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On the Linear Differential Equation of the Second Order.

By Dr S. BKODETSKY.

(Received 8th November 1915. Read 10th December 1915.)

1. The linear differential equation of the second order

y = R(x) (1)
is not in general integrable by any method at present available.
At the same time, several equations of this type have been
integrated, either in terms of finite functions or by means of
expansions in series. Some properties of the integrals of the
general equation have also been obtained. I t is the object of this
paper to develop some general properties of these integrals, which
throw some light on the nature of the solutions, even if not
obtainable in explicit terms.

We need only consider a simplification of the equation (1).
Thus if we can integrate the equation

d*y/dx* + P(x)dy/dx + Q(x)y~O (2)
we can at once integrate the more general form with R (x) on the
right hand side. Further, we can reduce (2) to the canonical
form:

dr-y'/dx* = I(x)y' (3)

by putting y = y exp ( - \ I P (x) dx).

The function 1(x) is given by
I^iP' + ldP/dx-Q.

We shall therefore restrict ourselves to the type
dry/dx2 = ly, (4)

in which / is any function of x.

2. Let us suppose that y (x) is a solution of the differential
equation (4). Expand y(x + £) by means of a Taylor series. Of

https://doi.org/10.1017/S0013091500029564 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500029564


46

course we suppose this done only within the domain of convergence
of the expansion. We have

»(*+f)-y(*)+fyi(*)+|- !y.(*)+ ••• +£, y» (*)+•••>

where y1 = dy/dx, yt = d?y/dxi, .... ".. — "'"*'/'*»'''; etc.
Now y2 = ly.

Hence y, = /y, + /! y;

and so on, where 7, = dljdx, It = d?I/dx?, etc. In other words, any
differential coefficient of y (x) can be expressed as a linear function
of y(x) and yL(x) by means of the relation (4). Thus we can
write

where y is any solution of (4), and Y, Yt are two functions of £.
In reality they will be infinite series depending upon the form of
the function /. Let us suppose Y and F, expanded in powers
of £, and put

Y($) = ?An?/nl; Pitf) - SB. f /« ! (5)

The quantities A and B are of course functions of x. We thus
obtain

y(x + t)=2(Any + Bny,)?/n\ (6)

If we differentiate the equation (6) twice with respect to £,
we get

2 ( * ) / 3 F = 2 (An y + Bn yx) £-•/(» - 2)! ;

= 2(Any + Bn yl} ^/(n - 2)!

But from (4) we have

jr. (* + $ ) - /

Hence we deduce the relation :

in which the .4's and B's are functions of x. Expand / ( * + £) by
Taylor's series in the form

/ (a+ £) = /(*) + £/,(*)+ £72 !./,(*) + ...,
and equate coefficients in equation (7). We obtain
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This equation can be written

•M»+2 - [/« A + n/B_, Ax + —jfg—A-2 At+...+ IAn]} y

+ {Bn+,-[IKBlt + ... +IBn]}y1 = 0. (8)

If y'(x) is another solution of (4) linearly independent of y (x),
we have similarly the equation
{An+2 - [/„ Ao + ... + IAn]} y' + {BH+2 - [InB0 +...+ IB.]} Vi = 0. (9)
Since y,/y * yijy',
it follows that (8) and (9) cannot both be satisfied unless the
functions in the double brackets severally vanish. "We obtain the
following results:

•A-n+i = IrlAf> + nIn_1A1 +... + IAn;\

H J

3. The four functions Am Bo, A,, />', are clearly given by

since y (x) =y(x); y1(x) = yl(x).
Now yn(x) is the coefficient of £"/n! in the expansion of y(x
Hence by (6) we have

Differentiating, we get
y-+i (*) = (^H + dBJdx) y + (IBn + dAJdx) y,.

But also yH+1 (x) = A,,+1 y + Bn+i yv

Thus we get the relations :
An+1 = dAJdx+ IBny

)

It is easy to verify that the equations (11) lead to equations (10).
In the equation (8) substitute the values

K+t = BH+3 - dJJn+2/dx;

A,, =Bn+1-dBJdx;

<4-i-•». -dB^/dx, etc.
We get the equation

+ [A'..+2 - {lBn + n/, Bn_x + ...}]Vl = 0.
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The coefficient of y can be written

_2 + ... + /„

Hence we get the equation :

{ [Bn+3 - {IBn+1 + (n + 1) / A +•••}]

,,^ +...}] y, - 0.
Thus

J..n-{/g.H-i + (" + l ) ^ A + - } _ ±
y dx

I t follows that each fraction

da? y
= etc.
_ d* ^-/^-/A

But y3 = /y: + Ixy ;
Hence £3 = / .

Also -Bo = ° ; -Si = /-
Thus ^3 - / ^ -7 ,5 =
It follows that in general

The corresponding equation for the -4's follows similarly
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4. We now introduce the following definitions. Let

and

By comparing these general definitions with some special cases, we
can obtain a general notion of their significance. Suppose / is a
constant, in particular unity. Then /„ 72, ... all vanish. I t
follows from (10) that all the odd A'a and even B'a are zero, whilst
the even A'a and odd B'a are all unity. Thus, for this case

E{ + I ,$) becomes exp (+ £),
and E(~ 1, £) becomes exp ( - £).
Similarly, if / is a constant but not unity, we get

and ^ (

E.g. if / is - 1, we have

and E(- /*, £) = cos £ - t sin £.

where t is ( - 1 ) - Thus we can consider the equation (12) to
define extended exponential functions, involving two variables,
x and £, the former being present in the coefficients of the powers
of the latter.

If further we define the following functions :

|

and «(/*,£) = 2 5 £ " / ! J
we obtain the following relations :

and tf (-/*,£)-<;(/*,£)-A(/*,$)./
In other words, the functions c and s bear the same relations to the
function E as the cosine and sine functions bear to the exponential
function of an imaginary quantity, corresponding to / = - 1, or the
cosh and sinh bear to the exponential of a real quantity, corre-
sponding to 7= + 1. We are therefore justified in calling c and s
extended cosine and sine functions of £, corresponding to the
general function I(x) in the equation (4). In c and s, as in E,
x is present in the coefficients of the powers of £.
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We shall show that the integrals of equation (4) can be
expressed linearly in terms of the functions c and s. It will also
be seen that c and s and their derivates have many properties
analogous to those of cos and sin, and cosh and sinh, and their
derivatives.

5. The functions E, c, and s involve two variables x and £, so
that we can differentiate these functions in two ways—with
respect to x or with respect to £. Tn what follows a suffix 1, 2, ...
after c, s, and E(±) will denote differentiations with respect to f,
whilst a suffix x will denote differentiation with respect to x.

Let us now form the differential coefficients. We have

tf,( + / ' , £ ) - Z (4. + /*£„) £-"/(» - 1)!

= 2 (dAJdx + IB,, + /* dBJdx + I* A,,) £»/n !

by (11), - Ih?(An + IhBn) £"/n ! + ̂ (dAJdx + rdBn/dx)£"/n !

Also Et{ +1\ £) = 2 (dAJdx + FdBJdx + /,5n/2

Thus we obtain the relation

l _ 2 L_ jj £nln !
2/i " s '

If we change + / ' into - Ii we get these results :

(15)

where the + sign refers to + 7 and the — sign to - 7 .

The equations (15) are obvious extensions of the differential
properties of the exponential functions as ordinarily defined, since
for these / is constant so that 7, vanishes.

Again, equations (15) in conjunction with (14) give :

so t ha t C] - cx = 1

but 2s = {E( + )-E( - )}/ /*;

thus c,-cx = 7s (16)

In the same way we get, after a little calculation,

St-s^c (16)
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For / = - 1, or +1 , the functions c and s do not contain x, and
equations (16) become respectively :

d . d .
j-r cos £ sin £; — sin £ = cos £;

- j - cosh £ = sinh £ j — sinh £ = cosh £.

Hence the equations (16) give us properties of the generalised
cosine and sine functions, exactly analogous to those of the circular
and hyperbolic functions, which can be considered as special cases.

The equations (16), as might be expected, can be obtained
directly from the definitions of c and a in (13), using (11).

6. It is well known that the circular and hyperbolic functions
are linearly independent integrals of their differential equations.
We shall now show that the extended functions c and s here
defined are also independent integrals of the differential equation
(4), £ being the independent variable. Further, the functions
E( + ) and E(-) are linear functions of c and s.

From (15) we have :

Substitute from (10). We get

c2 = 2

If we pick out the coeflBcient of AH, we find it to be

i.e. £" /n! . / (* + £).
Hence c2 = /(a; + £)c (17)
In exactly the same way we find that

V ;
and E.1(±) = I

The equations (17) have an obvious interpretation If we plot
c, s, and E (±) as functions of £, placing the axis of £ along the
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axis of x, but with the origin of £ at the point x = x, then
c, s, and E(±) are integrals of the differential equation

In other words, the functions introduced in this paper are integrals
of a differential equation in £, the same as equation (4), but
differing from (4) in having the origin of £ not at x = 0, but at
x = x. In the case of 7 constant, the equation (4) is unaltered by
shifting the origin, so that the circular and hyperbolic functions
are the same, no matter where we start. But in the general form
the integrals have different coefficients according to the position of
the origin of £.

Further, it is easily seen that c and s are linearly independent
as regards £. For if possible let

Xc = X's+ X",

where X, X', X" are functions of x. Then from (13)

for all values of n. Thus we should have

We should therefore get

0/1=7/0,

which is impossible, unless 7=0. Even if 7= 0, we have

c= 1, « = £,

which are also linearly independent.
Since it has thus been established that c and s are linearly

independent integrals of a modified form of (4), it follows that
E(±) are linear functions of these independent integrals.

7. Further analogies between the c and s functions and the
elementary circular and hyperbolic functions are easily derived.
In (13) we have defined the e and s functions for the positive value
of the square root of 7. Writing the second equation of (14) in a
form analogous to that of the first, we may define

It follows that c ( - ) = c ( +)
and s(-) = s( + )
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These results do not, of course, correspond to
cos(-£) = cos £, cosh ( -£ )=cosh£ ; -i

and sin ( - £) = - s i n £ , sinh ( - £) = - sinh £. /

As a matter of fact, we shall see in the sequel that the analogues
of (19) are other and very important results. Really, the equations
(18) correspond to the fact that in solving the equations

y2 = - y; y2 = + y,

we can use the positive or negative values of ( - 1)J and ( + 1 ) "
indifferently. Thus

remembering that the sinh like the sine has, in the denominator,
the square root of the coefficient of y in its differential equation.
If this fact is ignored, as is usually done, the analogy between the
sinh and the sine is somewhat masked.

In what follows we shall therefore ignore the sign of / in
c and s.

8. We have so far developed our results on the basis of Taylor
expansions. Such expansions necessarily involve the question of
convergency, and are to this extent unsatisfactory in a general
investigation like the present one. It will therefore be an
advantage to remove this restriction, which we proceed to do as
follows.

Starting off with the equation (4), let us define functions
c and 8, both involving the variables x and £, such that, if y is any
solution of (4), we may have

y(x + £) = c(x,£)y(x) + s(x,£)yi(x) (20)
Then Vl{x + £) = Cl(x, £) y (x) + «, (x, £) yx (x).

But y>(x + £) = y,(x + £)
= ox(x, $) y (x) + sjx, £) y,(x) + c (x,
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since y2(x) = Iy(x).

Hence ciy + s1y1 = cxy + Isy + sxyl y1;

ie- (cj-cx-Is)y + (s1-sx-c)y,=O (21)

If y is another integral of (4) independent of y, we have also

(c1-cx-Is)yl + (sl-sx-c)y1' = O (22)

Equations (21) and (22) are consistent only if each expression in
brackets vanishes, for otherwise y and y would be connected by a
linear relation. We therefore deduce for c and s the properties :

) (16)
and s1-sx = c; I v '
the results established in Art. 5.

Again, differentiate (20) twice with respect to £. We get

y, (x + £) = c2 (*, £) y (x) + s2 (x, £) y, (x).

But

We deduce [c2 (x, £) - / (a: + £) c (x, ^)] y (x)

+ [«, (», f) - / (a + f) s (x, £)] 2/i («) = 0.
Using another solution y'(x), we get by the same argument as
before

and « = /(a; + ̂ )s / v ;

as in Art. 6. It follows that c and s as denned in (20) are
integrals of (4) with £ as the independent variable, the origin
being at x = x.

We can now define E {+ ) by means of (14).
It remains to show that c and s are linearly independent as

regards £. If not, let
Xc = X 's + X ",

where X, X', X" are functions of x. Differentiate twice with
respect to £. Then

XX'

ie.
by (17). Unless / (x + £) = 0, i.e. I is identically zero,
we must have Xc =X's.
It follows that X" = 0, so that if c and s are not linearly inde-
pendent as regards £, we should have

s/c = a function of x only.
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Now in (20) put £ = 0, and we get

s(x,O) = O; c(x, 0) = l , (23)
since (20) is true for any solution of (4). Thus, if s/c is inde-
pendent of £, it must be identically zero, which is easily seen to be
impossible. We get then that c and s must be linearly independent
integrals.

9. The equations (23) are of very great importance. They
correspond to cos 0 = 1, cosh 0 = 1; and sin 0 = 0, sinh 0 = 0. They
are quite independent of x, and are easily verifiable by means of
(13). The two independent integrals, c and s, of equation (4) with
variable £ and shifted origin, thus have the values 1 and 0 respec-
tively at the origin, independently of x and even of the form of
I (x). But we can go even further. Differentiate (20) once with
respect to £, and put £ = 0 in the result. We get

Cl(x,0) = 0; «,(*, 0) = l ; (24)

for all values of x and for all forms of- I{x). In other words, the
functions c and s not only commence with the same values 1 and 0
respectively for all origins and all forms of /, but they also have
the same slopes 0 and 1 respectively, corresponding to

{D cos £)0 = (i> cosh a = 0,
and (D sin £)„ = (Z> sinh £)„ = 1 .
In view of these properties of c and s, we may call them the
principal integrals of the diiferential equation (4) in £ with shifted
origin.

The equation (20) therefore states that the integral of the
equation (4) with argument x + £, is obtained from the principal
integrals c and s in £ with origin at x = x by multiplying them
respectively by the value of y at the new origin and the slope of y
at this origin. Considering £ as the variable and a; as a constant,
any solution is thus expressible linearly in terms of the principal
integrals c and s.

10. Consider the equations (17). They give at once
cs? = sc,.

Integrate once with respect to £. We get
cs, — scj = a function of x only.
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Put £ = 0. Then by (23) and (24) we obtain unity for the function
of x on the right-hand side, for all values of x. Hence

08,-80, = !, (25)

for all values of x and all forms of I{x). Equation (25) is a
simpler form of the well-known relation between any two solutions
of the linear differential equation (2). Using (16) it becomes

6*-/»! = 1 +«&,-«, (26)
The circular and hyperbolic functions of £ are independent of x, so
that cx = 8z = 0, and we get the well-known results

cos2 £ + sin2 £ = 1 ;
and cosh2 £ - sinh2 £ = 1.
It will be seen later that / = constant is the only case in which the
right-hand side of (26) is identically unity.

From (25) we deduce
9 «(*,£)_ 1

3£C(z,£) c2(z, £)
where we write c2 (x, £) for the square of the c function, etc.
Hence

where Xx (x) is some function of x. Similarly

where X2 (x) is a function of x. If c and s are supposed expanded
in powers of £ as in (13), we find that Xt and X2 are identically
zero. We therefore have the simple results

(27)
r i

and

Equations (27) are easily verifiable for the circular and hyperbolic
functions.

11. Article 10 suggests the definitions of fresh functions
analogous to the tan and cot, tanh and coth, respectively. Put

and
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Then from (27) we get

2./and ct1= - 1/s2.

These results are of course identical with those for the circular
and hyperbolic function.

Let us further define

and c<r(x,$) = l/i(x,£)i

so that the functions t, ct, cr, ccr bear the same relations to the
c and s functions as tan, cot, sec, cosec bear to sin and cos, or as
tanh, coth, sech, cosech bear to sinh and cosh. Equations (29) can
be written

and c<, = - cc r

Again, by (16) we have

3 x) c

and s2

Hence k-tt= 1 - It\ \
and ctx-ctx = I-c€-. / ( '

These results correspond to the differential properties of the circular
and hyperbolic tangent and cotangent.

Further, cr, - crx = - (c, - cx)/c°,
= -Isjc"

by(16), =-It<r (33)
Also ccr, - ccr, = - (s, — sx)/c

2,
= - c/«a

= -ct.co- (33)

The circular and hyperbolic analogies are obvious.

12. The comparison of equations (31) and (32) is of some
interest. For / = ±1 , c and s do not involve x at all, so that
t and ct are independent of x, and tx and ctx are zero. Thus for
/ = + 1 we get

. and / - c t 2 = -co-2.
5 Vol. 34
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Both these equations are equivalent to
c 2 - / s 2 = l (34)

Thus for / = + 1 we get tlie well-known properties of the circular
and hyperbolic functions, as already remarked in "Art. 10. We
shall now prove the converse theorem, viz. that (34) is true only
for / constant, i.e. that t and ct must involve x for any other form
oil.

From (16) we have at once that

i • A ) ( c 2 ~/s5)=2c (ci • ° •2ls {$i' °

Hence (34) is true only if Ix vanishes identically, i.e. / = const.
The exact significance of constant values of / other than + 1 will
present no difficulty to the reader.

I t follows that in general t and ct involve a;, so that tx and ct, do
not vanish. We have, in fact,

t l - ( c 2 - / g 2 )

" ( , - / O - i ' > ( 3 5 )

and ctx=- 5-̂  .
S"

Equations (16) also give us

and

These are extensions of well-known results for circular and hyper-
bolic functions.

13. Having established considerable analogy between the c and
s functions and the circular and hyperbolic functions, we now return
to the fundamental equation (20).

We have y (x + £) = c (x, £) y (x) + s (x, £*) yx (x) (20)
Hence y (« + £ + £') =c (x, £ + £) y (x)+s(x, £ + f ) yx(x),
and also = c (x + £, £') y (x -

— C (X + £, £ ; (C Va;> 6 / y (.̂ J + * V3-! 6^ y i W

Comparing these two values we obtain
y (x) [c (x, | + f ) - {c (as + £ f ) o (as, £) + « (« + f, f ) c, («,

+ y, (*) [* («, f + f ) -
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This is true for any other solution of the equation (4), and therefore
we must have the two results :

and s(x,g + g) = s (x, g)c(x + £, £') + s, (a;, $)s(x + £, %\
The equations (37) are addition formulae analogous to the

addition formulae for the circular and hyperbolic functions.
By division we obtain

the analogue of the tan and tanh addition formulae.
The formulae (37) and (38) have the disadvantage that in each

case we have on the right-hand side principal integrals for two
different origins, namely x and x + £. In order to remove this
disadvantage and to obtain results more closely analogous to those
for the circular and hyperbolic functions, we shall deduce difference
formulae (instead of addition formulae) by solving for c(x + g, £')
and s(x + £, £'). Remembering the universal relation (25) we get

and « (a + £, f) = * (*, $ + f) c (x, £)-c(x,£ + f) s (x, £
The second formula in (39) is remarkably like the difference formula
for the sin and sinh. The only thing to notice is that the s function
of the difference refers to a different origin. The formula for c is
also at once comparable with that for cos and cosh, if we remember
the differential properties of the circular and hyperbolic functions.

The relative forms of the two results (39) now make it clear
why the sinh difference formula is the same as that for sin, whilst
the cosh formula differs from that for cos, in regard to the sign of
the second term. This is made more evident if we substitute from
(16), so that we get

+ [c (*, £ + n »x (*, £)-•(*.£ + f) cx (x, £)]... .(40)
For / = + 1, we get zero for the part in square brackets since c and
s are then independent of x, and the sign of the second term
becomes positive for cos, / = - 1, and negative for cosh, / = + 1 .
It must be noticed that the square bracket vanishes only for /
constant. For, if it vanishes, we get, putting £' = 0, and remember-
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ing (23), the relation
c 2 - 7 s 2 = l ,

and this has been proved to be true only for / constant.
14. In (39) put £' = — £ ; remembering (23-4) we get

»(* + & - £ ) = - « ( * . $ ) ; 1
and *(* + £ - £ ) = «,(*,£) [ (41)

by (16). These results are the real analogues of the properties (19)
of the circular and hyperbolic functions. Thus we see that s
changes its sign but retains its arithmetical value, if the sign of the
argument is changed at the same time as the origin is shifted
forwards by the amount of the argument. For the c function the
property is more complicated, but the fact that the differential
coefficient of the sin is cos, and of sinh is cosh, has an easy analogy
in the case of the general s function.

If we differentiate (39) with respect to the variable £', we get

(*. £); , . . . (42)
a n d ( + £ O t e £ + £ ) ( £ ) ( £ + ? ) ( £ ) '
I t follows that

*i(* + ££') = e(a5 + £ + £', - f ) ,
which is really the second equation (41) in a slightly different
form.

Again, putting £' = — £ in the first equation (42), we get

Ci(* + £ - £ ) = - * ( * , £ ) (43)
This means that the gradient of c has the same negative property
as the s function. From (41) we also deduce that

•i(* + £ -£ ) = «i (*.£)-«.(*.£), (44)
so that the gradient of s has the same negative property as the c
function.

A more symmetrical way of writing the results here obtained
is as follows :

and c,(* + £ , & - £ ) = -
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