calculating the effect of a selective sweep on the

expected frequencies of alleles at linked loci, its effects

on higher-order measures such as heterozygosity have

not been analysed. A further problem, which becomes

important when more than two lineages are con-

sidered, is that these lineages may interfere with each

other during the early stages, when they may be

associated with small numbers of the favourable

mutant. While these factors do not have a very large

influence on the effect of a selective sweep on pairwise

measures such as the distribution of coalescence times

or heterozygosity, a proper analysis of the process

may help in understanding the much harder case,

where there are many selected loci.

2. Analysis of pairwise relationships

(i) The four phases of a ‘selecti�e sweep ’

For simplicity, only the case of selection strong

relative to drift will be considered. (If Ns were

moderate or small, the more elaborate algorithm of

Neuhauser & Krone (1997) would be required to

describe the genealogy of the selected locus.) Assuming

1 ( s(1}N, a ‘selective sweep’ can be divided into

four phases. After a favourable mutation, P, arises, its

numbers, k, fluctuate in a branching process with

expected growth rate s. Only the fraction C 2s of

processes which lead to ultimate fixation need be

considered. After some randomly distributed time,

these will reach a large enough number (ks" 2, say)

to increase deterministically ; in this, the second phase,

numbers are large enough for drift to be negligible,

but the allele frequency is still low (k' 2N ). In the

third phase, which lasts C1}s generations, the new

allele sweeps to high frequency. Finally, the original

allele, Q, is eliminated, leading to fixation. Now, trace

lineages at a neutral locus backwards through these

four phases. Any sample of lineages must begin in

association with P. However, in the third phase, as Q

becomes common, lineages cross back and forth

between backgrounds P and Q by recombination.

Tracing back to the second phase, some fraction of

lineages will now be associated with Q. Since P is now

rare, these lineages are unlikely to return to association
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with P, and will coalesce only in the distant past,

C 2N generations back. During the second phase,

more lineages escape by recombination into back-

ground Q, never to return. Lineages associated with

allele P now also have an appreciable chance of

coalescing during the brief duration of the sweep.

Finally, in the first phase, all lineages which remain in

association with P must either coalesce or escape by

recombination. This first phase is the most com-

plicated, since one must consider genealogies con-

ditional on the random sequence of numbers of the P

allele, and then average over this sequence.

The following analysis considers first the chance

that a pair of lineages will coalesce while associated

with the new allele P, some time after the substitution,

rather than tracing back to a common ancestor in the

more distant past. I set out a series of approximations

of increasing complexity, leading up to the exact

solution, and compare their accuracy. Next, the

distribution of pairwise coalescence times is derived,

in essentially the same way. Finally, the distribution

of genealogies which relate samples of several genes is

considered. Viewed in the long term, over timescales

of C 2N generations, a brief selective sweep appears

to induce near-simultaneous coalescences ; the prob-

lem is to find their statistical distribution, and to find

how closely this is approximated by the classical

coalescent, which treats lineages as evolving inde-

pendently of each other.

(ii) Coalescence in the first generation only

The simplest approach is to find the probability f
P

that

a neutral marker currently associated with the

favourable allele P traces back to the single ancestral

allele which was associated with the original mutant,

P. Since recombination transfers markers between

genetic backgrounds, we must also follow the prob-

ability f
Q

that a marker currently associated with Q

traces back to association with the original mutant.

The probability that two alleles presently associated

with P are identical by descent as a result of the

selective sweep can then be approximated as f
PP

¯ f #
P
.

This is equivalent to allowing for coalescence only in

the first generation, and is essentially the approach

originally taken by Maynard Smith & Haigh (1974).

The recursions for f
P
, f

Q
are

f !
P

¯ (1®rq) f
P
­rqf

Q
,

f !
Q
¯ (1®rp) f

Q
­rpf

P
.

(1)

The difference between backgrounds, δ¯ f
P
®f

Q
,

decreases by a factor (1®r) due to recombination,

whilst the average fW ¯ pf
P
­qf

Q
increases by ∆fW ¯ δ∆p

due to the increase ∆p at the selected locus. Initially,

f
P
¯1, f

Q
¯ 0, and so δ

!
¯1, fW

!
¯ p

!
¯1}2N. Assume

that s, r'1, so that time can be taken to be

continuous. Then, integrating over the timecourse of

the substitution:

δ¯ δ
!
e−rt,

f
P
¯ fW ¯

1

2N
­&"

"/#N

e−rtdp.
(2)

If the favourable allele increases deterministically,

with constant genic selection s, as (p}q)¯ est}2N, and

letting f
PP

¯ f #
P
:

f
PP

¯ (2N)−#ρ Γ[1­ρ]#Γ[1®ρ]#

(ρ¯ r}s!1, 2N( 2Ns(1). (3)

where Γ is the Gamma function.

We next take account of random fluctuations during

the establishment of the new mutant, given that it is

destined to be fixed. Since fluctuations in p occur at a

time when ∆p is very small, they do not contribute

significantly to the increase in identity, ∆fW ¯ δ∆p.

Fluctuations have only an indirect effect, by altering

the time between the occurrence of the mutant and the

time at which the substitution occurs ; during this

time, the association between marker and favourable

allele is dissipating by recombination. Let the allele

frequency during the deterministic phase be

(p}q)¯ es(t+τ)}2N. The quantity z¯ 2sesτ has an

exponential distribution with mean 1 (see appendix C

of Otto & Barton, 1997) ; thus, the expected frequency

of an allele destined for fixation is accelerated by a

factor (1}2s) relative to that expected in the absence of

stochastic effects. Averaging f
PP

over the distribution

of τ gives :

f
PP

¯ (4Ns)−#ρ Γ[1­ρ]#Γ[1®ρ]#Γ[1­2ρ]

(ρ¯ r}s!1, 2N( 2Ns(1). (4)

Note that this is greater than the expectation of f
P
, as

calculated in appendix C of Otto & Barton (1997),

since it includes the variance in f
P
. Comparing (3) with

(4), we see that allowing for the random stochastic

acceleration increases identity by a factor (2s)−#ρ,

which may be substantial when linkage is loose.

(iii) Coalescence in all generations

Next, we allow for the possibility that lineages may

coalesce during any of the early generations, when

background P is present in small numbers. Let f
PP

be

the chance that two genes, presently associated with P,

are identical by descent ; similarly for f
PQ

, f
QQ

. For

small r and large N, the recursions simplify to:

∆f
PP

¯
(1®f

PP
)

2Np
­2rq( f

PQ
®f

PP
),

∆f
PQ

¯ r(qf
QQ

®f
PQ

­pf
PP

),

∆f
QQ

¯
(1®f

QQ
)

2Nq
­2rp( f

PQ
®f

QQ
).

(5)

When allele P is present in large numbers, coalescence

is negligible, and so terms in 1}2N can be dropped.
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Then, lineages descend independently, and identities

can be calculated from (2), in terms of f
P
, f

Q
. Suppose

we start at some low frequency ε (1}Ns' ε'1),

when f
PQ,ε

, f
QQ,ε

¯ 0. Integrating (5) up to fixation, the

final identity is

f
PP,"

¯ f
PP,ε

(ερΓ[1­ρ]Γ[1®ρ])#. (6)

In the early stages, any lineages which escape from

background P are unlikely to trace back into it.

Setting f
PQ

¯ 0, q¯1, we need only consider f
PP

during this period. Integrating the equation for ∆f
PP

in

(5), on the deterministic assumption p¯?st}2N, and

splicing the solution onto (6) at some arbitrary ε, gives

f
PP,"

¯ (2Ns)−#ρ Γ[1­ρ]#Γ[1®ρ]#Γ[1­2ρ]. (7)

This expression is based on the same assumptions as

Stephan et al.’s (1992) analysis. Their diffusion

approximation (9) for the variance of neutral allele

frequencies in the two backgrounds is equivalent to

(5), and their approximate solution (19) corresponds

to (7), though without the factor Γ[1­ρ]#Γ[1®ρ]#.

Comparison of (7) with (3) shows that allowing for

coalescence throughout the time when the allele is rare

has introduced a factor s−#ρ. However, (7) does not

allow for the stochastic fluctuations in numbers (2Np)

in the early stages of increase, or for the expected

acceleration of an allele that is destined to fix. We deal

with this problem in the next section.

(iv) The exact solution

With strong selection, stochastic fluctuations influence

the numbers of the favourable allele only when it is at

very low frequency. Then, we need only consider pairs

of lineages that are both within the rare background

( f
PP

), and must average the equation for f
PP

in (5)

over random sequences of p. Since these sequences

form a Markov chain, f
PP

must depend solely on the

present numbers of copies of P, k¯ 2Np. Let this

conditional identity be f
k
. This changes according to

f $
k
¯ (1®r)# 3

¢

j="

Γ
jk 01®f

j

j
­f

j1 . (8)

Here, Γ
jk

is the probability that if there are k copies of

P in the present generation, there were j in the

previous generation; the probability of identity in the

previous generation is proportional to 1}j.

The backwards transition matrix, P
jk
, can be

calculated from the forwards matrix using the relation

Γ
jk

¯ (ψ
j
}ψ

k
)P

jk
, where ψ

j
is the leading left eigen-

vector of P
jk
. For the Wright–Fisher model, with

expected offspring number λ¯ (1­s), ψ
j
is close to its

diffusion approximation, 2}j. Using this approxi-

mation:

γ
jk

¯
λe−jλ( jλ)k−"

(k®1) !
. (9)

The sum of Γ
jk

over j is 1 ; the approximation (9) sums

to [(1­s)kLi
"−k

(e−("+s))]}(k®1) ! , which is very close

to 1 except for small k. For s¯ 0±1,k¯1, 2, 3, 4… ,

the sum is 0±549, 0±905, 0±994, 1±001…, and thereafter

deviates by ! 0±0001.

The moments of the backwards distribution can be

found from (9) :

-1

j.¯3
k

1

j
Γ

jk
¯

λ

k®1
,

© jª¯3
k

jΓ
jk

¯
k

λ
, (10)

var ( j)¯3
k

( j®© jª)#Γ
jk

¯
k

λ#

.

Again, this is accurate except for k¯1, 2. For s¯ 0±1,

the errors for ©1}jª are 59±9%, 6±9%, ®0±67%

for k¯ 2, 3, 4 ; for © jª, 19±8%, ®6±4%, 0±7% for

k¯1, 2, 3 ; for var ( j), ®8±1%, 11±1%, 0±3% for

k¯1, 2, 3.

This recursion can be solved numerically by setting

f $
k
¯ f

k
. The equations can be closed by supposing

that f
j
converges to its asymptotic form C j−#ρ above

some large j, and using (9) to approximate Γ
jk
. It can

be approximated by expanding f
j
as a Taylor series

around k, and substituting for the moments from (10).

This leads to the diffusion:

∆f
k
¯ 0¯®2rf

k
­-1

j. (1®f
k
)

­f !
k-0j®1

j 1 ( j®k).
­

f "
k

2 -0
j®1

j 1 ( j®k)#.
¯®2rf

k
­

(1®f
k
)

k®1
®f !

k 01­ks(k®2®s)

(k®1) (1­s) 1­
kf "

k

2

¬0(ks)#®(ks­1) (1­s)#®s#­(k®1) (1­s)

(1­s)# (k®1) 1 . (11)

In the limit of small s, large k, with y¯ksC1, this

simplifies to the diffusion limit :

0¯®2ρf­
(1®f )

y
®yf «­

y

2
f §­O(s). (12)

In the limit of large y, the solution to (12) converges

to h[ρ] y−#
ρ ; it can be solved numerically by imposing

this constraint for large y, and setting f [0]¯1. (It is

possible, but unhelpful, to express the h[ρ] explicitly as

a double integral of a MeijerG function.) This solution

is valid for y' 2N ; by splicing it onto (6), the net

effect of the selective sweep can be found as

f
PP

¯ h[ρ] (2Ns)−#ρ Γ[1­ρ]#Γ[1®ρ]#. (13)
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Fig. 1. Net identity generated by a selective sweep,
plotted against r}s. The curves are (from bottom to top) :
coalescence in the first generation, exponential increase
(3) ; coalescence in the first generation, stochastic increase
(4) ; coalescence in all generations, deterministic increase
(7) ; and coalescence in all generations, stochastic increase.
Ns¯100. Note that these solutions are valid for ρ!1 in
the limit NsU¢, but break down near ρ¯1 for finite
Ns. Filled circles show simulated results, for s¯ 0±1,
N¯10$, 100000 replicates. Standard errors are
indistinguishable on this scale.
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Fig. 2. The identity between two genes associated with P,
f
PP

, is plotted against the number of copies of P, for the
discrete solution to (8) (squares), and the diffusion
approximation (12, 13) (line). Note that f

#
is slightly in

error, because the backwards matrix was approximated
by (9) ; the discrete solution also fails near k¯100, where
the calculation was truncated. Otherwise, agreement is
close.

This has the same form as (4, 7), but is larger than

either (Fig. 1). The diffusion approximation (12,13),

which takes into account both the stochastic increase

in the selected allele, and coalescence in all generations,

is in excellent agreement with the discrete equation (8)

(Fig. 2).

(v) The distribution of coalescence times

Thus far, we have calculated the probability that two

genes both descend from a common ancestor which

was associated with the favourable mutant, P. In large

populations, this gives the net identity generated by

the selective sweep, since ancestors that were

associated with allele Q are likely to be much more

ancient (C 2N generations back). We now find the

distribution of coalescence times, by considering the

probability that two genes are identical in stale,

despite mutation to novel alleles at a rate µ. The

identity in state, considered as a function of

z¯ (1®µ)#, gives the generating function for the

distribution of coalescence times.

The recursion for the identity in state is now found

simply by allowing for a decrease in identity by a

factor (1®µ) per generation, down each of the two

lineages. In the early stochastic stages of increase, the

exact recursion (8) is multiplied by a factor (1®µ)#.

The diffusion approximation to this recursion is then

found simply by replacing ρ by (ρ­µ}s) in (13), and

has the solution h[ρ­µ}s] (2Ns)−#(ρ+µ/s), where h[ ]

must be found numerically from (8), or its ap-

proximation, (12). After coalescence has become

negligible, the change in identity, f
PP

, is proportional

to f #
P
, where f

P
, f

Q
are given by a modification of (1) :

f !
P
¯ (1®rq®µ) f

P
­rqf

Q
,

f !
Q
¯ (1®rp®µ) f

Q
­rpf

P
.

(14)

This has solution f
P,"

¯ e−µTεΓ[1­ρ­µ}s]Γ

[1®ρ®µ}s] ερf
P,ε

, where Tε is the time from the present,

back to when p¯ ε. Combining this solution with that

for (12) raises a delicate question. Tracing back from

the present, the favourable allele will have reached

frequency ε at some definite time, Tε. If its increase

were deterministic throughout, it would have ori-

ginated at some earlier time T, with ε¯?s(T−Tε)}2N.

However, the time when it actually originated is

randomly distributed and, on average, somewhat

more recent ; moreover, the stochastic acceleration

will be correlated with the identity generated by the

selective sweep. We will avoid this complication by

working in terms of the effecti�e time of origin, T,

which can be calculated from the observed deter-

ministic increase of the favourable allele, and which

is on average somewhat more distant than the actual

origin of the successful mutation. On this interpre-

tation, ε cancels as the two solutions are spliced

together, and we have

f
PP

¯ h 9ρ­
µ

s: (2Ns)−#ρ s−#
µ

s Γ 91­ρ­
µ

s:
#

Γ 91®ρ®
µ

s:
#

e−#
µT, (15)

where h[ ] is given by (8), or its diffusion approxi-

mation (12). This is the generating function for the

distribution of coalescence times, measured relative to

the effective start of the selective sweep. Note that,

because coalescence occurs early in the selective sweep,

the distribution of coalescence times is independent of

population size, N (except through the strength of

selection relative to drift, Ns).
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Fig. 3. The expected time of coalescence, counted from
the effective start of the selective sweep, plotted against
recombination rate. Both are scaled relative to s ; from
(16). From bottom to top, the three curves are for
s¯ 0±01, 0±001, 0±0001.

The expected coalescence time, conditional on the

coalescence having occurred as a result of the

bottleneck, is

E[t]¯®
¦ log [ f

PP
]

2¦µ

¯T®
1

s 0log 91s:­ψ[1­ρ]®ψ[1®ρ]­
1

2

¦ log [h]

¦ρ 1 ,
(16)

where ψ[z]¯ ¦ log [Γ[z]]}¦z. For tight linkage, the

average coalescence time, counting from the effective

start of the selective sweep, is close to log [1}s]}s ; it

increases approximately linearly with recombination

rate (Fig. 3). The variance of the coalescence time can

be found by taking the second differential of (16), and

the full distribution by taking its inverse Laplace

transform.

3. The structures of genealogies

With strong selection (Ns(1), the coalescence events

caused by a selective sweep occur almost simul-

taneously relative to the timescale of random drift

(tCN ) ; thus, the distribution of coalescence times

derived above could not in practice be observed

directly. However, even disregarding this information,

a sample of genes contains more information than just

the average pairwise identity. We now consider

whether this information could be used to distinguish

a selective sweep from a brief reduction in population

size, and to disentangle the several parameters which

describe the selective sweep. Kaplan et al. (1989)

considered the distribution of the number of lineages

which coalesce during a selective sweep. However, this

does not provide a complete description of the process.

Tracing a sample of lineages back, some subset will

share a common ancestor associated with allele P,

which will then escape into background Q. Other

subsets may coalesce to share a different ancestor.

Thus, a brief bottleneck generates some number of

families of lineages, each sharing a different common

ancestor at approximately the same time, and related

to each other in the more distant past. The structure

of the genealogy can therefore be represented by a list

of family sizes, n¯²n
"
, n

#
,…´.

An obvious approximation is to suppose that

lineages coalesce randomly during the bottleneck,

with some probability. On this view, all the statistical

effects of a brief selective sweep depend on a single

parameter ; it gives a good approximation to Tajima’s

D (Tajima, 1989; J. M. Braverman, personal com-

munication). This approach simplifies inferences from

sequence data, but on the other hand would make it

impossible to infer more than one parameter ; for

example, it would not be possible to disentangle N, s

and ρ. In the following section, therefore, we find the

distribution of the numbers and sizes of families of

lineages generated by a selective sweep. We investigate

first whether this distribution can be encapsulated in a

single parameter, and second whether the usual

coalescent approach (e.g. Kaplan & Hudson, 1989)

gives an adequate approximation to the exact branch-

ing process.

It would be simple to extend (8) to give the chance

that a set of i genes are all identical by descent, given

that they are associated with a selected allele present

in k copies. However, this would not give enough

information to reconstruct the full distribution of

family sizes, n. Moreover, since coalescence occurs at

times when the number of sampled lineages may

approach the number of favoured alleles, it is more

straightforward to follow the relationships among all

those neutral alleles that are associated with the

favourable mutation, P.

These relationships can be constructed as follows.

First, establish the numbers of the selected allele, P.

This can be done either by starting at some large

number of copies of P, and working back using the

backwards matrix Γ
jk
, or by starting with a single

copy, and working forwards using the forwards

transition matrix conditioned on ultimate fixation,

P$
jk
. Second, propagate the relationships forwards in

time, given this random sequence. In the first

generation there is a single copy of P, associated with

a single family of neutral alleles, of size 1 ; this is

represented as n¯²1´. In the next generation, there

are k copies of P. Each of these descends from a

lineage that was associated with Q in the previous

generation with probability r and, with probability

(1®r), descends from the family that was associated

with P in the previous generation. Therefore, there is

a single family whose size n
"

is given by binomial

sampling from k genes with probability (1®r), and a

https://doi.org/10.1017/S0016672398003462 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672398003462


The effect of hitch-hiking on genealogies 129

100

0 50
Time (generations)

L
in

ea
ge

 s
iz

e

Fig. 4. The size of a set of lineages, plotted over 50
generations since the origin of an allele P with advantage
s¯ 0±1. The recombination rate is r¯ 0±01. Each segment
of the bar chart represents the numbers of each distinct
family of lineages, including those lineages that go
extinct. The continuous curve gives the expected
deterministic rate of increase, which in this case is
somewhat slower than the actual rate. The black bars
show the size of the largest lineage, descending from the
gene associated with the original favourable mutation.
The white segments show lineages which later become
associated with the favourable mutation by
recombination, and thus are also amplified as it increases.

set of (k®n
"
) unrelated families of size 1. In general,

suppose that in one generation there are j copies of P,

divided among a set of families of size n ( j¯Σn
i
). In

the next generation, there are k copies of P, divided

into families of size n«. the distribution, of family sizes,

n«, is given by multinomial sampling; the previous

families, n, have probability n(1®r)}j of being

sampled, whilst the remainder is made up by unrelated

lineages that have just become associated with P, and

form families of size 1. The third and final step is to

derive the ultimate distribution of family sizes from

the distribution of family sizes at a time when P is

present in many copies (k*(1}s) but is nevertheless

at low frequency (k*' 2N ). The probability that a

gene sampled after the sweep has been completed

traces back to one of the k* copies of P is

θ¯ (k*}2N )ρ Γ[1­ρ]Γ[1®ρ] (from 3). Therefore, the

final distribution of family sizes is given by multi-

nomial sampling from the distribution at k*, with

probabilities nθ}k*.

Figure 4 shows the sizes of a set of lineages sampled

in this way, plotted against time. In this example,

there is tight linkage (ρ¯ r}s¯ 0±1), and so the allele

which was associated with the initial favourable

mutation leaves the largest number of descendants :

152 out of 192 after 50 generations. However, there

are other families with significant representation: one

with 23 members, one with 7, one with 5, and one with

2. The 3 remaining neutral alleles are unrelated. The

actual change in identity among distinct pairs chosen

from among those alleles associated with P is plotted

Time (generations)

Id
en

ti
ty

0·2

0·4

0·6

0·8

1

10 20 30 40 50

Fig. 5. The probability that two distinct genes associated
with the favourable allele P are identical by descent,
plotted against time. The continuous line shows the actual
identity in the example of Fig. 4, whilst the dashed line
shows the prediction h[ρ] (ks)−#ρ for large numbers of
copies (from 12).

against time in Fig. 5; it converges to decay at a rate

proportional to k−#
ρ (dashed line) as k becomes large.

In the above example, results were presented only

for the set of genes present after the initial es-

tablishment of the favourable allele. The ultimate

effect of the bottleneck involves a sampling from this

set, with probability θ. The statistical distribution of

ultimate family sizes was investigated by taking 100

replicates, in each of which 100 genes were sampled

after the selective sweep had been completed. As

above, s¯ 0±1, r¯ 0±01 ; population size was taken as

N¯10'. The calculation was terminated at k¯1000

copies, at which time a gene sampled after the selective

sweep has a chance θ¯ 0±509 of tracing back to this

initial set. The mean pairwise identity in the sample,

averaged over replicates, was 0±090, compared with a

prediction from (13) of 0±099. However, identity

varied widely between replicate sweeps, depending on

chance associations between neutral and selected

allele ; the standard deviation was 0±045 (upper bars in

Fig. 6).

Two factors affect the reduction in diversity caused

by a selective sweep. The relatedness among the

cohort of neutral alleles associated with the favourable

mutation depends solely on the relative rates of

recombination and selection, ρ¯ r}s. The conse-

quence of this relatedness for the whole population

depends on the fraction of lineages that trace back to

this initial cohort, θ, which decreases with population

size, N. This is because in a large population it takes

many generations for the new mutation to reach high

frequency, during which time associations are broken

down by recombination. From (13), pairwise identity

depends mainly on the factor (2Ns)−#ρ ¯ exp

(®2ρ ln (2Ns)). Thus, identity can be produced either

by moderately tight linkage in a moderately large

population, or very tight linkage in a very large
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Fig. 6. The distribution of pairwise identity among
samples of 100 genes, taken after an allele P with
advantage s¯ 0±1 has fixed. Results are from 100
independent replicates in each case. The upper bars are
for r¯ 0±01, N¯10', whilst the lower bars are for
r¯ 0±00453, N¯10"#. Both combinations are predicted to
give mean identity 0±099 (from 13).
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Fig. 7. The distribution of numbers of families of related
alleles (discounting singlets) among a sample of 100 genes
following a selective sweep (s¯ 0±1). The upper bars are
for r¯ 0±01, N¯10', whilst the lower bars are for
r¯ 0±00453, N¯10"#, as in Fig. 6.

population. In the first case, many families may

emerge from the initial bottleneck, and be represented

in the final sample. In contrast, in the second case only

a single family is likely to emerge, so that all the

identity generated by the selective sweep will be due to

a single coalescence. These two extremes are compared

in Figs. 6 and 7. The upper bars show results for

N¯10', Ns¯10&, ρ¯ 0±1, whilst the lower bars are

for N¯10"#, Ns¯10"", ρ¯ 0±0453. These parameter

values were chosen to give the same average pairwise

identity, 0±099, and in fact give similar distributions of

pairwise identity across replicates (Fig. 6). In contrast,

the number of families differs substantially between

the two cases (Fig. 7). With a moderate population

size and moderate linkage (upper bars), the mean

number of families is 4±05 (SD 1±50), whilst with a

large population and tighter linkage (lower bars), the

mean number of families is 2±32 (SD 1±08).
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Fig. 8. Scatter plot of the ultimate number of families
versus the pairwise identity. Parameters are as in Figs. 6
and 7; filled circles : r¯ 0±01, s¯ 0±1, N¯10' ; squares :
r¯ 0±00453, s¯ 0±1, N¯10"#.
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Fig. 9. Scatter plot of the ultimate number of families
versus the pairwise identity, under simple random drift.
One hundred replicates were simulated, after t¯ 0±208N ;
this gives an expected pairwise identity 0±099, as in Figs.
6–8.

Figure 8 shows the joint distribution of identity and

number of families for the two examples. Since both

quantities can be estimated, given sufficient sequence

diversity, the lack of overlap in Fig. 8 indicates that,

in principle at least, these parameter values could be

distinguished. However, the feasibility of estimating

Ns as well as ρ is limited in practice by whether the

effects of individual selective sweeps can be isolated;

whether the number of sets of lineages that coalesce

during each sweep can be estimated from sequence

data; and by the weak (logarithmic) dependence of

the structure of the genealogy on Ns.

The question now arises as to whether the effects of

a brief selective sweep are equivalent to a brief

reduction in population size. Provided that population

size, N, does not become so small as to approach the

number of sampled lineages, lineages can be taken as

coalescing independently, at a rate inversely pro-

portional to N. On this approximation, time can be
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Fig. 10. The distribution of family size, averaged over 100
replicates. Comparison is between simple random drift
(thin line) ; a selective sweep with moderate linkage in a
moderate sized population (r¯ 0±01, s¯ 0±1, N¯10' ;
thick dashed line) ; and a selective sweep with tighter
linkage in a very large population (r¯ 0±00453, s¯ 0±1,
N¯10"# ; thick continuous line). Parameters are as in
Figs. 6–9, and are chosen to give expected identity 0±099.
Note that the vertical scale is logarithmic; the lower limit
of 0±01 corresponds to a single occurrence of a family of
that size amongst the 100 replicates.

rescaled, such that a population bottleneck is

equivalent to a prolonged period at larger numbers

(Felsenstein, 1992). Figure 9 shows the relationship

between pairwise identity and the number of families

of lineages, for a bottleneck in which drift generates

expected identity 0±099, as in Figs. 6–8. The pattern is

quite different ; identity is due to a larger number of

families (mean 15±7, SD 2±22), and the number of

families decreases with pairwise identity, rather than

increasing. Comparison of Figs. 8 and 9 suggests that

a population bottleneck could readily be distinguished

from a selective sweep if one knew the pattern of

coalescence generated amongst a sample of 100 genes.

The number of families of related genes is just one

statistic that describes the distribution of family sizes.

The full distribution, averaged over 100 replicates, is

shown in Fig. 10, for each of the three examples

discussed above. For a given expected pairwise

identity, simple random drift generates many clusters

of relatives, each typically consisting of a few genes

(thin line in Fig. 10) ; for this example, only 2±6% of

genes are unrelated to any others (n
i
¯1 ; left intercept

on Fig. 10). In contrast, the identity generated by a

selective sweep is typically due to a few families, each

involving many genes ; most genes remain unaffected

by the sweep, since they do not trace back to an

association with the favourable mutation. Thus,

63±8% of genes are unrelated to any others in the

example of moderate linkage (r¯ 0±01, N¯10' ; thick

continuous line in Fig. 10), and 57±8% with tighter

linkage (r¯ 0±004531, N¯10"# ; thick dashed line in

Fig. 10). The distribution of family sizes allows

different kinds of sweep to be distinguished: with

tighter linkage, there is a broader spread of family

sizes, whereas with looser linkage, family size clusters

around sets of approximately 30 genes.

4. Discussion

In order to calculate properly the chance that a pair of

genes will become identical by descent as a result of

their association with a favourable mutation, the

initial fluctuations in the frequency of that mutation

must be accounted for. In particular, an allele that is

destined to be fixed will increase substantially faster

than expected from its selective advantage, thereby

increasing its effect on linked loci. Such stochastic

effects can be treated by following identity conditional

on the numbers of the favourable genetic background,

rather than taking the usual approach of following

coalescence within a deterministically evolving popu-

lation. For a selective sweep at a single locus, the

increase in identity is due to events in just the first few

generations, and so is not large (Fig. 1). However,

stochastic fluctuations in the genetic background may

become crucial when many loci are involved, so that

each background genotype is rare. To see this, consider

balancing selection. This maintains alternative genetic

backgrounds in the population, and hence inflates

diversity at linked neutral loci (Hudson et al., 1987).

Calculations which assume that selection maintains

two alleles at constant frequency at each of n equally

spaced loci predict an implausibly large effect.

However, this assumption cannot be correct for large

n, because each of the 2n backgrounds then becomes

extremely rare ; this is so even if selection is strong

enough that allele frequencies hardly fluctuate. (For

example, in a population of !10', any particular 20

locus genotype is unlikely to be present at all.) A

proper treatment of genealogies embedded in multi-

locus genetic backgrounds, whether by mathematical

analysis or by simulation, must therefore take account

of the effect of random drift on those backgrounds.

This greatly complicates the problem, because the

whole population must be considered, rather than just

the sample of neutral alleles.

A selective sweep caused by the spread of a

favourable mutation through a large population has

similar effects on neutral diversity to a founder effect.

In particular, the increase in numbers of a new

mutation which is destined to fix has the same

distribution as the numbers of a haploid sub-

population, founded by a single colonist and limited

by logistic density-dependence. If the whole meta-

population is very large, neutral genealogies within an

expanding subpopulation have the same distribution

as do those within the favourable genetic background,

at least during the early stages of the selective sweep.

Then, any lineages which leave the subpopulation
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through immigration are unlikely to return, just as

any lineages which leave the favourable background

by recombination are unlikely to trace back into it.

The models are not quite identical, since during a

selective sweep, lineages may cross back and forth

between backgrounds P and Q at a different rate from

an island model with extinction and recolonization.

Nevertheless, the same methods apply and, in par-

ticular, an exact solution requires that the distribution

of coalescence times (or identity by descent) must be

calculated conditional on deme sizes or genotype

numbers (see Whitlock & Barton, 1997).

The analytical results of this paper are restricted to

the relation between pairs of genes. A sample of many

genes contains more information than just pairwise

relationships: it is this information which might allow

different evolutionary processes to be distinguished. A

selective sweep causes a burst of coalescence events, in

which sets of lineages trace back to a single ancestral

allele that was associated with the favourable mutation

during its initial increase. If the mutation increased

very rapidly (r' s), then one family is likely to

emerge; it will include many genes that trace back to

an association with the one gene that was associated

with the initial mutation. However, if linkage is

looser, several different families may emerge, tracing

back to distinct ancestors that were lucky enough to

become associated with the favourable mutation as it

increased from low numbers. Thus, the relationship

between the number of families of related genes, and

the pairwise identity, can in principle be used to

distinguish the parameters (r}s) and Ns which de-

termine the nature of a selective sweep (Figs. 8, 9). It

is not obvious that the number of families would be

the best estimator for this purpose: the full distribution

of family sizes differs between a founder event and

selective sweeps, and between different kinds of

founder event (Fig. 10), and so various statistics based

on this distribution might be considered.

The discussion so far has been of what might be

inferred, given a dated genealogy for a single neutral

locus. One can also ask what might be inferred, in

principle, from genealogies at multiple loci. Individual

selective sweeps might be identified through bursts of

coalescence that occur at the same time at different

loci. For each sweep, the pairwise identity at each

locus gives an estimate of (2Ns)−#r/s. However,

examining genealogies at linked loci could locate the

sweep and separate all the parameters. For example, a

plot of log (pairwise identity) against map distance

would have slope 1}s. This would locate the selected

locus, and determine the strength of selection; together

with genealogical structure, it would also allow a

population bottleneck to be rejected. Examination of

the distribution of family sizes at the various marker

loci would determine Ns, and would be a test of the

model of a simple selective sweep against alternatives

such as the spread of a gene through a spatially

structured population. Further information could

come from linkage disequilibrium, or the concordance

between linked genealogies.

In practice, of course, one cannot directly observe

genealogies ; inferences must be made from the DNA

sequence, which has evolved as neutral mutations

arise at random on the genealogy. Given a sufficiently

long sequence, with no recombination, the genealogy

can be reconstructed. However, it is not clear whether

this is possible, since in outcrossing species recom-

bination may not be sufficiently rare, relative to

mutation. Moreover, if one concentrates on regions of

the genome with little crossing over, hitch-hiking may

reduce intra-population variation (Charlesworth,

1996), making it difficult to estimate the genealogy,

and restricting information to the recent past.

Most work on distinguishing the various causes of

reduced sequence diversity has concentrated on

Tajima’s (1989) D statistic, which is based on the

discrepancy between estimates of 4Nµ from pairwise

comparisons, and from the number of segregating

alleles. A brief reduction in population size, or a

selective sweep, is expected to cause an excess of rare

alleles, and hence a negative value of D ; this is because

alleles which arise as the population recovers from a

loss of diversity are likely to be recent, and hence at

low frequency. This is not observed in Drosophila data,

suggesting that reduced diversity in regions of reduced

recombination may be due to some other process,

such as the steady hitch-hiking effect of linked

deleterious mutations (‘background selection’)

(Braverman et al., 1995; Charlesworth et al., 1995).

Tajima’s D depends on the number of segregating

alleles, which depends in turn on the total length of

the tree. This is determined by the number of lineages

which were extant before the selective sweep, or in

other words on the number of coalescences that

occurred. The number of lineages is distinct from the

number of families of related genes discussed above,

since it includes those singlet lineages that escape

coalescence. Since these are the most common class

(Fig. 10), the number of lineages is a less sensitive

statistic for distinguishing different causes of reduced

variability than the number of families. However,

there is still the difficult question of whether the

number of families of related genes (or some similar

description of genealogical structure) can in practice

be estimated from sequence data.

Fu (1997) compares several statistical tests, in-

cluding Tajima’ D, for their ability to detect various

different processes that may cause allele frequency

distributions to deviate from neutrality ; however, he

does not investigate whether they can be used to

distinguish amongst these alternatives. The results

presented here show that neutral genealogies contain

considerable information about the nature of selection
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at linked loci. The question now is to find whether

enough of this information is preserved in the DNA

sequence to tell us how selection has acted on the

surrounding genome.
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