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Growth Estimates on Positive Solutions
of the Equation ∆u + Ku

n+2
n−2 = 0 in Rn

Man Chun Leung

Abstract. We construct unbounded positive C2-solutions of the equation ∆u + Ku(n+2)/(n−2) = 0 in
Rn (equipped with Euclidean metric go) such that K is bounded between two positive numbers in Rn,
the conformal metric g = u4/(n−2)go is complete, and the volume growth of g can be arbitrarily fast
or reasonably slow according to the constructions. By imposing natural conditions on u, we obtain
growth estimate on the L2n/(n−2)-norm of the solution and show that it has slow decay.

1 Introduction

In this article we derive Lp-estimates on positive solutions of the conformal scalar
curvature equation

(1.1) ∆u + Ku
n+2

n−2 = 0 in Rn,

where n ≥ 3 is an integer, ∆ the standard Laplacian on Rn, K a smooth function.
Equation (1.1) relates the scalar curvature of the conformal metric g = u4/(n−2)go to
4K(n − 1)/(n − 2), where go is Euclidean metric [10]. It is assumed throughout this
note that

(1.2) 0 < a2 ≤ K(x) ≤ b2 for large |x|
and for some positive constants a and b. The following estimates are known for any
positive smooth solution u of equation (1.1) with condition (1.2).∫

Sn−1

u(r, θ) dθ ≤ C1r
2−n

2(1.3)

∫
Bo(r)

u
n+2
n−2 (x) dx ≤ C2r

n−2
2(1.4)

for large r and for some positive constants C1 and C2 depending on u (see, for exam-
ple, [11]). Here Bo(r) is the ball with center at the origin and radius r, and Sn−1 is the
unit sphere in Rn. We seek to obtain higher order estimates of the forms∫

Sn−1

up(r, θ) dθ ≤ C3r(2−n)p/2, p > 1;(1.5)

∫
Bo(r)

uq(x) dx ≤
{

C4rn−(n−2)q/2 q > n+2
n−2 , q �= 2n

n−2 ;

C5 ln r q = 2n
n−2 ,

(1.6)
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for large r, where C3, C4 and C5 are positive constants. The above estimates are based
on the slow decay of u, that is,

(1.7) u(x) ≤ C6|x|(2−n)/2 for large |x|,
where C6 is a positive constant.

Our first observation is that, in general, (1.5), (1.6) or (1.7) do not hold. Taliaferro
[13] shows that positive solution of (1.1) outside a ball in Rn with condition (1.2)
may not have slow decay. We modify the construction in [13] to obtain positive
C2-solutions of (1.1) in Rn with K bounded between two positive numbers in Rn,
such that the conformal metric g = u4/(n−2)go is complete and the volume growth
of (Rn, g) can be arbitrarily fast or reasonably slow with respect to the constructions.
This suggests that the geometric structure of complete manifolds of bounded positive
scalar curvature could be very complicated (cf. [9]). It is observed in [6] that if
estimate (1.5) holds for some number p ≥ 2n/(n − 2), then u has slow decay and
hence (1.5) and (1.6) hold for all p, q > 1. The integral in estimate (1.6) is the volume
growth of (Rn, g) when q = 2n/(n − 2). In order to obtain (1.5) and (1.6) for large
p and q, additional conditions on K or u are required. By using a novel version of
the moving plane method, Chen-Lin ([2] [3] and [4]) and Lin [12] examine, among
other things, slow decay of u under the condition

(1.8) 0 <
C7

|x|1+α
≤ | � K(x)| ≤ C8

|x|1+α
for large |x|

and for some positive constants α, C7 and C8.
To gain better understanding on u, consider the case when K is equal to a positive

constant, say K = n(n − 2)/4, outside a compact subset of Rn. We express u as an
associated function on the cylinder R × Sn−1 by letting

(1.9) v(s, θ) = |x| n−2
2 u(x), where |x| = es and θ = x/|x| ∈ Sn−1, x �= 0.

Then v satisfies the equation

(1.10)
∂2v

∂s2
+ ∆θv − (n − 2)2

4
v + Kv

n+2
n−2 = 0 in R × Sn−1,

where ∆θ is the standard Laplacian on Sn−1. Here K is interpreted as a function on
R × Sn−1 such that (s, θ) 	→ K(es, θ) for s ∈ R and θ ∈ Sn−1. By a result of Caffarelli,
Gidas and Spruck [1], with improvements by Korevaar, Mazzeo, Pacard and Schoen
[8], either g can be realized as a smooth metric on Sn (in this case u is said to have
fast decay), or

(1.11) v(s, θ) = vε(s + T)[1 + O(e−κs)] for large s, θ ∈ Sn−1

and for some constants κ > 0 and T ∈ R. Here vε, ε ∈ (0, [(n− 2)/n](n−2)/4], is one
of a one-parameter family of positive solutions of the O.D.E.

(1.12) v ′′ − (n − 2)2

4
v +

n(n − 2)

4
v

n+2
n−2 = 0 in R,
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and ε = mint∈R v(t) is referred as the necksize of the solution [8]. As O.D.E. (1.12)
is autonomous, |v ′

ε| is bounded in R. Furthermore, the Pohozaev number

(1.13) P(u) = lim
r→+∞ P(u, r) where P(u, r) =

n − 2

2n

∫
Bo(r)

x · �K(x)u
2n

n−2 (x) dx

is a negative number [8]. When K may not be a constant outside a compact subset of
Rn, we have the following results.

Theorem A Let u be a positive smooth solution of equation (1.1) with condition (1.2),
and v given by (1.9). Assume that there exist positive constants C9 and C10 such that

(1.14)

∫
Sn−1

( ∂v

∂s

) 2
(s, θ) dθ ≤ C9 + C10

∫
Sn−1

v2(s, θ) dθ

for large s. If P(u, r) ≥ −δ2 for large r and for a positive constant δ, then

(1.15)

∫
Bo(r)

u
2n

n−2 dx ≤ C ′ ln r and

∫
Bo(r)

| � u|2 dx ≤ C ′ ′ ln r

for large r and for some positive constants C ′ and C ′ ′.

Theorem B Assume that there exist positive constants C11 and C12 such that

(1.16)
∣∣∣ ∂v

∂s

∣∣∣ (s, θ) ≤ C11 + C12v(s, θ) for large s and θ ∈ Sn−1.

If P(u, r) ≥ −δ2 for large r and for a positive constant δ, then

(1.17)

∫
Sn−1

u
2n

n−2 (r, θ) dθ ≤ Cr−n

for large s and for some positive constant C. Moreover, u has slow decay.

We prove theorems A and B in Section 4. Lower bounds on P(u, r) are obtained
in Section 3, and examples are constructed in Section 2. We use c, C , C1, C2, . . . to
denote positive constants, which may be different from section to section.

Acknowledgements Part of the paper was written while the author was visiting the
Stanford University. I would like to thank the hospitality of the mathematics depart-
ment in general and Rafe Mazzeo and Rick Schoen in particular.

2 Examples

We begin with a construction of positive C2-solution u of equation (1.1) with K
bounded between two positive constants in Rn, such that u is unbounded from above
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in Rn (and hence does not have slow decay), and the conformal metric g is complete.
Throughout this note n ≥ 3 is an integer. Let

(2.1) ū(r, λ) = αn

( λ

λ2 + r2

) (n−2)/2
for r ≥ 0 and λ > 0,

where αn = [n(n − 2)](n−2)/4, and

(2.2) uo(x) = ū(|x|, 1) =
αn

(1 + |x|2)(n−2)/2
for x ∈ Rn.

Let {εk}∞k=1 ⊂ (0, 1) be a sequence of decreasing numbers such that

(2.3)
∞∑

k=1

εk = 1,

{rk}∞k=1 a sequence of positive numbers such that r1 ≥ 1, rk+1 − rk ≥ 1 for k =
1, 2, . . . , and {Mk} a sequence of positive numbers such that Mk → +∞ as k →
+∞. For x1,k := (rk, 0, . . . , 0) ∈ Rn, k = 1, 2, . . . , there exist positive numbers λk,
k = 1, 2, . . . , such that

(2.4) uk(x) := ū(|x − x1,k|, λk) for x ∈ Rn

satisfies

∆uk + u
n+2

n−2

k = 0 in Rn,(2.5)

uk(x) ≤ εkuo(x) and | � uk(x)| < εk for |x − x1,k| ≥ 1

4
, and(2.6)

uk(x1,k) = αnλ
(2−n)/2
k ≥ Mk(2.7)

for k = 1, 2, . . . . Using (2.3) and (2.6), it follows as in [13] that
∑∞

k=0 uk converges
uniformly on compact subsets of Rn to a positive C2-function. For a positive number
b, let

(2.8) ũb(x) = (|x|2 + b2)(2−n)/4 for x ∈ Rn.

We have

(2.9) ∆ũb + Kbũ
n+2
n−2

b = 0 in Rn,

where

(2.10) Kb(x) =
n(n − 2)

2

(
1 − n + 2

2n

|x|2
|x|2 + b2

)
for x ∈ Rn.
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In particular

(2.11)
n(n − 2)2

4n
≤ Kb(x) ≤ n(n − 2)

2
for x ∈ Rn.

Let

(2.12) u(x) = ũb(x) +
∞∑

k=0

uk(x) for x ∈ Rn.

It follows from (2.5), (2.9) and (2.11) that

(2.13) −∆u(x) =
[

Kb(x)ũ
n+2

n−2

b (x) +
∞∑

k=0

u
n+2
n−2

k (x)
]
≤ n(n − 2)

2
u

n+2
n−2 (x)

for x ∈ Rn. Assume that x ∈ Bxk ′ (1/4) for some positive integer k ′. Using (2.3), (2.6)
and the inequality (a + b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 and p ≥ 1, we have

u
n+2
n−2 (x) =

[
ũb(x) + uk ′(x) +

∑
k�=k ′

uk(x)
] n+2

n−2 ≤ [ũb(x) + uk ′(x) + 2uo(x)]
n+2
n−2(2.14)

≤ c1[ũ
n+2
n−2

b (x) + u
n+2

n−2

k ′ (x) + u
n+2

n−2
o (x)] ≤ −c2∆u(x),

where c1 and c2 are positive constants depending on n only. Similar estimate holds for
x �∈ Bxk ′ (1/4) for k ′ = 1, 2, . . . , if we choose c2 to be large enough, which depends
on n only. Thus u satisfies the equation ∆u + Ku(n+2)/(n−2) = 0 in Rn, where

K(x) = [−∆u(x)][u
n+2
n−2 (x)]−1 for x ∈ Rn

is a continuous function which is bounded in Rn between two positive constants
by (2.13) and (2.14). (2.7) shows that u is not bounded from above in Rn. The
conformal metric u4/(n−2)go is complete because

(2.15) u4/(n−2)(x) ≥ ũ4/(n−2)
b (x) ≥ (1/2)|x|−2

for large |x|. Let

(2.16) Vn := ωn

∫ ∞

0

(
λ
√

n(n − 2)

λ2 + r2

) n

rn−1 dr = ωn

∫ ∞

0

( √
n(n − 2)

1 + t2

) n

tn−1 dt

for λ > 0, where t = λ−1r and ωn is the volume of the unit sphere in Rn. By choosing
rk suitably far from each other, together with (2.16) and the fact that the first integral
in (2.16) concentrates more on a neighborhood of 0 for smaller λ, we have

(2.17)

∫
Bo(r)

u
2n

n−2 (x) dx ≤ C2 ln r
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for large r and for a positive constant C2.
Next, given a function φ : [0,∞) → [0,∞), we construct a positive C2-solution

u of equation (1.1) with K bounded between two positive constants in Rn, such that
the conformal metric g = u4/(n−2)go is complete and

(2.18)

∫
Bo(r)

u
2n

n−2 (x) dx ≥ φ(r) for r > 2.

Without loss of generality, we may assume that φ is increasing and φ(0) ≥ 10Vn. For
k = 1, 2, . . . , let Nk be a positive integer such that

(2.19) Nk ≥ 2V−1
n φ(k + 2) for k = 1, 2, . . .

Let {εk}∞k=1 ⊂ (0, 1) be a sequence of decreasing numbers such that

(2.20)
∞∑

k=1

Nkεk ≤ 1.

Let θk = 2π/Nk. Let

(2.21) xk, j =
(

k sin( jθk), k cos( jθk), 0, . . . , 0
) ∈ Rn for j = 1, 2, . . . , Nk,

and

(2.22) uk, j (x) = ū(|x − xk, j |, λk) for x ∈ Rn and j = 1, 2, . . . , Nk.

We choose λk to be small so that

(2.23) uk, j (x) ≤ εkuo(x) and | � uk, j (x)| < εk for |x − xk, j | ≥ π/(10Nk),

and

(2.24)

∫
Bxk, j

(π/(10Nk))
u

2n
n−2

k, j (x) dx ≥ Vn

2
for j = 1, 2, . . . , Nk,

where Bxk, j

(
π/(10Nk)

)
is the ball with center at xk, j and radius equal to π/(10Nk).

(2.24) is possible because, when λ is smaller, the first integral in (2.16) concentrates
more on a neighborhood of the origin. It follows from (2.20) and (2.23) that the
series

∑∞
k=1

∑Nk

j=1 uk, j converges uniformly on compact subsets of Rn to a positive

C2-function. Let

u = ũb + uo +
∞∑

k=1

Nk∑
j=1

uk, j in Rn.

As above, we have ∆u + Ku(n+2)/(n−2) = 0 in Rn, where K is a continuous function
on Rn that is bounded between two positive constants. For any r > 2, let k be the
integer such that k + 1 ≤ r < k + 2. By (2.19) we have

φ(r) ≤ φ(k + 2) ≤ VnNk

2
≤

Nk∑
j=1

∫
Bxk, j

(π/(10Nk))
u

2n
n−2

k, j (x) dx

≤
∫

Bo(k+1)
u

2n
n−2 (x) dx ≤

∫
Bo(r)

u
2n

n−2 (x) dx.
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3 Estimates on P(u, r)

Let P(u, r) be given by (1.13) in the introduction. The Pohozaev identity (see, for
example, [7]) states that

(3.1) P(u, r) =
∫

Sr

[
r
( ∂u

∂r

) 2
− r

2
| � u|2 +

n − 2

2n
rKu

2n
n−2 +

n − 2

2
u
∂u

∂r

]
dS

for r > 0, where Sr = ∂Bo(r) is the sphere of radius r.

Theorem 3.2 Let u be a positive smooth solution of equation (1.1) with condition (1.2).
Assume that u is bounded from above in Rn and

(3.2)
∂K

∂r
(x) ≥ − C1

|x|(n+2)/2(ln |x|)1+ε

for large |x| and for some positive constants C1 and ε. Then P(u, r) ≥ −δ2 for large r
and for a positive constant δ.

Proof Fixing a large number R and using (1.4) we have∫
Bo((m+1)R)\Bo(mR)

r
∂K

∂r
(x)u

2n
n−2 (x) dx

≥ − C1

(mR)
n
2 [ln(mR)]1+ε

∫
Bo((m+1)R)\Bo(mR)

u
2n

n−2 (x) dx

≥ − C2

(mR)
n
2 [ln(mR)]1+ε

∫
Bo((m+1)R)\Bo(mR)

u
n+2

n−2 (x) dx

≥ − C3[(m + 1)R]
n−2

2

(mR)
n
2 [ln(mR)]1+ε

≥ − C4

m(ln m)1+ε

for any positive integer m larger than 1, where r = |x|. Here C2, C3 and C4 are positive
constants. As the series ∞∑

m=2

1

m(ln m)1+ε

converges, we conclude that there exists a positive constant δ such that P(u, r) ≥ −δ2

for large r.

Theorem 3.4 Let u be a positive smooth solution of equation (1.1) with condition (1.2).
Assume that there exists a positive constant c such that

(3.3)
∂K

∂r
(r, θ) ≥ − c

r2
for large r and θ ∈ Sn−1.

If there exist positive constants C and λ ∈ (0, 1) such that

(3.4)

∫
Sn−1

( ∂v

∂s

) 2n
n−2

(s, θ) dθ ≤ Ceλs

for large s, then P(u, r) ≥ −δ2 for large r and for a positive constant δ.
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Proof For a positive number ε > 0 such that ε + λ < 1, using Young’s inequality we
have

d

dr

(∫
Sr

rεu
2n

n−2 (r, θ) dS
)

=
d

dr

(∫
Sn−1

rn−1+εu
2n

n−2 (r, θ) dθ
)

=
n − 1 + ε

r

∫
Sn−1

rn−1+εu
2n

n−2 (r, θ) dθ +
2n

n − 2

∫
Sn−1

u
n+2

n−2 (r, θ)
∂u

∂r
(r, θ)rn−1+ε dθ

=
−1 + ε

r

∫
Sn−1

rn−1+εu
2n

n−2 (r, θ) dθ

+
2n

n − 2

∫
Sn−1

u
n+2
n−2 (r, θ)

[ ∂u

∂r
+

n − 2

2

u

r

]
(r, θ)rn−1+ε dθ

≤ C5

r2−ε

∫
Sn−1

{
r

n
2

[ ∂u

∂r
+

n − 2

2

u

r

]
(r, θ)

} 2n
n−2

dθ

=
C5

r2−ε

∫
Sn−1

( ∂v

∂s

) 2n
n−2

(s, θ) dθ ≤ C6

r2−λ−ε

for large r, where r = es and C5 and C6 are positive constants. It follows that there
exists a positive constant C7 such that

(3.5)

∫
Sr

rεu
2n

n−2 dS ≤ C7 or

∫
Sr

u
2n

n−2 dS ≤ C7r−ε

for large r. For a fixed large number Ro, we have

2n

n − 2
P(u, R) =

∫
Bo(R)

r
∂K

∂r
u

2n
n−2 dx ≥ −C8 −C9

∫ R

Ro

r−1

∫
Sr

u
2n

n−2 dS dr ≥ −C10

for large R with Ro < R. Here C8, C9 and C10 are positive constants.

4 Proofs of Theorem A and B

Proof of Theorem A Let

(4.1) w(s) =
1

2

∫
Sn−1

v2(s, θ) dθ for s ∈ R,

where v is defined in (1.9). Using equation (1.10) we have

w ′ ′(s) =
∫

Sn−1

( ∂v

∂s

) 2
(s, θ) dθ +

∫
Sn−1

| �θ v(s, θ)|2 dθ(4.2)

+
( n − 2

2

) 2
∫

Sn−1

v2(s, θ) dθ −
∫

Sn−1

K(es, θ)v
2n

n−2 (s, θ) dθ
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for s ∈ R. The Pohozaev identity can be expressed as

2P(u, es) =
∫

Sn−1

( ∂v

∂s

) 2
(s, θ) dθ −

∫
Sn−1

| �θ v(s, θ)|2 dθ

(4.3)

−
( n − 2

2

) 2
∫

Sn−1

v2(s, θ) dθ +
n − 2

n

∫
Sn−1

K(es, θ)v
2n

n−2 (s, θ) dθ

for s ∈ R [6]. It follows from (1.2), (1.4), (4.2) and (4.3) that

(4.4) w ′′(s) ≤ C1 + C2

∫
Sn−1

v2(s, θ) dθ − 2a2

n

∫
Sn−1

v
2n

n−2 (s, θ) dθ

for large s, where C1 and C2 are positive constants. Applying Young’s inequality we
obtain

(4.5) −2a2

n

∫
Sn−1

v
2n

n−2 (s, θ) dθ ≤ C3 −C4

∫
Sn−1

v2(s, θ) dθ

for large s, where C3 and C4 are positive constants. Furthermore, by choosing C3 to
be large, we can take C4 to be large as well. Hence there exists a positive constant C5

such that

(4.6) w ′′(s) ≤ C5 − w(s) for large s.

From (4.6) it is easy to see that w(s) is uniformly bounded from above for large s. To
prove this assertion, assume that there is a large s ′ such that w(s ′) ≥ C5 + 1. (4.6)
implies that w ′ ′(s ′) ≤ −1. Let so be a number larger than s ′ such that w(so) < C5 + 1
and w ′(so) ≤ 0. If w(s) < C5 + 1 for all s > so, then we are done. Assume that s1 is
the smallest number larger than so such that w(s1) = C5 + 1. We claim that

(4.7) D := w ′(s1) < 2(C5 + 1).

Let s̄ ∈ (so, s1) be the largest number such that w ′(s̄) = D/2. As w ′ ′ ≤ C5 on (so, s1),
we have s1 − s̄ ≥ D/(2C5). On the other hand, w ′ ≥ D/2 on (s̄, s1). Therefore we
have

C5 + 1 ≥ w(s1) − w(s̄) ≥ D

2C5
· D

2
⇒ D2 ≤ 4C5(C5 + 1).

Hence we have (4.7). From s1, w(s) can become no larger than (C5 + 1) +
[2(C5 + 1)]2 before w ′(s) becomes negative again. Hence we conclude that w(s) is
uniformly bounded from above for large s.

From Pohozaev identity (3.1) we obtain

(4.8)

∫
Sr

r| � u|2 dS = 2

∫
Sr

[
r
( ∂u

∂r

) 2
+

n − 2

2n
rKu

2n
n−2 +

n − 2

2
u
∂u

∂r

]
dS − 2P(u, r)
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for r > 0. We have∫
Sr

r
( ∂u

∂r

) 2
dS =

∫
Sr

r
[ ∂u

∂r
+

n − 2

2

u

r

] 2
dS

− (n − 2)

∫
Sr

u
∂u

∂r
dS −

( n − 2

2

) 2
∫

Sr

u2

r
dS

(4.9)

for r > 0. Using (1.14) and the fact that w is bounded from above we obtain

−
∫

Sr

u
∂u

∂r
dS =

∫
Sr

u
[ ∂u

∂r
+

n − 2

2

u

r

]
dS +

n − 2

2

∫
Sr

u2

r
dS(4.10)

≤
∫

Sr

r
[ ∂u

∂r
+

n − 2

2

u

r

] 2
dS +

n

2

∫
Sr

u2

r
dS

=
∫

Sn−1

( ∂v

∂s

) 2
(s, θ) dθ +

n

2

∫
Sn−1

v2(s, θ) dθ ≤ C6

for large r and for a positive constant C6, where r = es. It follows from (4.8), (4.9)
and (4.10) that ∫

Sr

| � u|2 dS ≤ C7

r
+

n − 2

n

∫
Sr

Ku
2n

n−2 dS

for large r, where C7 is a positive constant. Therefore we obtain

(4.11)

∫
Bo(r)

| � u|2 dx ≤ C8 ln r +
n − 2

n

∫
Bo(r)

Ku
2n

n−2 dx

for large r and for a positive constant C8 ≥ C7. On the other hand we have∫
Bo(r)

Ku
2n

n−2 dx =
∫

Bo(r)
u(−∆u) dx =

∫
Bo(r)

| � u|2 dx −
∫

Sr

u
∂u

∂r
dS

≤ C8 ln r +
n − 2

n

∫
Bo(r)

Ku
2n

n−2 dx + C6

for large r, where we use (4.10). Hence there exists a positive constant C9 such that∫
Bo(r)

Ku
2n

n−2 dx ≤ C9 ln r

for large r. If u ∈ L2n/(n−2)(Rn), then clearly we have the first inequality in (1.15).
Assume that u �∈ L2n/(n−2)(Rn). Using (1.2) we have∫

Bo(r)
u

2n
n−2 dx ≤ 2

a2

∫
Bo(r)

Ku
2n

n−2 dx ≤ 2C9

a2
ln r

for large r. Hence we have the first inequality in (1.15). The second inequality follows
from (4.11).

https://doi.org/10.4153/CMB-2001-021-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-021-5


220 Man Chun Leung

Proof of Theorem B From the proof of theorem A we have

(4.12)

∫
Sr

u2(x)

r
dS =

∫
Sn−1

v2(s, θ) dθ = 2w(s) ≤ C10

for large r, where r = |x| = es and C10 is a positive constant. By using (1.16) and
(4.12) we also have
(4.13)∫

Sr

r
[ ∂u

∂r
+

n − 2

2

u

r

] 2
dS =

∫
Sn−1

rn
[ ∂u

∂r
+

n − 2

2

u

r

] 2
dθ =

∫
Sn−1

( ∂v

∂s

) 2
dθ ≤ C11

for large r, where C11 is a positive constant. It follows from Pohozaev identity (3.1)
that ∫

Sr

r| � u|2 dS ≤ C12 +
n − 2

n

∫
Sr

rKu
2n

n−2 dS + 2

∫
Sr

r
[ ∂u

∂r
+

n − 2

2

u

r

] 2
dS(4.14)

− (n − 2)

∫
Sr

u
[ ∂u

∂r
+

n − 2

2

u

r

]
dS

≤ C13 +
n − 2

n

∫
Sr

rKu
2n

n−2 dS + C14

∫
Sr

r
[ ∂u

∂r
+

n − 2

2

u

r

] 2
dS

+ C15

∫
Sr

u2

r
dS ≤ C16 +

n − 2

n

∫
Sr

rKu
2n

n−2 dS

for large r, where we use (4.12) and (4.13). Here C12, C13, C14, C15 and C16 are positive
constants. (4.14) implies that there exists a positive constant C17 such that

(4.15)

∫
Bo(R)

r| � u|2 dx ≤ C17R +
n − 2

n

∫
Bo(R)

rKu
2n

n−2 dx

for large R. We have

∫
Bo(R)

rKu
2n

n−2 dx =
∫

Bo(R)
(ru)(−∆u) dx(4.16)

=
∫

Bo(R)
r| � u|2 dx +

∫
Bo(R)

u
∂u

∂r
dx − R

∫
SR

u
∂u

∂r
dS

for R > 0. Using (4.13) we obtain

∫
Bo(R)

u
∂u

∂r
dx =

∫
Bo(R)

u
[ ∂u

∂r
+

n − 2

2

u

r

]
dx − n − 2

2

∫
Bo(R)

u2

r
dx(4.17)

≤ C18

∫
Bo(R)

r
[ ∂u

∂r
+

n − 2

2

u

r

] 2
dx ≤ C19R
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for large R, where C18 and C19 are positive constants. As in (4.10) we have

(4.18)

∣∣∣∣R

∫
SR

u
∂u

∂r
dS

∣∣∣∣ ≤ C20R

for large R, where C20 is a positive constant. From (4.15), (4.16), (4.17) and (4.18)
we obtain

(4.19)
2

n

∫
Bo(R)

rKu
2n

n−2 dx ≤ C21R

for large R, where C21 is a positive constant. Using (1.16) we have

d

dr

(∫
Sr

r2u
2n

n−2 dS
)

=
d

dr

(∫
Sn−1

rn+1u
2n

n−2 dθ
)

= (n + 1)

∫
Sn−1

rnu
2n

n−2 dθ +
2n

n − 2

∫
Sn−1

rn+1u
n+2

n−2
∂u

∂r
dθ

=
∫

Sn−1

rnu
2n

n−2 dθ +
2n

n − 2

∫
Sn−1

rn+1u
n+2

n−2

[ ∂u

∂r
+

n − 2

2

u

r

]
dθ

=
∫

Sn−1

rnu
2n

n−2 dθ +
2n

n − 2

∫
Sn−1

(r
n+2

2 u
n+2

n−2 )
{

r
n
2

[ ∂u

∂r
+

n − 2

2

u

r

]}
dθ

≤ C22

∫
Sn−1

rnu
2n

n−2 dθ + C23

∫
Sn−1

{
r

n
2

[ ∂u

∂r
+

n − 2

2

u

r

]} 2n
n−2

dθ

= C22

∫
Sn−1

rnu
2n

n−2 dθ + C23

∫
Sn−1

∣∣∣ ∂v

∂s

∣∣∣ 2n
n−2

dθ

≤ C24

∫
Sn−1

rnu
2n

n−2 dθ + C25

for large r, and for some positive constants C22, C23, C24 and C25, where r = es. Hence∫
SR

R2u
2n

n−2 dS =
∫ R

0

(∫
St

t2u
2n

n−2 dS
) ′

dt ≤ C26 +

∫ R

ro

(∫
St

t2u
2n

n−2 dS
) ′

dt(4.20)

≤ C26 + C24

∫ R

ro

∫
St

tu
2n

n−2 dS dt + C25(R − ro)

≤ C27R + C28

∫
Bo(R)

ru
2n

n−2 dx

for R and ro large, with R > ro. Here C26, C27 and C28 are positive constants. Consider
the case when u �∈ L2n/(n−2)(Rn). It follows from (1.2) and (4.19) that

(4.21)

∫
Bo(R)

ru
2n

n−2 dx ≤ C29

∫
Bo(R)

rKu
2n

n−2 dx ≤ C30R
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for large R and for some positive constants C29 and C30. Clearly we have

(4.22)

∫
Bo(R)

ru
2n

n−2 dx ≤ C31R

for large R and for some positive constants C31 if u ∈ L2n/(n−2)(Rn). From (4.20),
(4.21) and (4.22) we have (1.17). By the results in [11] (see also [6]), we obtain slow
decay (1.7) as well.
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