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We extend our previous work on the two-dimensional (2-D) Dimits transition in
ion-scale turbulence (Ivanov et al., J. Plasma Phys., vol. 86, 2020, 855860502) to
include variations along the magnetic field. We consider a three-field fluid model for
the perturbations of electrostatic potential, ion temperature, and ion parallel flow in
a constant-magnetic-curvature geometry without magnetic shear. It is derived in the
cold-ion, long-wavelength asymptotic limit of the gyrokinetic theory. Just as in the
2-D model, a low-transport (Dimits) regime exists and is found to be dominated by
a quasistatic staircase-like arrangement of strong zonal flows and zonal temperature.
This zonal staircase is formed and maintained by a negative turbulent viscosity for the
zonal flows. Unlike the 2-D model, the three-dimensional (3-D) one does not suffer
from an unphysical blow up beyond the Dimits threshold where the staircase becomes
nonlinearly unstable. Instead, a well-defined finite-amplitude saturated state is established.
This qualitative difference between the 2-D and 3-D models is due to the appearance of
small-scale ‘parasitic’ modes that exist only if we allow perturbations to vary along the
magnetic field lines. These modes extract energy from the large-scale perturbations and
provide an effective enhancement of large-scale thermal diffusion, thus aiding the energy
transfer from large injection scales to small dissipative ones. We show that in our model,
the parasitic modes always favour a zonal-flow-dominated state. In fact, a Dimits state
with a zonal staircase is achieved regardless of the strength of the linear drive, provided the
system is sufficiently extended along the magnetic field and sufficient parallel resolution
is provided.

Key words: plasma nonlinear phenomena, plasma instabilities, fusion plasma

1. Introduction

In our previous work (Ivanov et al. 2020), we discussed the two-dimensional (2-D)
dynamics of ion-scale turbulence driven by the ion-temperature-gradient (ITG) instability
in the plane perpendicular to the magnetic field. We identified the fundamental mechanism
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of the Dimits transition that demarcates saturation dominated by strong coherent zonal
flows (ZFs) – the ‘Dimits state’ – and the strongly turbulent regime where no coherent
ZFs exist. The turbulent momentum flux of turbulence sheared by ZFs – viz., whether the
zonal ‘turbulent viscosity’ was positive or negative – was found to be the key to the demise
of the Dimits state.

However, those findings were based on a simplified model (to which we shall here refer
as the ‘2-D model’), obtained as an asymptotic, highly collisional limit of ion gyrokinetics
(GK), with the additional assumption that the dynamics were 2-D. This assumption cannot
be justified asymptotically. In fact, GK studies of tokamak turbulence have revealed that
parallel dynamics are linked to turbulence in the perpendicular plane via the ‘critical
balance’ between the nonlinear mixing time and the parallel propagation time (Barnes,
Parra & Schekochihin 2011).

In this paper, we carry our work over to a more general model that is a true asymptotic
limit of the GK equations by relaxing the two-dimensionality assumption to determine
whether the three-dimensional (3-D) Dimits transition is governed by the same mechanism
as the 2-D one. In the highly collisional limit discussed in Ivanov et al. (2020), we obtain
virtually the same equations for the perturbations of ion temperature and electric potential,
with the addition of parallel dynamics and of a new equation for the perturbed parallel ion
flow. These three equations (to which we refer as the ‘3-D model’) describe both of the
classic ITG instabilities: one mediated by compression along the magnetic field, which we
shall call the slab-ITG (sITG) instability (Rudakov & Sagdeev 1961; Coppi, Rosenbluth &
Sagdeev 1967; Cowley, Kulsrud & Sudan 1991); the other by magnetic curvature, which
we shall call the curvature-driven ITG (cITG) instability (Pogutse 1968; Guzdar et al.
1983). Note that we shall consider only the case of zero magnetic shear.

Our numerical results indicate that the Dimits-regime dynamics of the 3-D model are
essentially the same as those of the 2-D model. Namely, we find that the Dimits regime is
dominated by a quasistatic staircase-like arrangement of strong ZFs that rip and suppress
turbulence. This zonal staircase, reminiscent of the so-called E × B staircase seen in
global GK simulations (Dif-Pradalier et al. 2010; Villard et al. 2013; Rath et al. 2016;
Dif-Pradalier et al. 2017), slowly decays due to collisional viscosity. This viscous decay
results in recurrent turbulent bursts that are triggered by localised travelling structures
emerging from the ZF maxima, where they are created by a local (‘tertiary’) instability of
the ZF profile. The turbulence that develops during a burst is sheared by the ZFs. Locally,
the shear breaks the fundamental parity symmetry of GK turbulence (Parra, Barnes &
Peeters 2011; Fox et al. 2017). This gives rise to a radial flux of poloidal momentum
whose sign is controlled by the sign of the zonal shear. This momentum flux consists of
two parts: the usual Reynolds stress of the E × B flow, which is known to generate strong
ZFs (Diamond et al. 2005); and a diamagnetic contribution, which is found to oppose the
Reynolds stress. The distinguishing feature of the Dimits regime is that the Reynolds stress
overcomes the diamagnetic one. The zonal staircase is stable to turbulent bursts because
ZF-sheared turbulence provides an effective negative viscosity for the ZFs. All of these
effects are found to be qualitatively identical between the 2-D and 3-D models.

The Dimits transition to higher turbulent transport occurs when the diamagnetic
stress overcomes the Reynolds one, so the effective turbulent viscosity flips its sign
and the coherent ZFs that support the Dimits state become nonlinearly unstable. The
2-D model fails to reach finite-amplitude saturation in this state; instead, box-sized
exponentially growing streamers emerge (Ivanov et al. 2020). While such a blow up
has not been observed in prior gyrokinetic studies of turbulence in a Z-pinch (Ricci,
Rogers & Dorland 2006; Kobayashi & Rogers 2012), it is not entirely unexpected in a
2-D fluid system. The 3-D fluid system does not suffer from such an unphysical blow
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FIGURE 1. Illustration of the 3-D Z-pinch magnetic geometry.

up. Instead, a finite-amplitude saturated state without strong ZFs is established. This
qualitative difference between the 3-D and 2-D models is due to the appearance of
small-scale sITG modes, which exist only in the 3-D model and are primarily driven by
the temperature perturbations associated with the large-scale 2-D perturbations (rather
than by the equilibrium temperature gradient). These ‘parasitic’ modes extract energy
from those large-scale perturbations and transfer it to smaller perpendicular scales where
it is dissipated, thus enabling the system to achieve saturation at finite amplitudes. The
idea of such parasitic modes is hardly original (see, e.g., Drake, Guzdar & Hassam
1988; Cowley et al. 1991; Rath & Sridhar 1992). We back their existence both by
analytical arguments and by numerical results (§ 4.2) and show that their influence on
the large-scale perturbations is to provide an effective enhancement to thermal diffusion
(§ 4.2.4).

The rest of the paper is organised as follows. In § 2, we discuss the 3-D extension of
the 2-D model of Ivanov et al. (2020). Detailed derivations can be found in Appendix A.
Section 3 deals with the linear instability of the 3-D model. Then, in § 4, we describe the
nonlinear saturated state: § 4.1 is devoted to the 3-D Dimits regime; § 4.2 to the small-scale
sITG instability and to its role in both the Dimits and the strongly turbulent state. We
summarise and discuss our results in § 5.

2. Collisional, cold-ion Z-pinch in three dimensions
2.1. Model equations

The 3-D model can be derived by following Appendix A of Ivanov et al. (2020), with the
addition of the 3-D terms worked out in Appendix A of the present paper. We consider
a cold-ion plasma in Z-pinch magnetic geometry (shown in figure 1) with magnetic scale
length LB ≡ −∂x ln B, where the magnetic field points in the z direction, B = Bẑ, and x
and y are the radial and poloidal coordinates, respectively. Here, z is the coordinate around
the current line of the Z-pinch (LB times the azimuthal angle). The ITG scale length is
defined as LT ≡ −∂x ln Ti, where Ti is the equilibrium ion temperature. We also assume a
large-aspect-ratio system, viz., LB � LT .1

1Otherwise we run into issues with the ordering of the magnetic drift in the cold-ion limit: see equation (A27) of
Ivanov et al. (2020).
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The perturbed electron density δne is assumed to obey a modified adiabatic response
(Dorland & Hammett 1993; Hammett et al. 1993)

δne

ne
= e(φ − φ)

Te
, (2.1)

where ne is the equilibrium electron density, φ is the electric potential, Te is the electron
temperature and

φ(x) ≡ 1
LyLz

∫
dy dz φ(x, y, z) (2.2)

is the zonal (flux-surface) spatial average of the perturbed electric potential φ. We refer to
zonally averaged fields as ‘zonal fields’. We also define the nonzonal field φ′ ≡ φ − φ.
Even though, strictly speaking, there are no well-defined flux surfaces in a Z-pinch
geometry, our aim is to model a tokamak-like system, thus our definition of a flux-surface
average (2.2) is an average over both y and z. This can be rationalised by the presence
either of asymptotically small, but nonzero, magnetic shear (Ivanov et al. 2020), or of
asymptotically small irrational rotational transform. Note that neither of these is present
in the final form of our equations.

We take the density, temperature, and parallel-velocity moments of the electrostatic
ion gyrokinetic equation and adopt the high-collisionality, cold-ion, long-wavelength,
large-aspect-ratio ordering

∂t

νi
∼ τ ∼ k2

⊥ρ2
i ∼ LT

LB
� 1, ϕ ∼ T, (2.3)

where ϕ ≡ Zeφ/Ti is the normalised electric potential, Ze is the ion charge, T = δT/Ti
is the normalised ion-temperature perturbation, τ = Ti/ZTe is the temperature ratio,
ρi ≡ vthi/Ωi is the ion gyroradius given in terms of the ion thermal speed vthi ≡ √

2Ti/mi
and the ion gyrofrequency Ωi ≡ ZeB/mic, mi is the ion mass, and νi is the ion–ion collision
frequency (for an exact definition of νi, see Appendix A.1 of Ivanov et al. 2020). The
resulting equations are

∂

∂t

(
τϕ′ − 1

2
ρ2

i ∇2
⊥ϕ

)
+ ∂u‖

∂z
− ρivthi

LB

∂

∂y
(ϕ + T) + ρivthi

2LT

∂

∂y

(
1
2
ρ2

i ∇2
⊥ϕ

)
+ 1

2
ρivthi

({
ϕ, τϕ′ − 1

2
ρ2

i ∇2
⊥ϕ

}
+ 1

2
ρ2

i ∇⊥ · {∇⊥ϕ, T}
)

= −1
2
χρ2

i ∇4
⊥(aϕ − bT), (2.4)

∂T
∂t

+ 5
2

∂u‖
∂z

+ ρivthi

2LT

∂ϕ

∂y
+ 1

2
ρivthi {ϕ, T} = χ∇2

⊥T, (2.5)

∂u‖
∂t

+ v2
thi

2
∂(ϕ + T)

∂z
+ 1

2
ρivthi

{
ϕ, u‖

} = sχ∇2
⊥u‖, (2.6)

where the Poisson bracket is defined by

{f , g} = b̂ · (∇⊥f × ∇⊥g) = ∂f
∂x

∂g
∂y

− ∂f
∂y

∂g
∂x

(2.7)

and ∇⊥ ≡ ∂xx̂ + ∂yŷ denotes the gradient operator in the perpendicular plane. The values
of the thermal diffusivity χ and the numerical constants a = 9/40, b = 67/160, s = 9/10
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are determined by the collisional operator, for which we have used the linearised Landau
collision integral. We have omitted the magnetic-drift terms in (2.5) and (2.6) because
those are an order LT/LB ∼ O(k2

⊥ρ2
i ) � 1 smaller than the rest of the terms in their

respective equations. The derivations of (2.4) and (2.5) can be found in Ivanov et al.
(2020); the equation (2.6) for the evolution of the parallel flow velocity is derived in
Appendix A. Note that we are yet to order the (inverse) parallel scale k‖ ∼ ∂z and flow
velocity u‖, so we have kept parallel streaming in all three equations.

Let us discuss briefly the physics of the ‘new’ (compared with the 2-D model) terms in
(2.4)–(2.6). The terms ∝ ∂zu‖ in (2.4) and (2.5) describe the compressions and rarefactions
due to the parallel ion flow. Equation (2.6) has a straightforward interpretation: the parallel
flow is driven by the parallel gradient of the pressure p = ϕ + T , advected by the E × B
flow VE = cb̂ × ∇⊥φ/B, and damped by the collisional viscosity sχ .

We would like to find an ordering for k‖ and u‖ that allows for both sITG and cITG. The
former depends on the presence of the parallel-streaming terms in (2.4) and (2.6). Thus,
we require

ωτϕ ∼ k‖u‖, ωu‖ ∼ v2
thik‖ϕ =⇒ ω2τ ∼ v2

thik
2
‖, (2.8)

where ω ∼ ∂t is the inverse time scale. We want to retain the curvature-driven instability,
so we order ω ∼ ρsΩi/LB, where Ωi is the ion gyrofrequency. Then (2.8) implies

k‖ ∼ L−1
B , u‖ ∼ τcsϕ, (2.9)

where ρs ≡ ρi/
√

2τ is the sound radius and cs ≡ ρsΩi is the sound speed.
We now introduce the following normalisations (consistent with those that we used for

our 2-D model):

t̂ ≡ 2ρsΩi

LB
t, x̂ ≡ x

ρs
, ŷ ≡ y

ρs
, ẑ ≡ 2z

LB
,

ϕ̂ ≡ τLBϕ

2ρs
= τLB

2ρs

Zeφ
Ti

, T̂ ≡ τLBT
2ρs

= τLB

2ρs

δT
Ti

, û ≡ u‖
ρsΩiτ

,

κT ≡ τLB

2LT
, χ̂ ≡ LB

2ρs

χ

Ωiρ2
s

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.10)

All hatted quantities are ordered as O(1). Dropping hats, we obtain from (2.4)–(2.6) the
following equations in normalised units:

∂t
(
ϕ′ − ∇2

⊥ϕ
) + ∂‖u − ∂y (ϕ + T) + κT∂y∇2

⊥ϕ

+ {
ϕ, ϕ′ − ∇2

⊥ϕ
} + ∇⊥ · {∇⊥ϕ, T} = −χ∇4

⊥(aϕ − bT), (2.11)

∂tT + κT∂yϕ + {ϕ, T} = χ∇2
⊥T, (2.12)

∂tu + ∂‖(ϕ + T) + {ϕ, u} = sχ∇2
⊥u, (2.13)

where (2.12) has lost its parallel-streaming term because it is O(τ ) smaller than the
other terms, and we use ∂‖ ≡ ∂z. These equations have two independent parameters: the
normalised equilibrium temperature gradient, κT ; and the normalised collisionality, χ .
There are three other parameters, Lx, Ly, and L‖, that are the domain sizes in x, y (in units
of ρs), and z (in units of LB/2), respectively. We have already seen that the physics of the
2-D model is independent of Lx and Ly (Ivanov et al. 2020), and that will be true for the
3-D model as well, so the interesting one is L‖. As we shall later see, the saturated state is
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independent of L‖ if L‖ is large enough, but if it is not, it will play a nontrivial role. Even
though the Z-pinch geometry imposes a natural L‖, viz., L‖ = 4π (dimensionally this is
2πLB), we will not limit ourselves to that. By considering L‖ as an independent parameter,
we are able to model a shearless flux tube with constant magnetic drifts, periodic boundary
conditions, and connection length L‖. Varying L‖ in our model is akin to varying the
connection length 2πqR in toroidal geometry, where q is the safety factor and R is the
major radius.

2.2. Conservation laws
The 2-D cold-ion Z-pinch system has three nonlinear invariants (Ivanov et al. 2020). One
is the gyrokinetic free energy, while the other two result from the so-called ‘general 2-D
invariants’ of GK (Schekochihin et al. 2009). The conservation law of free energy for the
3-D equations (2.11)–(2.13) is equivalent (modulo the integration domain) to that of the
2-D equations. It reads

LxLyL‖∂tW ≡ ∂t

∫
d3r

1
2

T2 = −κT

∫
d3r T∂yϕ − χ

∫
d3r (∇⊥T)2 . (2.14)

The first term on the right-hand side of (2.14) is proportional to the nondimensionalised
radial heat flux

Q = − 1
LxLyLz

∫
d3r T∂yϕ, (2.15)

whereas the second one is the collisional thermalisation.
Surprisingly, upgrading from two dimensions to three dimensions does not eliminate

both of the other two 2-D invariants. One of them survives, and the following conservation
law holds even in three dimensions:

LxLyL‖∂tI ≡ ∂t

∫
d3r

[
1
2

(
ϕ′ + T ′)2 + 1

2
T

2 + 1
2

(∇⊥T + ∇⊥ϕ)2 + 1
2

u2

]
= −κT

∫
d3r T∂yϕ − χ

∫
d3r

[(∇⊥ϕ′) · (∇⊥T) + (∇⊥T)2

+ a
(∇2

⊥ϕ
)2 + (a + 1 − b)

(∇2
⊥ϕ

) (∇2
⊥T

) + (1 − b)
(∇2

⊥T
)2 + s (∇⊥u)2

]
.

(2.16)

As expected, one recovers a corresponding 2-D conservation law by setting u = 0 and
excluding z from the integration (see § 2.7 of Ivanov et al. 2020).

Later, it will prove useful to discuss the spectra of W and I. For this, we write
W = ∑

k Wk and I = ∑
k Ik, where we have defined

Wk ≡ 1
2
|Tk|2, (2.17)

Ik ≡ 1
2

(|ϕ′
k + T ′

k|2 + |Tkx |2 + k2
⊥|ϕk + Tk|2 + |uk|2

)
. (2.18)

Here the k subscript denotes Fourier components, defined for any field ϕ(r) as

ϕ(r) =
∑

k

ϕkeik·r, (2.19)

and (2.17) and (2.18) follow from Parseval’s theorem.
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(b)(a)

FIGURE 2. A visualisation of the linear growth rate, Im(ωk), given by (3.1), for κT = 1 and
χ = 0.1. (a) The linear growth rate in the k‖ = 0 plane. This is the 2-D cITG instability that
we dealt with in Ivanov et al. (2020). (b) The linear growth rate in the kx = 0 plane (where it
is largest). The solid black lines denote the marginal modes with Im(ωk) = 0. The dotted lines
outline the region of unstable collisionless (χ = 0), pure-slab (L−1

B = 0) modes, given by (3.14).

3. Linear ITG instabilities

Equations (2.11)–(2.13) support two distinct types of linear instability, viz., cITG
and sITG. The former was studied by Ivanov et al. (2020) and describes the
linearly unstable 2-D modes. In order to investigate the stability of the 3-D
modes, we drop the nonlinear terms in (2.11)–(2.13) and look for Fourier modes
ϕ, T, u ∝ exp (−iωkt + ik · r), where Re(ωk), Im(ωk), and k = (kx, ky, k‖) are the real
frequency, growth rate, and wavenumber of the mode, respectively. The dispersion relation
can be written as

(−iωk + sk2
⊥)D2D + k2

‖
1 + k2

⊥

(−iωk + χk2
⊥ − iκTky

) = 0, (3.1)

where the 2-D dispersion relation is given by

D2D ≡ (−iωk + A)(−iωk + B − iC) − fAB + igAC = 0, (3.2)

A = χk2
⊥, B = aχk4

⊥
1 + k2

⊥
, C = ky

1 + κTk2
⊥

1 + k2
⊥

, f = κTk2
y

aχ 2k6
⊥

, g = bκTk2
⊥

1 + κTk2
⊥

. (3.3)

An example of the solutions of (3.1) is given in figure 2. It is evident that (3.1) is too
complicated for a general analytical solution. Thus, we will limit our discussion here to
several important limits.

3.1. Stable waves
Setting κT = 0 and χ = 0 eliminates the linear instability and damping. The dispersion
relation (3.1) reduces to

(1 + k2
⊥)ω2

k + kyωk − k2
‖ = 0, (3.4)
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8 P.G. Ivanov, A.A. Schekochihin and W. Dorland

with solutions

ωk =
−ky ±

√
k2

y + 4k2
‖(1 + k2

⊥)

2(1 + k2
⊥)

. (3.5)

In the limit k‖ � ky (which, in terms of dimensional wavenumbers, corresponds to
k‖LB � kyρs), we find the familiar 2-D drift waves ωk = −ky/(1 + k2

⊥) that result from
the magnetic drift. The opposite limit, k‖ � ky, corresponds to equally familiar ion sound
waves, modified by ion finite-Larmor-radius (FLR) effects: ωk = k‖/

√
1 + k2

⊥. We can
undo the normalisations (2.10) to verify that this is the usual dispersion for the ion sound
waves in terms of the dimensional wavenumbers k‖ and k⊥:

ωk = ± csk‖√
1 + k2

⊥ρ2
s

. (3.6)

We now briefly recap the 2-D cITG instability before turning to the k‖ 
= 0 sITG.

3.2. Curvature-driven ITG modes
3.2.1. Instability in two dimensions

The dispersion relation for the unstable 2-D (k‖ = 0) modes is (3.2). These modes were
studied carefully in Ivanov et al. (2020); let us recap some important points.

The 2-D modes exist at large perpendicular scales, viz., k⊥ < min{k⊥,max,FLR, k⊥,max,χ },
where the collisionless and collisional cutoffs are given by

k2
⊥,max,FLR = 1 + 2

√
κT

κT
, k2

⊥,max,χ =
√

κT

aχ 2
, (3.7a,b)

respectively. As shown in Ivanov et al. (2020), the Dimits threshold in two dimensions
satisfies κT ∼ χ . Here, however, we shall be interested in the strongly driven limit of
κT � χ and κT � 1, for which a saturated state exists only in three dimensions. In this
limit, (3.7a) tells us that the cITG modes exist at (and below) wavenumbers

k⊥ ∼ k⊥,max,FLR ∼ κ
−1/4
T � 1. (3.8)

Solving (3.2) shows that these modes also satisfy

Re(ωk) ∼ Im(ωk) ∼ κ
1/4
T . (3.9)

3.2.2. k‖ 
= 0 corrections
Let us now see how k‖ 
= 0 affects the strongly driven modes at the curvature-driven

scales k⊥ ∼ κ
−1/4
T � 1. At these large perpendicular scales, the effects of collisions

are negligible, so we may set χ = 0. Note that the scaling k⊥ ∼ κ
−1/4
T � 1 implies

κTk2
⊥ ∼ √

κT � 1, in which case the dispersion (3.1) becomes

ωk
[
ωk

(
ωk + κTk2

⊥ky
) + κTk2

y

] = k2
‖
(
ωk + κTky

)
, (3.10)

where the dispersion relation for the curvature-driven 2-D modes is the expression in the
square brackets on the left-hand side. Using the results in § 3.2.1, we can estimate that for
these modes, the left-hand and right-hand sides of (3.10) satisfy

ωk
[
ωk

(
ωk + κTk2

⊥ky
) + κTk2

y

] ∼ κ
3/4
T , k2

‖
(
ωk + κTky

) ∼ k2
‖κ

3/4
T . (3.11a,b)

We can then conclude that for k‖ � 1, the solutions are essentially 2-D, i.e., the dispersion
relation (3.10) is well-approximated by (3.2), whereas k‖ � 1 is expected to introduce
qualitative changes to the modes. Let us now investigate the k‖ � 1 sITG instability.
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3.3. Collisionless sITG modes
Let us investigate the linear instability of (2.11)–(2.13) in the absence of the magnetic-
gradient term −∂y(ϕ + T) in (2.11). We shall see shortly when this is appropriate. For now,
we limit ourselves to the collisionless (χ = 0) regime (see also § 3.4 and Appendix C).
Then, (3.1) becomes (

ω̂2
k − k̂2

‖
1 + k2

⊥

) (
ω̂k + 1

) = 2k2
⊥γ̂ 2

k ω̂2
k

1 + k2
⊥

, (3.12)

where we have defined ωk ≡ κTkyω̂k, k‖ ≡ κTkyk̂‖, and γ̂ 2
k ≡ 1/2k2

⊥.2 The last of these
may seem like an inconvenience now, but will make the following analysis more easily
generalisable for our needs in § 4. Since (3.12) is a real cubic in ω̂k, it either has three real
solutions, so all linear modes are stable waves, or one real and two complex solutions,
in which case one of the complex solutions has a positive imaginary part and thus
corresponds to a linearly unstable mode. It can be shown (see Appendix B) that (3.12)
has complex solutions if and only if γ̂ 2

k > 0 and k̂2
‖ ∈ (k̂2

‖,−, k̂2
‖,+), where

k̂2
‖,± = k4

⊥ + 10k2
⊥γ̂ 2

k (1 + k2
⊥) + k2

⊥(4 − k2
⊥γ̂ 2

k ) + 2 ± k⊥γ̂k
[
4(1 + k2

⊥) + k2
⊥γ̂ 2

k

]3/2

2(1 + k2
⊥)

.

(3.13)
Substituting γ̂ 2

k = 1/2k2
⊥ yields

k̂2
‖,± = 9

8(1 + k2
⊥)

[
8k4

⊥
9

+ 4k2
⊥ + 3 ± 3

(
1 + 8k2

⊥
9

)3/2
]

. (3.14)

The marginal modes, i.e., those on the boundary between unstable and oscillatory modes,
are given by k̂2

‖ = k̂2
‖,±; these are shown in figure 3. We now consider two distinct

asymptotic limits of (3.14): k⊥ � 1 and k⊥ � 1.

3.3.1. Large-scale sITG instability: k⊥ � 1 modes
To lowest order in k⊥ � 1, (3.12) simplifies to

ω̂3
k − k̂2

‖ω̂k − k̂2
‖ = 0. (3.15)

This is the well-known sITG dispersion relation without FLR effects and in the absence
of a density gradient (Cowley et al. 1991). In this limit, the instability boundaries (3.14)
become

k̂‖,− = 2

3
√

3
k3

⊥ + O
(
k5

⊥
)
, k̂‖,+ = 3

√
3

2
+

√
3

4
k2

⊥ + O
(
k4

⊥
)
. (3.16a,b)

For small k̂‖, the linearly unstable solution of (3.15) is ω̂k ≈ |k̂2/3
‖ |(−1 + i

√
3)/2. Thus,

the linear growth rate for small k̂‖, or k‖ � κTky, is

Im(ωk) ≈
√

3
2

(
κTkyk2

‖
)1/3

. (3.17)

This is the most widely recognised expression for the sITG growth rate at long
wavelengths, however, it is not the fastest-growing mode at ky � 1. From (3.16a,b), we

2This maps onto (49) of Cowley et al. (1991) for their Q = Γ = 0 under the following change of notation (from ours
to theirs): k̂‖ �→ kz/ky, ω̂k �→ −Ω .
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FIGURE 3. Linear growth rates for the sITG instability (without the magnetic drift) as a function
of parallel (k‖) and poloidal (ky) wavenumbers for kx = 0, κT = 1, χ = 0. The growth rate
along the k‖ = κTk⊥ky line converges to κT/

√
2 ≈ 0.7 for large k‖. The solid black lines are

the instability boundary given by (3.14).

know that (3.15) has Im(ω̂k) > 0 solutions up to k̂‖ = O(1), or k‖ ∼ κTky. The growth rate
of these modes evidently satisfies Im(ω̂k) = O(1), or Im(ωk) ∼ κTky.

We are now able to confirm that neglecting the magnetic drift in deriving (3.12), and
hence (3.15), was appropriate. As we saw in § 3.2.1, the strongly driven (κT � 1) 2-D
cITG modes satisfy ky ∼ κ

−1/4
T . At these wavenumbers, the sITG modes exist at scales

k‖ ∼ κ
3/4
T � 1 (as expected and assumed) and have a growth rate Im(ωk) ∼ κTky ∼ κ

3/4
T ,

which is asymptotically larger than the growth rate Im(ωk) ∼ κ
1/4
T of the cITG modes.

3.3.2. Small-scale sITG instability: k⊥ � 1 modes
Expanding (3.13) for k⊥ � 1 and using γ̂k = O

(
k−1

⊥
)
, we find

k̂‖,± = k⊥(1 ± 2γ̂k) + O
(
k−1

⊥
)
. (3.18)

Therefore, at small perpendicular scales, the sITG is localised at k̂‖ = ±k⊥, or,
equivalently, at

k‖ ≈ ±κTkyk⊥. (3.19)

In terms of the dimensional wavenumbers, (3.19) tells us that this instability is localised at
k‖LB/2 ≈ ±κTkyk⊥ρ2

s , or, equivalently, k‖LT ≈ ±kyk⊥ρ2
i . For γ̂ 2

k = 1/2k2
⊥, (3.18) is

k̂‖,± = k⊥ ±
√

2 + O
(
k−1

⊥
)
, (3.20)

which implies, for the unstable modes,∣∣∣k̂‖ − k⊥
∣∣∣ =

∣∣∣∣ k‖
κTky

− k⊥

∣∣∣∣ <
√

2. (3.21)

We can also find the ky width of the region of instability at fixed k‖. Substituting
ky = k‖/κTk⊥ + δky into (3.21) and expanding for δky � ky, we find

|δky| <
√

2
k⊥ky

|k2
⊥ + k2

y |
≤

√
2

2
. (3.22)
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To find the growth rate, consider the k⊥ � 1 limit of (3.12) and set k̂‖ = ±k⊥ + δk̂‖
and ω̂k = −1 + δω̂k, where δω̂k ∼ δk̂‖/k⊥ ∼ O(k−1

⊥ ) � 1. Keeping terms of order up to
O(k−2

⊥ ), (3.12) becomes(
δω̂k ± δk̂‖

k⊥

)
δω̂k + γ̂ 2

k ≈ 0 =⇒ δω̂k ≈ − δk̂‖
2k⊥

±
√

δk̂2
‖

4k2
⊥

− γ̂ 2
k . (3.23)

Thus, in agreement with (3.21), the instability exists only for |δk̂‖| < 2k⊥γ̂k, and its growth
rate is

Im
(
ω̂k

) ≈
√

γ̂ 2
k − δk̂2

‖
4k2

⊥
. (3.24)

The maximum growth rate is then achieved for δk̂‖ = 0, i.e., at k‖ = ±κTkyk⊥, and is given
by Im

(
ω̂k

) ≈ γ̂k. Since γ̂ 2
k = 1/2k2

⊥, this is

Im(ωk) ≈ κTky√
2k⊥

≤ κT√
2
. (3.25)

The characteristics of the small-scale sITG instability are summarised in figure 3.
Note that for κT � 1, the linear growth rate (3.25) of the small-scale sITG modes

scales as O(κT) and, therefore, dominates both the curvature-driven modes (§ 3.2.1) and
the large-scale slab modes (§ 3.3.1). This time-scale separation will prove critical for the
saturation of strongly driven turbulence (see § 4.2.2).

Finally, an important feature of the k⊥ � 1 sITG modes is the approximate relation
T ≈ −ϕ, or equivalently, p/ϕ � 1, where p = ϕ + T is the perturbed pressure. Indeed,
using (2.12) and (3.23), we find

Tk

ϕk
= κTky

ωk
= 1

ω̂k
= −1 + δk̂‖

2k⊥
− i

√
γ̂ 2

k − δk̂2
‖

4k2
⊥

+ O
(
k−2

⊥
)

(3.26)

for the modes with Im
(
ω̂k

)
> 0. Thus, these modes generally have pk/ϕk ∼ O(k−1

⊥ ) � 1,
while the most unstable of them (δk̂‖ = 0) satisfy pk/ϕk ∼ O(k−2

⊥ ) and
Re(Tk/ϕk) = −1 + O(k−2

⊥ ). This relationship between Tk and ϕk will allow us to identify
the sITG modes in the saturated state, and will prove useful in understanding their role in
maintaining the Dimits state (see §§ 4.2.1 and 4.2.5).

3.4. Mechanism of the small-scale sITG instability
The analysis in § 3.3.2 is somewhat physically opaque. To get a better grasp of the
small-scale sITG modes, we can consider the problem from a slightly different angle.
Let us subtract the Laplacian ∇2

⊥ of (2.12) from (2.11) and rewrite the linear part of the
system (2.11)–(2.13) as

∂t
(
ϕ′ − ∇2

⊥ϕ
) + ∂‖u − ∂yp + κT∂y∇2

⊥ϕ + χ∇4
⊥
[
(a + b)ϕ − bp

] = 0, (3.27)

−∂t∇2
⊥p + ∂‖u − ∂yp + χ∇4

⊥(1 − b)p = −∂tϕ
′ − χ∇4

⊥(a + b − 1)ϕ, (3.28)

∂tu + ∂‖p − sχ∇2
⊥u = 0, (3.29)
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where p = ϕ + T is the pressure perturbation. Let us first concentrate on the χ = 0 case,
viz.,

∂t
(
ϕ′ − ∇2

⊥ϕ
) + ∂‖u − ∂yp + κT∂y∇2

⊥ϕ = 0, (3.30)

−∂t∇2
⊥p + ∂‖u − ∂yp = −∂tϕ

′, (3.31)

∂tu + ∂‖p = 0. (3.32)

Observe that the term ∂tϕ
′ on the right-hand side of (3.31) is asymptotically small in

the k⊥ � 1 limit. Indeed, had we approximated ∂t(1 + k2
⊥)ϕ ≈ ∂tk2

⊥ϕ in (2.11), as we
should have done for k⊥ � 1, the right-hand side of (3.31) would have been zero. In this
approximation, (3.31) and (3.32) decouple from (3.30). Their dispersion relation coincides
with the k⊥ � 1 limit of (3.5), so (3.31) and (3.32) describe two propagating waves,
independent of κT . Let us call these two modes ‘pressure waves’.3 The third mode is a
p = u = 0 wave, described by (3.30); its frequency in the k⊥ � 1 limit is ωk = −κTky.
We shall call this a ‘diamagnetic wave’ because the restoring force comes from the
diamagnetic-drift term κT∂y∇2

⊥ϕ in (3.30).
Since the diamagnetic and pressure waves have, in general, disparate frequencies, the

small coupling term −∂tϕ
′ in (3.31) can indeed be neglected. However, if the frequencies

of these modes happen to coincide, i.e., if they are in resonance, the small coupling term
can no longer be neglected. Using (3.5) for the frequency of the pressure waves and
ωk = −κTky for the diamagnetic wave, we find that such a resonance occurs when
k‖ = κTk⊥ky, assuming k⊥ � 1. Thus, the instability condition (3.19) for collisionless
small-scale sITG modes is the resonance condition for the two types of linear modes in
the system, viz., pressure waves and diamagnetic waves.

Let us now restore χ 
= 0. Then, (3.28) shows that for a + b 
= 1 (as is generally
the case), there is a second coupling mechanism, via the term χ∇4

⊥(a + b − 1)ϕ. For
ωk ∼ κTky, this term is comparable to the collisionless-coupling term ∂tϕ

′ when
ωk ∼ κTky ∼ χk4

⊥, i.e., when

k⊥ ∼
(

κT

χ

)1/3

≡ kχ , (3.33)

assuming k⊥ ∼ ky. We find that kχ is the perpendicular scale at which the collisionless
results of § 3.3.2 are no longer valid as the effects of finite χ can no longer be neglected.
Naïvely, one might expect that for k⊥ > kχ , collisions will act to damp the sITG instability.
However, this turns out not to be the case, and, in fact, the coupling term χ∇4

⊥(a + b − 1)ϕ
can mediate a new collisional ITG instability (χ ITG) for k⊥ � kχ in the absence of
the collisionless coupling term ∂tϕ

′. However, it turns out that in order for χ ITG to be
non-negligible compared with sITG, very large temperature gradients are required, viz.,
κT/χ � 830. Numerically, we shall not investigate such large gradients, so the χ ITG
instability will not be relevant for us. The detailed treatment of the χ ITG instability has
been relegated to Appendix C.

4. Nonlinear states of low and high transport

We now proceed to study the nonlinear saturated state of (2.11)–(2.13). We solve these
equations using an enhanced version of the code used in Ivanov et al. (2020), whereby
(2.11)–(2.13) are solved using a pseudospectral algorithm in a triply periodic box of

3As discussed in § 3.1, such a pressure wave is really a combination of a finite-k‖ sound wave and a finite-ky
magnetic-drift wave. The name is chosen because, unlike the diamagnetic wave described by (3.30), a pressure wave
carries a finite pressure perturbation.
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dimensions Lx, Ly, and L‖. The linear terms are integrated implicitly in time, while the
nonlinear terms are integrated explicitly using the Adams–Bashforth three-step method.
This integration scheme is similar to the one implemented in the popular GK code GS2
(Kotschenreuther, Rewoldt & Tang 1995; Dorland et al. 2000). As the 3-D model has
no dissipation terms that depend on k‖, we usually include small (compared with the
collisional dissipation) parallel hyperviscosity of the form νk4

‖. It is incorporated in the
equations by replacing ∂t �→ ∂t + νk4

‖ for all three fields in the model. The value of ν is
typically chosen to give a maximum parallel hyperviscosity of 10 % of χk2

⊥,largest, where
k⊥,largest is the largest k⊥ included the simulation. This form of hyperviscosity effectively
subtracts νk4

‖ from the growth rate of every mode, but does not alter the linear mode
structure, i.e., it does not influence the ratio of Reynolds to diamagnetic stresses given
by Re(Tk/ϕk) (see §§ 4.1 and 4.2.5). Thus, it dissipates energy without perturbing the
saturated state either towards or away from the Dimits regime.

Recall that the 2-D model has two distinct nonlinear states: a Dimits regime, where
saturation is achieved with the aid of strong ZFs that quench the cITG instability by
shearing the perturbations it produces; and a blow-up regime, where no finite-amplitude
saturation is achieved, but amplitudes continue to grow exponentially indefinitely (or at
least until numerical efforts become futile). This unphysical blow up is arguably the main
limitation of the 2-D model, and there are good reasons to believe that it is a consequence
of the k‖ = 0 restriction (see § 4.5 of Ivanov et al. 2020). This will indeed be corroborated
below as we find that the 3-D model is able to saturate for all values of κT and χ that we
have investigated numerically.

At low collisionality (which can be argued to be the most relevant case, at least for
core turbulence, see Ivanov et al. 2020), the Dimits regime of the 3-D model is strikingly
similar to its 2-D counterpart. The saturated state is dominated by quasistatic triangular
ZFs that break up the radial domain into regions (shear zones) of constant zonal shear,
where turbulence is sheared and thus suppressed (see figure 4a–c). Localised patches of
turbulence remain present at the turning points of the ZFs, where the zonal shear vanishes.

Periodically, when viscosity has eroded the ZFs and their ability to suppress turbulence
has diminished, turbulent bursts are triggered. Just as in two dimensions, these bursts
are foreshadowed by an instability located at the ZF maxima and by the appearance of
localised travelling structures produced by this instability (‘ferdinons’, discovered by van
Wyk et al. 2016, 2017 in GK simulations with external flow shear). An example of a
turbulent burst in the 3-D model is shown in figure 5. It is visually indistinguishable from
a burst in two dimensions when viewed as a cross-section in the (x, y) plane. We shall
discuss the 3-D structure of the Dimits regime in detail in § 4.1.

The crucial qualitative change in physics that allowing 3-D perturbations brings about
is the sITG instability. Recall that the collisionless small-scale sITG modes live at
wavenumbers up to kχ ∼ (κT/χ)1/3 (see § 3.4). This is in stark contrast with the behaviour
of the 2-D cITG modes whose cutoff wavenumber (3.7a) scales as k⊥,2D cutoff ∼ κ

−1/4
T

(see also § 2.6.1. of Ivanov et al. 2020). Moreover, the maximal growth rate of the
sITG modes (3.25) scales as Im(ωk) ∼ κT , while that of the cITG modes (3.9) satisfies
Im

(
ωk,2D

) ∼ κ
1/4
T . This implies that there is a natural scale separation between slow,

large-scale curvature-driven modes and fast, small-scale sITG modes. Crucially, this scale
separation allows small-scale turbulence to be driven both by the equilibrium gradients
and by the gradients associated with the large-scale 2-D modes (which are themselves
generated by the cITG instability). In fact, as we shall see in § 4.2, the latter type of driving
dominates in the saturated state to such an extent that the equilibrium temperature gradient
can be turned off for the k‖ 
= 0 modes and the saturated state remains largely unchanged.
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(e)(b)

(a)

(c)

(d )

( f )

FIGURE 4. Example of instantaneous radial profiles of perturbations in the 3-D Dimits state for
Lx = Ly = 80: (a) ZF; (b) zonal shear; (c) zonal temperature gradient. Example of instantaneous
radial profiles in strong turbulence: (d) ZF; (e) zonal shear; ( f ) zonal temperature gradient.
The dotted green lines in (b,e) are the largest linear growth rates for the respective simulations.
The dotted orange lines in (c, f ) show the value of κT , which is equal to minus the normalised
equilibrium temperature gradient. Just as in the 2-D case, the zonal shear in the Dimits state
is determined by the largest linear growth rate. Strongly turbulent ZFs do not have regions of
coherent shear.

(b)(a)

(c) (d )

FIGURE 5. Snapshots of the perturbed nonzonal (a) temperature T ′, (b) potential ϕ′, (c) pressure
p′ = ϕ′ + T ′, and (d) parallel velocity u′ in the 3-D Dimits state. The colour scale is relative to the
maximum absolute amplitude in each panel (given in the panels’ titles). We see that ferdinons
carry a u perturbation, as well as T and ϕ perturbations. A more detailed view of one of the
ferdinons is shown in figure 7. These snapshots are from the same simulation as figure 4(a–c).
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In other words, the sITG modes are ‘parasitic’ modes, a type of 3-D ‘secondary’ instability
of the 2-D cITG modes.

Most importantly, in the Dimits state, the small-scale instability can be shown always
to favour strong, coherent ZFs. It does so in two ways: by providing an effective positive
thermal diffusion for the large-scale modes that would otherwise destabilise the ZFs in
2-D (see § 4.2.4); and by generating momentum transport that is beneficial for the ZFs
(i.e., a negative turbulent viscosity for the ZF, see § 4.2.5). This makes the 3-D Dimits
state much more resilient than the 2-D one. In fact, we find that the 3-D system stays in
a Dimits state regardless of the values of the parameters κT and χ , provided the domain
is ‘sufficiently 3-D’, i.e., provided L‖ is large enough and that our numerical simulations
have sufficient parallel resolution to resolve the sITG modes (see § 4.3).

We now recap the physical mechanism that gives rise to the Dimits regime and also
discuss any qualitative and quantitative changes that the 3-D physics brings about. Then,
in § 4.2, we turn to the small-scale sITG instability and its consequences for the saturated
state. Finally, in § 4.3, we examine the circumstances that can prevent the system from
establishing a Dimits state and force it into the strongly turbulent regime.

4.1. Dimits regime
4.1.1. The 2-D picture

Recall that the 2-D Dimits transition is a sharp transition from a finite-amplitude
saturated state with strong ZFs to a ‘blow-up’ state dominated by ever-growing streamers
(Ivanov et al. 2020). The key to understanding this is the equation for the zonal electrostatic
potential

∂tϕ + �ϕ + �T + �χ = 0, (4.1)

where

�ϕ ≡ −(∂xϕ)(∂yϕ), �T ≡ −(∂xϕ)(∂yT), �χ ≡ −χ∂2
x

(
aϕ − bT

)
(4.2)

are the Reynolds, diamagnetic, and diffusive stresses, respectively. Equation (4.1)
describes how the ZFs are generated or eroded by turbulence (via the Reynolds and
diamagnetic stresses, depending on their sign) and damped by collisional viscosity. We
then consider a region of nearly constant zonal shear (a ‘shear zone’) of radial width d and
find that the integral of the total turbulent stress �t = �ϕ + �T over such a region can be
written as

1
d

∫
dx�t = −

∑
k

kxky|ϕk|2
[

1 + Re
(

Tk

ϕk

)]
. (4.3)

Thus, the effect of the mode with wavenumber k on the ZFs depends on the ratio
Re(Tk/ϕk). Namely, Re(Tk/ϕk) < −1 implies that the mode will destabilise the ZFs, while
Re(Tk/ϕk) > −1 means that the mode will reinforce the ZFs. This observation is based
on the fact that sheared (by the ZFs) turbulence is ‘tilted’ and the sign of kxky is correlated
with the sign of the zonal shear in each shear zone. In Ivanov et al. (2020), we derived
a simple estimate for the Dimits threshold at large κT that was based on applying these
ideas to the linear modes of the 2-D system. More generally, we argued that the Dimits
transition occurred at the threshold of a nonlinear version of the secondary instability –
when sheared by ZFs, turbulence either reinforced these flows and thus a Dimits state was
maintained (the Reynolds stress won), or it failed to do so (the diamagnetic stress won) and
saturation had to be reached via a different route that did not rely on zonal shear. In the 2-D
case, no such alternative route for finite-amplitude saturation existed. This description of
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(e)

(c)
(a) (d)

(b) ( f )

FIGURE 6. (a) Dependence of the time-averaged heat flux Q on the parallel size of the box L‖
for χ = 0.1, Lx = Ly = 80, and κT = 0.36. The orange dotted line shows the time-averaged heat
flux for the 2-D state (L‖ = 0). (b) Same as (a), but with κT = 0.8. (c– f ) Time evolution of the
heat flux Q for κT = 0.8, χ = 0.1, Lx = 80, Ly = 80, and four different values of L‖ (notated on
each panel). As L‖ increases, the turbulent bursts become more frequent and less violent, and the
time-averaged Q drops.

how a ZF-dominated state was maintained was demonstrated to be accurate by calculating
the turbulent viscosity

νt ≡ −〈∫ Lx

0 dx �tS〉Δt

〈∫ Lx

0 dx S2〉Δt

(4.4)

in numerical simulations with an imposed static ZF profile; here 〈. . . 〉Δt is a saturated-state
time average and S ≡ ∂2

x ϕ is the zonal shear. Essentially, νt is a measure of the correlation
between the turbulent stress �t and the zonal shear S. We found that νt < 0 on the Dimits
side of the threshold, indicating that sheared turbulence was feeding the ZFs, which were
shearing it. Accordingly, we also found νt > 0 beyond the threshold, implying that the
turbulent stress was actively suppressing the ZFs.

4.1.2. The influence of L‖ on the Dimits state
Taking the limit L‖ → 0 effectively restricts our model equations (2.11)–(2.13) to two

dimensions, and thus their saturated Dimits state converges to that of the 2-D model. In
figure 6(a,b), we show what happens to the turbulent heat flux Q with increasing L‖ for two
cases: far below the 2-D Dimits threshold (κT = 0.36, χ = 0.1), where turbulent bursts
dominate the 2-D state; and closer to it (κT = 0.8, χ = 0.1), where the bursts start to
overlap in time. As expected, if L‖ is small enough, we recover the 2-D results. As L‖
increases, Q converges in a monotonic way to a definite 3-D value that is smaller than
the 2-D heat flux. Figure 6(c– f ) show that, for larger values of L‖, the turbulent bursts
become more frequent, but shorter in duration and lower in amplitude. There are two
effects responsible for this: parallel localisation of turbulence; and the development of the
‘parasitic’ small-scale sITG modes.
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Parallel localisation is inevitable because the turbulent nonzonal modes cannot
propagate information infinitely quickly along the field lines. As we increase L‖ away
from 0, we see elongated nonzonal modes that eventually lose the ability to stay coherent
along the field lines if L‖ is large enough. Figure 7 shows that the typical Dimits-state
ferdinons are not true 2-D structures and develop a finite parallel extent if the parallel
size of the box allows it. This is in contrast with the ZFs, which do stay perfectly
coherent along the entire domain regardless of L‖. This puts the ZFs at an advantage
because the turbulent stresses in (4.1) are parallel averages and so a turbulent burst
that is localised to a fraction ΔL‖/L‖ of the parallel extent of the box has its turbulent
stress diminished by a factor of ΔL‖/L‖. As we increase L‖, every such localised burst
provides a smaller restoring ‘kick’ to the ZFs and so it takes less time for the ZFs
to decay to a level that permits the development of a new burst. The turbulent heat
flux Q is also a spatial average of the turbulent fields and it too is diminished for a
localised burst. Thus, we expect smaller, more frequent bursts, and this is precisely
what is observed. Note that the ability of ZFs to communicate infinitely fast along
the field lines is a consequence of the asymptotic limit of small mass ratio and the
modified adiabatic electron response (2.1), which is itself due to the assumed infinitely
fast parallel electron streaming. Therefore, the inclusion of kinetic electron effects in
the equations would lead to qualitative changes for a large enough L‖. Naturally, this
is outside the scope of this work, but is certainly an important consideration for real
devices.

Secondly, we find small-scale sITG modes that feed off the perpendicular temperature
gradients associated with the ferdinons. The presence of this 3-D small-scale ‘parasitic’
instability can be detected via the parallel velocity u because the latter is only involved
in the 3-D sITG modes and not in the 2-D cITG modes. Figure 8 shows an example of a
ferdinon that is ‘infected’ with such small-scale sITG instabilities. As we shall discuss in
§ 4.2, the small-scale instability leads to an effective increase in thermal diffusion, and thus
an increase in the effective damping at large scales that reduces the large-scale temperature
perturbations. This additional damping likely contributes to the reduced Q of the 3-D
Dimits state. It also enables saturation at finite amplitude when the Dimits state is broken
(§ 4.3).

4.2. The parasitic sITG instability and its role in the saturated state
4.2.1. Numerical evidence

Let us now address the small-scale sITG instability. This instability exists only in the
3-D model and is the most important distinction between it and its 2-D counterpart.
It is the presence of this instability that enables, in three dimensions and with finite
L‖, the existence of a strongly turbulent saturated state, i.e., one in which there are
no strong, coherent ZFs (the zonal profiles of such a state are shown in figure 4d– f ).
We find that the most distinctive feature of this state is the concentration of pressure
perturbations at perpendicular scales that are much larger than the typical (small) scales for
the perturbations in ϕ and T (or, to be more precise, the absence of pressure perturbations
in the small-scale structure present in ϕ and T); this is manifest in figure 9.

In § 3.3.2, we showed that the smallness of the pressure perturbations (compared with
the perturbations of the electrostatic potential and temperature) was characteristic of the
small-scale (k⊥ � 1) sITG instability, see (3.26). However, the small-scale structure that
we see in figure 9 is not produced by the equilibrium-driven instability. In fact, the
equilibrium-driven sITG instability is inconsequential in the saturated state. To show
this, we ran artificially modified simulations where κT was set to 0 for all modes
with k‖ 
= 0 (this is straightforward to do in our spectral code). This removed the
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(b)

(a)

(c)

FIGURE 7. Snapshots of the 3-D temperature perturbations associated with a ferdinon. The plots
in each row are cross-sections in different planes at the same t taken from simulations that have
the same κT = 0.36, χ = 0.1, Lx = Ly = 80, but (a) L‖ = 32, (b) L‖ = 64, and (c) L‖ = 256.
The black dashed lines visualise the intersections of the cross-sectional planes. As we increase
L‖, turbulence loses the ability to stay coherent along the parallel extent of the box and the bursts
become localised in z.
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(b)(a)

(c) (d )

FIGURE 8. Snapshots of perturbed nonzonal (a) temperature, (b) potential, (c) pressure,
and (d) parallel velocity at fixed z in the Dimits state with parameters κT = 0.8, χ = 0.1,
Lx = Ly = 80, L‖ = 1, parallel hyperviscosity ν = 2.4 × 10−8, and Fourier-space resolution
(nx, ny, nz) = (171, 171, 21). The colour scale is relative to the maximum absolute amplitude
in each panel (given in the panel’s title). Small-scale sITG modes driven by the gradients of the
ferdinon are evident in panel (d).

(b)(a)

(c) (d )

FIGURE 9. Snapshots of perturbed nonzonal (a) temperature, (b) potential, (c) pressure and (d)
parallel velocity at fixed z in the strongly turbulent state with parameters κT = 3, χ = 0.05,
Lx = Ly = 80, L‖ = 1, parallel hyperviscosity ν = 1.5 × 10−10, and Fourier-space resolution
(nx, ny, nz) = (285, 285, 83). The colour scale is relative to the maximum absolute amplitude
in each panel (given in the panel’s title). Time-averaged spectra from the same simulation are
shown in figure 10.
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equilibrium-driven linear instability from all 3-D (k‖ 
= 0) modes. Examining the spectra
of the two conserved quantities Wk and Ik (see § 2.2), we see that turning off the
equilibrium temperature gradient for the 3-D modes has no noticeable effect on the
structure of turbulence (see figure 10). As figure 11 shows, the modified simulations are
also visually indistinguishable from the unmodified ones shown in figure 9. The total heat
flux Q changes by approximately 20%–30%, likely due to the loss of radial-symmetry
breaking for the 3-D modes, which are now free to transport heat in either direction
equally, so, on average, they have zero radial heat flux. The nonlinear interactions
between the 2-D (k‖ = 0) modes cannot produce the 3-D modes that we see in the
modified simulations. Therefore, these 3-D modes must be produced by a ‘parasitic’
sITG instability of the 2-D fields (into which energy is injected by the equilibrium
gradient).

Furthermore, the spectra of Wk and Ik measured in regular simulations are inconsistent
with the region of linear instability of the dispersion relation (3.1). Namely, figure 10(a,b)
show that Wk and Ik of the linearly unstable modes of (3.1) are orders of magnitude smaller
than the corresponding spectral peaks of the two conserved quantities. We can quantify
this by using the turbulent spectra to determine the ‘dominant’ perpendicular scale as a
function of the parallel scale k‖. As figure 10(a,b) show, this is the scale at which Ik peaks
and the dependence of Wk on k⊥ changes from flat to steeply declining. To extract this
scale, we define k⊥,I(k‖) as the k⊥ that maximises Ik at a fixed k‖. Figure 12(a) shows that
k⊥,I(k‖) lies outside of the region of linear instability of (3.1). Thus, the 3-D structure of
the saturated state is not produced by the linear sITG instability driven by the equilibrium
gradient.

In § 3.3.2, we showed that the equilibrium-driven sITG instability is localised at
k‖ ≈ κTk2

⊥. A similar relationship holds for k⊥,I(k‖), viz., k‖ ≈ κeff
T k2

⊥,I , where κeff
T can be

thought of as an effective temperature gradient. Figure 12(b) shows that this κeff
T is several

times larger than the equilibrium temperature gradient. As we shall see shortly, κeff
T is

actually the gradient of the large-scale 2-D temperature perturbations.

4.2.2. Scale-separated equations for cITG and sITG modes
The numerical analysis above leads us to believe that the 3-D structure of the saturated

state is a consequence of an instability driven not by the equilibrium gradient κT , but
rather by the gradients of the 2-D perturbations. Let us attack on the analytical front. As
we discussed at the start of § 4, the 3-D sITG modes are naturally scale-separated from the
2-D cITG modes both in wavenumber and in frequency. We introduce the parallel average

〈f 〉‖ ≡
∫

dz′

Lz
f (z′). (4.5)

This average allows us to split (2.11)–(2.13) into separate equations for the slow 2-D
modes governed by the cITG instability at large perpendicular scales (k⊥ � 1), and for
the fast 3-D sITG modes, which live at small perpendicular scales (k⊥ � 1).4 We define
the small-scale perturbations as f̃ ≡ f − 〈f 〉‖. The large-scale equations are then

4A more accurate analysis should not average over the entire parallel extent of the box, but only over lz defined to
be larger than the scale of the sITG modes and smaller than the parallel scale of the cITG-like modes. As discussed in
§ 3.3.1, modes with k‖ � 1 behave like cITG modes with finite-k‖ modifications. Here we have taken a cruder approach
for the sake of simplifying the analysis. Note, however, that modes with k‖ � 1 are usually not included in our simulations
of strong turbulence for numerical reasons as we need a large maximum k‖ in order to resolve the sITG instability (see
§ 4.3.2). Thus, this cruder approach is sufficient for the analysis of the simulations that we report in § 4.2.4.
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(b)(a)

(c) (d )

FIGURE 10. Time-averaged spectra (a) Wk and (b) Ik, defined by (2.17) and (2.18), respectively,
in the strongly turbulent state with parameters κT = 3, χ = 0.05, Lx = 80, Ly = 80, and L‖ = 1.
The solid black lines demarcate the region of linear instability for kx = 0, and the red dashed
line is k‖ = κTk2

⊥, where the collisionless modes with largest growth rate reside (see § 3.3.2).
We can see that the largest contributions to the two conserved quantities are offset from the
region of linear instability. The dotted black line denotes the peak k⊥,I(k‖) of Ik at fixed k‖.
Zonal profiles and cross-sectional snapshots from the same simulation are shown in figures 4
and 9, respectively. The spectra of the saturated state with the same parameters, but with κT set
to 0 for all k‖ 
= 0 modes, are given in (c,d). Turning off the equilibrium gradient for the 3-D
modes does not alter the spectra noticeably. Snapshots from this modified simulation are shown
in figure 11.
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(b)(a)

(c) (d )

FIGURE 11. Same as figure 9, but for a modified simulation, i.e., with κT set to zero for the
k‖ 
= 0 modes. Visually, the saturated state is identical to that shown in figure 9.

(b)(a)

FIGURE 12. (a) Comparison of the location of the spectral peak k⊥,I(k‖) of Ik (blue line) and
the location of the peak of the growth rate of the collisionless linear instability driven by the
equilibrium gradient (orange dashed line), given by k‖ = κTk2

⊥. The black curve circumscribes
the region of linear instability, i.e., all Im(ωk) ≥ 0 solutions to (3.1) are inside it and outside of it,
all solutions satisfy Im(ωk) ≤ 0. (b) Comparison of the equilibrium temperature gradient κT and
the ‘effective’ temperature gradient κeff

T (k‖) ≡ k‖/k2
⊥,I . The data is from the same simulation as

shown in figure 9. The spectra of this simulation are given in figure 10. This rough estimate of
κeff

T being approximately 5–10 times larger than κT is consistent with the calculated growth rate
of the parasitic small-scale instability (see figure 13).

∂t

(〈
ϕ′〉

‖ −∇2
⊥ 〈ϕ〉‖

)
− ∂y

(〈ϕ〉‖ + 〈T〉‖
) + κT∂y∇2

⊥ 〈ϕ〉‖

+
{
〈ϕ〉‖ ,

〈
ϕ′〉

‖ −∇2
⊥ 〈ϕ〉‖

}
+ ∇⊥ · {∇⊥ 〈ϕ〉‖ , 〈T〉‖

} + χ∇4
⊥
(
a 〈ϕ〉‖ −b 〈T〉‖

)
= − 〈{

ϕ̃, ϕ̃′ − ∇2
⊥ϕ̃

} − ∇⊥ · {∇⊥ϕ̃, T̃
}〉

‖ , (4.6)

∂t 〈T〉‖ +κT∂y 〈ϕ〉‖ + {〈ϕ〉‖ , 〈T〉‖
} − χ∇2

⊥ 〈T〉‖ = −〈{
ϕ̃, T̃

}〉
‖ , (4.7)

∂t 〈u〉‖ + {〈ϕ〉‖ , 〈u〉‖
} − sχ∇2

⊥ 〈u〉‖ = −〈{ϕ̃, ũ}〉‖ . (4.8)
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The right-hand sides of (4.6)–(4.8) represent the influence of the 3-D sITG modes on
the large-scale fields. Subtracting (4.6)–(4.8) from (2.11)–(2.13), we find the small-scale
equations:

∂t
(
ϕ̃′ − ∇2

⊥ϕ̃
) + ∂‖̃u − ∂y(ϕ̃ + T̃) + κT∂y∇2

⊥ϕ̃ + ˜{
ϕ̃, ϕ̃′ − ∇2

⊥ϕ̃
} + ∇⊥ · ˜{

∇⊥ϕ̃, T̃
}

+χ∇4
⊥
(
aϕ̃ − bT̃

) = −
[{

〈ϕ〉‖ , ϕ̃′ − ∇2
⊥ϕ̃

}
+

{
ϕ̃,

〈
ϕ′〉

‖ −∇2
⊥ 〈ϕ〉‖

}
+∇⊥ ·

{
∇⊥ 〈ϕ〉‖ , T̃

}
+ ∇⊥ ·

{
∇⊥ϕ̃, 〈T〉‖

}]
, (4.9)

∂tT̃ + κT∂yϕ̃ +
{̃
ϕ̃, T̃

}
− χ∇2

⊥T̃ = −
[{

〈ϕ〉‖ , T̃
}

+
{
ϕ̃, 〈T〉‖

}]
, (4.10)

∂t̃u + ∂‖
(
ϕ̃ + T̃

) + {̃
ϕ̃, û

} − sχ∇2
⊥û = −

[{
〈ϕ〉‖ , ũ

}
+

{
ϕ̃, 〈u〉‖

}]
. (4.11)

In order to simplify the following analysis, we shall assume both temporal and spatial
scale separation between (4.6)–(4.8) and (4.9)–(4.11), i.e., that the large-scale fields are
constant in time in (4.9)–(4.11) and that the spatial and temporal scales of (4.9)–(4.11) are
short compared with the respective scales of (4.6)–(4.8). In particular, we shall assume that
the perpendicular scales of the 2-D modes are sufficiently large for the derivatives of their
gradients to be ignored. This assumption turns out to be equivalent to k⊥q⊥ � 1, where
k⊥ and q⊥ are the typical perpendicular wavenumbers of the 2-D and parasitic modes,
respectively. According to (3.8) and (3.33), the linearly unstable modes satisfy k⊥ ∼ κ

−1/4
T

and q⊥ ∼ (κT/χ)1/3 in the limit κT � χ . Therefore, the condition k⊥q⊥ � 1 is equivalent
to χ � κ

1/4
T . Additionally, recall that the Dimits threshold in two dimensions is found

at κT ∼ χ (Ivanov et al. 2020) and that, as we showed in § 4.1, the 2-D Dimits regime
is qualitatively unchanged when we include 3-D effects. Thus, for the remainder of this
section, we shall consider the limit

κT � χ � κ
1/4
T � 1, (4.12)

which puts us beyond the 2-D Dimits transition (i.e., in two dimensions, such a state blows
up). Importantly, we limit our analysis to κT/χ � 830, in which case the χ ITG instability
can safely be neglected (see Appendix C). The limit (4.12) then allows us to simplify
(4.6)–(4.8) and (4.9)–(4.11) significantly, and thus to describe the interplay between 2-D
and parasitic modes analytically. These analytical results agree with our simulations, even
though the latter do not strictly conform to (4.12).

4.2.3. Parasitic sITG instability
First, we investigate the small-scale sITG instability in the presence of large-scale 2-D

modes. Linearising (4.9)–(4.11) in the limit (4.12), we obtain(
∂t + 〈VE〉‖ · ∇⊥

) (
ϕ̃′ − ∇2

⊥ϕ̃
) + ∂‖̃u − ∂y(ϕ̃ + T̃)

+ κT · ∇⊥∇2
⊥ϕ̃ + κn · ∇⊥ϕ̃ = −χ∇4

⊥(aϕ̃ − bT̃), (4.13)(
∂t + 〈VE〉‖ · ∇⊥

)
T̃ + κT · ∇⊥ϕ̃ = χ∇2

⊥T̃, (4.14)(
∂t + 〈VE〉‖ · ∇⊥

)
ũ + ∂‖

(
ϕ̃ + T̃

) = s∇2
⊥ũ, (4.15)

where the ‘local-equilibrium’ quantities

〈VE〉‖ ≡ ẑ × ∇⊥ 〈ϕ〉‖ , κn ≡ −ẑ × ∇⊥
〈
ϕ′〉

‖ , κT ≡ κT ŷ − ẑ × ∇⊥ 〈T〉‖ (4.16)
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are the E × B advecting flow, the local density gradient, and the total local temperature
gradient (large-scale perturbation plus equilibrium), respectively. We assume that
|κT | ∼ |κn| (see § 4.2.4). Note that only the nonzonal electrostatic potential ϕ′ gives rise to
a density perturbation – this is a consequence of the modified adiabatic electron response
(2.1). Note also that we have ignored the large-scale 2-D parallel flow 〈u〉‖. Since 〈u〉‖ is
not involved in any linear instability, the only way it could be driven is via the small-scale
response, viz., the right-hand side of (4.8). In Appendix E, we show that a small initial
〈u〉‖ will decay under the influence of growing small-scale modes. Accordingly, in our
numerical simulations, we find that 〈u〉‖ is many orders of magnitude smaller than the
other two 2-D fields and is irrelevant for the saturated state.

Ignoring collisions (i.e., setting χ = 0) and taking the gradients of the large-scale fields
to be constant over the small scales at which (4.13)–(4.15) hold, we can investigate the
small-scale linear instability in a way analogous to what we did in § 3. In particular, we
shall focus on the k‖ ∼ k2

⊥ � 1 regime analysed in § 3.3.2. We look for Doppler-shifted
solutions to (4.13)–(4.15) of the form ϕ̃k, T̃k, ũk ∝ exp [−i(ωk + 〈VE〉‖ · k)t + ik · r].
Note that we ignore the shear in the E × B flow 〈VE〉‖. We also ignore the magnetic-drift
term −∂y(ϕ̃ + T̃) in (4.13) because it is subdominant for the sITG modes with k⊥ � 1.
The resulting dispersion relation for these modes is(

ω2
k − k2

‖
1 + k2

⊥

)
(ωk + κT · k) = ω2

k

1 + k2
⊥

[(κn + κT) · k] . (4.17)

Since (4.13)–(4.15) describe real fields, (4.17) must be invariant under k �→ −k and
ωk �→ −ω∗

k. We may, therefore, assume that κT · k > 0 without loss of generality.
Repeating the arguments of § 3.3.2, we define ωk ≡ ω̂kκT · k and k‖ ≡ k̂‖κT · k. Then
(4.17) turns out to be formally the same as our old dispersion relation (3.12), but now with

γ̂ 2
k = (κn + κT) · k

2k2
⊥κT · k

. (4.18)

Thus, the results of § 3.3.2 carry over to the parasitic instability described by (4.17). In
particular, the sITG instability exists if γ̂ 2

k > 0, i.e., if (κn + κT) · k and κT · k have the
same sign, and is localised to k‖ ≈ ±κT · kk⊥. Its growth rate is given by

Im(ωk) ≈ Re

√
κT · k̂ (κn + κT) · k̂

2
, (4.19)

where k̂ = k/k⊥. As expected, this is the same as (3.25) if κn = 0 and κT = κT ŷ. In
figure 13(b), we show the maximum growth rate obtained from the numerical solution
of the full (with collisionality and magnetic curvature turned back on) dispersion
relation (3.1) with the addition of the local temperature and density gradients of the
large-scale fields. As expected from the numerical analysis in § 4.2.1, the small-scale
instability driven by the large-scale gradients is significantly (≈5 times in this case)
stronger than the equilibrium-driven instability. This is consistent with the estimate of the
effective temperature gradient κeff

T for the sITG instability that we showed in figure 12(b).
Note that if κn 
= 0, (4.19) implies that modes with κT · k (κn + κT) · k < 0 are linearly

stable. Is there a κn that quenches the sITG instability for all k? Suppose κn ∦ κT ; then
we can choose k̂ · κn = 0, but k̂ · κT 
= 0. By (4.19), any such k̂ is an unstable mode.
Therefore, to stabilise all modes, we require κn ‖ κT . In this case, it is evident that
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(b)(a)

FIGURE 13. (a) Snapshot of the 2-D temperature perturbation 〈T〉‖ in the (x, y) plane. The
data is taken from the same κT = 3, χ = 0.05 simulation that we showed in figure 9. The 2-D
temperature perturbations lack the small-scale structure that was seen in figure 9(a), confirming
that the parallel average (4.5) removes small-scale perpendicular structure. (b) Small-scale
growth rate in the (x, y) plane. This plot is obtained by finding the maximum growth rate of the
full (including collisionality and magnetic curvature) dispersion relation (3.1) with the addition
of the local temperature and density gradients of the large-scale fields at every point. For this
simulation, κT = 3, and so the largest collisionless growth rate, given by (3.25), is κT/

√
2 ≈ 2.1.

It is thus evident that the influence of the gradients of the large-scale fields dominates over that
of the equilibrium gradient κT by a factor of 5. The ‘effective’ κeff

T that we estimated for the same
simulation in figure 12(b) is, indeed, a factor of 5–10 larger that the equilibrium gradient κT .

κn · k̂ = (κn · κT)(κT · k̂)/|κT |2. Therefore, in order to quench the sITG instability for all
k, we need

κn ‖ κT,
κn · κT

|κT |2 ≤ −1. (4.20)

We shall now show that the effect of the growing small-scale modes on the large-scale 2-D
fields can be expressed as an enhanced thermal diffusivity for the latter.

4.2.4. Anomalous heat flux due to parasitic sITG modes
We expect that the growth of small-scale sITG modes, which are driven by the gradients

associated with the large-scale fluctuations, will check the growth of the amplitudes of
the driving large-scale fields. This is an intuitive consequence of the conservation laws
(2.14) and (2.16). As the parasitic instability is driven by the nonlinear terms that conserve
W = ∑

k Wk and I = ∑
k Ik, an excitation of parasitic small-scale modes should show

up as a sink in the large-scale equations. Let us now calculate explicitly the influence
of small-scale sITG modes on the large-scale modes and show that this is indeed true.
This influence is represented by the terms of the form 〈{., .}〉‖ on the right-hand sides of
(4.6)–(4.8).

First, consider the temperature equation (4.7). The relevant term is

−
〈{

ϕ̃, T̃
}〉

‖
= −∇⊥ ·

〈[
(ẑ × ∇⊥ϕ̃)T̃

]〉
‖
≡ − ∇⊥ · 〈Q̃〉‖, (4.21)

where 〈Q̃〉‖ is the turbulent heat flux associated with the small-scale modes. Let us
compute it quasilinearly (i.e., assuming that 〈Q̃〉‖ is determined by the most unstable
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small-scale modes), assuming scale separation. As stated in § 4.2.2, we imagine that the
small-scale equations are solved in an infinitesimal (compared with the large scales) box,
and thus the parallel average is equivalent to an average over such a small-scale box,

〈Q̃〉‖ = −
∑

q

iẑ × qϕ̃−qT̃q ≈ −
∑

q

ẑ × q̂

√
(κT + κn) · q̂

2κT · q̂
|ϕ̃q|2, (4.22)

where q̂ = q/q⊥ and we have assumed that the sum is dominated by the wavenumbers q
corresponding to the largest linear growth rate of the parasitic sITG instability, and so have
replaced T̃q/ϕ̃q with the collisionless expression (3.26) for the modes with k‖ = κT · kk⊥
that maximise this growth rate. Note that the small-scale fields T̃q and ϕ̃q, and thus 〈Q̃〉‖
itself, depend implicitly on the position variable of the large-scale equations (4.6)–(4.8).

In order to verify that 〈Q̃〉‖ does indeed damp the large-scale temperature perturbations
〈T〉‖, we multiply (4.7) by 〈T〉‖ and integrate over space to find

∂t

∫
d3r

1
2

〈T〉2
‖ + linear terms =

∫
d3r〈Q̃〉‖ · ∇⊥ 〈T〉‖

≈ −
∫

d3r
∑

q

(ẑ × q̂) · ∇⊥ 〈T〉‖

√
(κT + κn) · q̂

2κT · q̂
|ϕ̃q|2

= −
∫

d3r
∑

q

√
κT · q̂(κT + κn) · q̂

2
|ϕ̃q|2 = −

∫
d3r

∑
q

Im(ωk)|ϕ̃q|2, (4.23)

where Im(ωk) is the sITG growth rate (4.19). Thus, the linearly unstable small-scale modes
have a sign-definite effect on 〈T〉‖: they provide additional dissipation.

The heat flux (4.22) depends on 〈T〉‖ in a nontrivial way. Let us quantify its influence on
〈T〉‖ by working out its direction as a function of κT . Let us assume that 〈Q̃〉‖ is dominated
by the fastest-growing sITG modes, and let their wavevector direction be q̂max, so 〈Q̃〉‖ is
parallel to ẑ × q̂max. In figure 14, we illustrate the influence on κT of the contribution to
〈Q̃〉‖ from the most unstable small-scale modes. As expected, we find that the turbulent
heat flux due to the small-scale modes pushes the large-scale gradient κT towards the
linearly stable configuration (4.20).

Now consider (4.6), the evolution equation for 〈ϕ〉‖. The relevant nonlinear terms are

〈{
ϕ̃, ϕ̃′ − ∇2

⊥ϕ̃
} + ∇⊥ · {∇⊥ϕ̃, T̃

}〉
‖ = ∇⊥ · 〈{∇⊥ϕ̃, p̃}〉‖

= ∇⊥∇⊥ :
∑

q

(ẑ × q)q
(

1 + Re
T̃q

ϕ̃q

)
|ϕ̃q|2 ≡ ∇⊥∇⊥ : 〈�̃〉‖. (4.24)

The collisionless calculations of § 3.3.2 are straightforward to generalise for the
collisionless parasitic small-scale instability. They yield the same relation for Re(T̃q/ϕ̃q),
viz., 1 + Re(T̃q/ϕ̃q) = O(q−2

⊥ ). However, as we shall discuss in § 4.2.5, the presence of
nonzero χ alters this to 1 + Re(T̃q/ϕ̃q) = O(q−1

⊥ ). Assuming therefore that the dominant
parasitic modes satisfy 1 + Re(T̃q/ϕ̃q) � O(q−1

⊥ ), we find ∇⊥∇⊥ : 〈�̃〉‖ � k2
⊥q⊥|ϕ̂|2.
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FIGURE 14. This plot shows the direction in which the heat flux (4.22) of the most unstable
small-scale mode (q̂ = q̂max) pushes the temperature gradient κT = −ẑ × ∇⊥ 〈T〉‖. We have
chosen a coordinate system in which the large-scale density gradient is κn = (0, 1), denoted by
the green arrow. The red line shows the values of κT for which the sITG instability has zero
growth rate, according to (4.20). The black arrows represent the direction of −ẑ × 〈Q̃〉‖. We see
that 〈Q̃〉‖ pushes the large-scale temperature gradient κT towards the linearly stable region.

However, (4.22) implies ∇⊥ · 〈Q̃〉‖ ∼ k⊥|ϕ̂|2, and so

∇⊥∇⊥ : 〈�̃〉‖
∇⊥ · 〈Q̃〉‖

� k⊥q⊥ ∼ O

⎡⎣(
κ

1/4
T

χ

)1/3
⎤⎦ � 1, (4.25)

in line with the assumption on scales formulated at the end of § 4.2.2. Therefore, assuming
that 〈ϕ′〉‖ ∼ 〈T〉‖

5 and that they evolve on the same time scale, we conclude that the main
effect of the small-scale modes is to provide a feedback to the large-scale temperature in
the form of the additional heat flux 〈Q̃〉‖.

We can thus summarise the equations that govern the evolution of 〈ϕ′〉‖ and 〈T〉‖ as

∂t
〈
ϕ′〉

‖ −∂y

(〈
ϕ′〉

‖ + 〈
T ′〉

‖

)
+ κT∂y∇2

⊥
〈
ϕ′〉

‖

+
{
〈ϕ〉‖ ,

〈
ϕ′〉

‖ −∇2
⊥ 〈ϕ〉‖

}′
+ ∇⊥ · {∇⊥ 〈ϕ〉‖ , 〈T〉‖

}′ + χ∇4
⊥
(

a
〈
ϕ′〉

‖ −b
〈
T ′〉

‖

)
= 0,

(4.26)

∂t 〈T〉‖ +κT∂y 〈ϕ〉‖ + {〈ϕ〉‖ , 〈T〉‖
} − χ∇2

⊥ 〈T〉‖ = − 〈{
ϕ̃, T̃

}〉
‖ , (4.27)

where the influence of small-scale fields appears only in the temperature equation (4.27).
The system of (4.13)–(4.15) and (4.26)–(4.27) respects the conservation of the two
conserved quantities described in § 2.2; this is shown in Appendix F.

5While this is in contradiction with the 2-D curvature-mode scaling
〈
T ′〉

‖ / 〈ϕ〉‖ ∼ √
κT � 1, we do find that〈

ϕ′〉
‖ ∼ 〈T〉‖ in our 3-D simulations. This is due to the strong influence of the 3-D modes on the dynamical evolution of

〈T〉‖; see (F7) and the discussion thereafter.
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The above reasoning does not apply to the ZFs. Indeed, the equation for ϕ is

∂tϕ − ∂x 〈ϕ〉‖ ∂y 〈ϕ + T〉‖ − ∂2
x (aϕ − bT) = ∂xϕ̃∂y(ϕ̃ + T̃) = �̃xx. (4.28)

This shows that the small-scale stress �̃ influences the zonal electrostatic potential ϕ more
strongly (by a factor of k−2

⊥ ) than it does the nonzonal 〈ϕ′〉‖. This is a consequence of the
electron response (2.1) and the asymptotically smaller ‘inertia’ (i.e., the factor in front
of the time derivative) ∝ k2

⊥ of the ZFs compared with the ‘inertia’ ∝ (1 + k2
⊥) of the

nonzonal ϕ′. Thus, the right-hand side of (4.28) cannot be ignored. In fact, as we showed
in § 4.1, the addition of 3-D effects, and hence of parasitic modes, has a profound impact
on the stability of the Dimits-state ZFs, viz., the momentum flux �̃xx extends the Dimits
state to higher temperature gradients than the 2-D system allows. Let us show why this is
the case.

4.2.5. Turbulent stress due to parasitic sITG modes
In Ivanov et al. (2020), we obtained a prediction for the critical gradient κ

c,2D
T (χ) above

which a Dimits state with strong ZFs could not be sustained. This prediction was based
on considerations of the ratio Re(Tk/ϕk) for the linear modes with largest growth rate.
As explained in § 4.1.1, this ratio determines the balance of Reynolds and diamagnetic
stresses for an individual Fourier mode: if Re(Tk/ϕk) > −1, then the Reynolds stress is
larger and the mode favours a Dimits state, otherwise its diamagnetic stress is larger and
the mode helps suppress the coherent ZFs needed for the Dimits state. In two dimensions,
this ratio is sensitive to both the temperature gradient κT and the collisionality χ , and
thus an appropriate balance between these two parameters is required in order to have
Re(Tk/ϕk) > −1 for the dominant modes and thus to keep the system in the Dimits state.
In particular, for κT � 1, the Dimits threshold is given by κT/χ = const.

Let us adopt a similar approach for the fastest-growing small-scale sITG
modes located at k‖ ≈ κT · kk⊥. Equation (3.26) tells us that these modes satisfy
Re(Tk/ϕk) = −1 + O

(
k−2

⊥
)

for k⊥ � 1. Therefore, to lowest order, the sITG modes are
Dimits-marginal, i.e., their Reynolds and diamagnetic stresses balance out. This means
that the lowest-order collisionless calculations of § 3.3.2 are insufficient for our needs.
While we can extend these calculations to O

(
k−2

⊥
)
, ignoring χ is, in fact, an unacceptable

oversimplification. As we are about to see, nonzero χ provides a O
(
k−1

⊥
)

correction to
Re(Tk/ϕk) and hence renders any collisionless higher-order corrections irrelevant.

As discussed in the beginning of § 4, the dominant collisionless sITG modes are found
at k3

⊥ ∼ κT/χ . It turns out that at those scales, it is collisional effects that determine
Re(Tk/ϕk). The details of the relevant calculation can be found in Appendix D. We find
that for χ ordered as κT ∼ χk3

⊥, the most unstable small-scale sITG modes are still located
at k‖ = κT · kk⊥ and satisfy

Tk

ϕk
= −1 −

√
−γ̂ 2

k + i(a + b − 1)χk2
⊥

2κT · k
+ O

(
k−2

⊥
)
, (4.29)

where we take the branch of the square root with a positive imaginary part. Since
γ̂ 2

k > 0 and κT · k > 0 (as stipulated after (4.17)), we find that the sign of the real part
of the square root in (4.29) is set by the sign of a + b − 1. Plugging in the numerical
values a = 9/40 and b = 67/160, we find a + b − 1 < 0, hence the square root has a
negative real part and Re(Tk/ϕk) > −1. Thus, collisionality always pushes the otherwise
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(b)(a)

FIGURE 15. (a) Linear growth rate and (b) the ratio Re(Tk/ϕk) of the most unstable (kx = 0)
modes versus k‖ and ky for κT = 1 and χ = 0.1. The green dashed line is Re(Tk/ϕk) = −1.
The black dashed line is the location of the largest collisionless growth rate k‖ = κTk2

y . While
the green and black lines would coincide to O(k−2

⊥ ) for the collisionless modes, we see that
the addition of collisions shifts the linearly unstable modes towards the Dimits-favourable
Re(Tk/ϕk) > −1 ratio.

Dimits-marginal small-scale sITG modes to side with the Reynolds stress and reinforce
the ZFs.6 This is evident in figure 15.

The sensitivity of Re(Tk/ϕk) to the numerical factors a and b allows us to carry
out a simple test of the above theory. We pick a simulation that is in the Dimits state
in three dimensions, but above the 2-D Dimits threshold, i.e., has κT > κ

c,2D
T . We restart

this simulation, but set a = 1 for all nonzonal modes. Linearly, this increases nonzonal
viscosity and reduces growth rates, without affecting zonal physics. Naïvely, one might
expect that with an increased damping of the turbulence, the Dimits state should become
‘stronger’. However, such reasoning does not take into account the structure of the 3-D
modes and the change in the balance of Reynolds and diamagnetic stresses stemming from
the change of the sign of a + b − 1. Indeed, in this numerical experiment, we discover
that the Dimits regime is destroyed and strong turbulence sets in, just as the analysis
above predicts. This is clear evidence that the most consequential role of collisionality
for the Dimits regime of (2.11)–(2.13) is not to dissipate turbulent energy, but rather to
regulate the turbulent stress via the ratio Re(Tk/ϕk). This also suggests, for future analysis
of the Dimits transition in different models of ITG turbulence, that the Dimits threshold
may prove to be sensitive to the details of dissipation effects on the unstable modes,
especially if, in the absence of collisions, these modes are Dimits-marginal, i.e., if they
satisfy Re(Tk/ϕk) ≈ −1.

Let us also note that in the simple case of sITG modes in slab geometry, a more general
calculation that includes kinetic effects is possible. In Appendices G and H, we derive
the kinetic sITG dispersion relation and the kinetic equivalent of (4.1). Then, applying
the ideas developed in Ivanov et al. (2020) and in this work, we show that ZF-driving

6Note that the same holds for the χ ITG modes of Appendix C, viz., the sign of 1 + Re(Tk/ϕk) is equal to that of
1 − a − b. And, as figure 20 shows, we always find Re(Tk/ϕk) > −1 for our values of a and b.
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FIGURE 16. Dependence of the turbulent viscosity (4.4) on the temperature gradient for
χ = 0.1 and L‖ = 1. The 2-D Dimits regime ends at κ

c,2D
T ≈ 1. In 3-D simulations, the 2-D

modes eventually reverse their turbulent viscosity (red), but the 3-D sITG modes continue to
feed the ZFs through a negative turbulent viscosity (blue). The data is taken from simulations
with fixed ZF profiles.

small-scale sITG modes are not limited to the cold-ion limit and could play a role outside
of the realm of simple fluid approximations. This, of course, can be conclusively confirmed
only by appropriate GK simulations.

4.3. Breaking the Dimits state
Recall that the 2-D critical gradient κ

c,2D
T was found to be an increasing function of χ .

Naïvely, this makes sense on the basis of ‘more dissipation means less turbulence’: one
expects that one should be able to compensate for an increase in the drive κT by an
appropriate increase in χ and thus keep the system in the Dimits state. However, this
simple picture is false. Collisionality and drive are important for maintaining the Dimits
state not because they provide dissipation and injection of energy, but rather because they
determine the ratio Re(Tk/ϕk) for the linearly unstable modes. In two dimensions, this
ratio is sensitive to both κT and χ ; however, this is not the case in three dimensions as the
small-scale sITG modes always favour the Dimits state. First, their turbulent momentum
flux was shown to satisfy Re(Tk/ϕk) ≈ −1, with collisions pushing this ever so slightly
in the Dimits-stable direction of Re(Tk/ϕk) > −1 (see § 4.2.5). Secondly, they provide
an effective thermal diffusion for the large-scale 〈T〉‖, which in turn reduces the absolute
value of 〈Tk〉‖ / 〈ϕk〉‖ and partially suppresses the tendency of large-scale modes to destroy
the Dimits state (§ 4.2.4). Our numerical simulations show that the combination of the
mode structure of the small-scale instability and its influence on large-scale modes proves
to be enough to keep the system in the Dimits regime regardless of κT and χ . As κT

increases beyond the 2-D Dimits threshold κ
c,2D
T , the 2-D modes flip the sign of their

turbulent momentum flux and start eroding the ZFs, but the small-scale sITG modes are
able to provide enough ZF drive to maintain the Dimits state (see figure 16). Figure 17(a)
illustrates the Dimits saturation mechanism.

However, the small-scale sITG modes are able to maintain the Dimits state only if the
3-D system is ‘3-D enough’. Namely, if we restrict the system in z by either squeezing
it to a small L‖ (see § 4.3.1) or by cutting off large-k‖ modes (see § 4.3.2), we can break
the ZF-dominated Dimits regime and push the system into a strongly turbulent state. The
former of these methods can be deemed ‘physical’ in the sense that real system can be
geometrically limited along the magnetic field, e.g., by magnetic shear. The latter is but
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(b)(a)

FIGURE 17. Schematic of the flow of energy in (a) the Dimits regime, characterised by strong,
turbulence-shearing, staircase ZFs and (b) strong turbulence, where no such ZFs can be generated
or sustained. In the Dimits regime, the equilibrium gradients (EG) inject energy into large-scale
modes via the 2-D cITG instability. These can then drive ZFs via the secondary instability (see
§ 2.8 of Ivanov et al. 2020) and small-scale perturbations via the parasitic sITG instability (see
§ 4.2). In the 2-D Dimits regime (κT < κ

c,2D
T ), the curvature-driven large-scale modes generate a

negative turbulent viscosity on the ZFs and hence reinforce the Dimits state. For κT > κ
c,2D
T , the

2-D modes erode the ZFs, but the ZF drive of the parasitic modes sustains the ZFs (see § 4.2.5).
On the other hand, if a Dimits state cannot be achieved, the energy injected into the large-scale
modes is transferred to small scales via the parasitic sITG instability, whence it cascades to even
smaller, linearly stable scales where it is taken out of the system.

a numerical artefact in our cold-ion system; however, parallel transport processes, which
were ordered out in (2.11)–(2.13), do provide a large-k‖ cutoff for the sITG instability (see
§ 4.3.2).

Regardless of how the Dimits state is broken, amplitudes remain finite. The small-scale
instability is able to extract energy efficiently from the large-scale (k⊥ � 1) fields, into
which the cITG instability inputs energy, and to dump it into the small scales k⊥ � 1 of
the sITG instability, whence it cascades to smaller scales, where dissipation can take it out
of the system. Figure 17(b) shows the flow of energy in the strongly turbulent state.

4.3.1. Effect of parallel system size on the Dimits state
Figure 18(a) shows a typical example of the dependence of the saturated turbulent heat

flux Q on the parallel size of the box L‖ for parameters κT and χ that lie beyond the 2-D
Dimits regime. For such parameters, the L‖ = 0 system does not reach finite-amplitude
saturation. For L‖ large enough, Q is independent of L‖, just as it was for parameters that
were within the 2-D Dimits threshold (see § 4.1). As L‖ is decreased, the ZFs break up and
the system enters a strongly turbulent state. In figure 18(a), this happens for L‖ < 1. As
L‖ approaches zero, Q starts to increase rapidly, signifying the approach to the 2-D state,
where a blow up occurs.

Therefore, for each pair of values of κT and χ , there exists a critical Lc
‖ such that the

system is in the Dimits state for L‖ > Lc
‖ and in the strongly turbulent regime for L‖ < Lc

‖.
It is clear that Lc

‖ = 0 if κT < κ
c,2D
T , i.e., if κT and χ are such that the 2-D system is able

to reach saturation. The dependence of Lc
‖ on κT and χ for κT > κ

c,2D
T is not known at

this point, due to the numerical cost of resolving simultaneously both the large k‖ of the
small-scale modes (see § 4.3.2) and the box-sized k‖ ∼ L−1

‖ .
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(b)(a)

FIGURE 18. Dependence of the saturated turbulent heat flux Q on (a) the parallel size of the
box L‖ and (b) the largest parallel Fourier mode k‖,max that is included in the simulation.

4.3.2. Effect of parallel resolution on the Dimits state
The scale separation between the large-scale cITG modes and the small-scale sITG

modes increases the numerical cost of solving (2.11)–(2.13). When the parallel resolution,
i.e., the largest k‖ in the simulation, is too small, the Dimits state is destroyed numerically
and the system is pushed into a strong-turbulence regime for parameters for which a
Dimits state would have existed if given sufficient parallel resolution. This is shown in
figure 18(b). Empirically, we have found that a good rule of thumb is ‘not to chop the
leaves’ of the instability, i.e., to make sure that the wavenumbers that lie within the
unstable ‘leaves’ at k‖ ∼ κTk2

⊥ (see figure 2) are fully included in the simulation.7 This,
however, rapidly increases the numerical cost of the simulations. Recall that according to
(3.33), the collisionless sITG instability satisfies k⊥ ∼ (κT/χ)1/3. Therefore, for a fixed χ ,
the dimensional k‖ of the unstable modes is given by

k‖LB ∼ κTk2
⊥ ∼ κ

5/3
T

χ 2/3
. (4.30)

The number of Fourier modes required to resolve a simulation properly then scales as κ
5/3
T ,

in addition to scaling linearly with L‖. This quickly renders numerical efforts futile, even
for a fluid code.

Of course, the infinitely extending ‘leaves’ of the instability in our 3-D model will, in
reality, be ‘chopped off’ by phenomena that have been ordered out of our equations by
(2.3). For example, (2.3) orders out the parallel thermal diffusion (Braginskii 1965), but
we can nonetheless estimate the dimensional k‖ at which this effect will become important.
This is the parallel scale at which the collisional heat conduction rate v2

thik
2
‖/νi becomes

7Of course, this is but a rule of thumb and cannot be entirely accurate because, as discussed in § 4.2.1, the small-scale
instability is driven not by κT , but rather by the gradients of the large-scale fields. In other words, the linear 3-D modes
shown in figure 2 are irrelevant for the saturated state. However, we expect that the temperature gradients associated with
the saturated large-scale perturbations scale with κT , and so this rule of thumb is a good heuristic guide for setting up
simulations.
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comparable to ∂t ∼ cs/LB in (2.11)–(2.13), which happens at

k‖LB ∼
√

LB√
τλmfp

, (4.31)

where λmfp = vthi/νi is the mean-free path. In our ordering (2.3), λmfp/LB ∼ τ 3/2, so we
find that the collisional heat conduction comes into play at k‖LB ∼ 1/τ . Formally, this is
outside of the regime k‖LB ∼ 1 assumed in (2.11)–(2.13), but physically, we conclude that
the Dimits regime could be broken if the collisional cutoff (4.30) is superseded by the
Braginskii scale (4.31), i.e., if

LB

LT
�

(
LB

λmfp

)7/10

τ−11/20, (4.32)

where we used κT ∼ τLB/LT and χ ∼ LBτ
3/2/λmfp. In a real fusion device, this condition

will not be very difficult to reach, but, in fact, the more relevant mechanism for limiting
the parallel wavenumber of the sITG instability is parallel streaming rather than collisional
heat conduction. In Appendix G, we show that this too imposes a limit on the parallel
wavenumber that is O(τ−1) too large to be included in our ordering of k‖. Namely, the
sITG cutoff is given by

k(c)
‖ LB = LB

2
√

π(1 + τ)LT
, (4.33)

which supersedes the collisional cutoff (4.30) if

LT

λmfp
� τ(1 + τ)3/2. (4.34)

Again, such a regime is entirely plausible for a real fusion device.
We conclude that in a more realistic physical regime than the one assumed in the

derivation of our model equations (2.11)–(2.13), the behaviour (or even existence) of
parasitic sITG modes may be influenced by parallel thermal diffusion or parallel streaming
in a way that breaks the Dimits regime at large enough temperature gradients.

5. Discussion

Following our analysis of the Dimits regime and its threshold in the 2-D model of Ivanov
et al. (2020), we have been able to extend both our model and our understanding of ITG
turbulence to three dimensions. The important qualitative features of the 2-D Dimits state,
viz., strong coherent ZFs with patch-wise constant shear, turbulent bursts and localised
travelling structures survive the inclusion of 3-D physics largely unchanged (see § 4.1). The
ZFs are generated and destroyed by the Reynolds and diamagnetic stresses of sheared ITG
turbulence, respectively. If the Reynolds stress is larger, coherent ZFs can be maintained
and the system settles into a low-transport Dimits state. Otherwise, a strongly turbulent,
high-transport state arises in which saturation occurs unaided by ZFs. In the 2-D model,
the ratio of Reynolds to diamagnetic stress is sensitive to the equilibrium parameters –
the temperature gradient κT and the ion collisionality χ – and thus an appropriate balance
of the two is required in order to keep the system within the Dimits regime. With the
inclusion of parallel physics, however, the stresses are modified by the 3-D-exclusive sITG
instability, which is found always to favour the ZFs (see § 4.2.5). Unless 3-D physics is
restricted either by a small parallel box size (§ 4.3.1) or by insufficient numerical resolution

https://doi.org/10.1017/S002237782200071X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782200071X


34 P.G. Ivanov, A.A. Schekochihin and W. Dorland

(§ 4.3.2), the sITG instability is able to tip the stress balance in the Reynolds direction and
a Dimits state is established regardless of the values of the equilibrium parameters.

This 3-D sITG instability is found to be scale-separated from the 2-D cITG instability
(see § 4.2.2). In the absence of collisions, the former exists at arbitrarily small
perpendicular and parallel scales, while the latter is confined to large scales. This scale
separation allows for sITG modes that are predominantly driven not by the equilibrium
gradients but rather by the local gradients of large-scale fields, which are themselves
driven by the equilibrium gradients (i.e., the sITG instability is parasitic). The nonlinear
energy transfer from large-scale to small-scale modes that results from the sITG instability
is found to have the form of an effective large-scale thermal diffusion (see § 4.2.4). The
combination of this thermal diffusion and the favourable turbulent stress of the small-scale
modes are what makes the 3-D Dimits state much more resilient than its 2-D counterpart.

The fact that the Dimits state is governed by essentially the same physical mechanisms
in both the 2-D and 3-D cold-ion Z-pinch systems gives us not only hope that one day
we could understand the Dimits regime of full-blown GK, but also a solid foundation of
numerical and analytical work upon which to build such an undertaking. Although there is
some numerical evidence of important similarities between these simple systems and GK,
e.g., the ferdinon structures seen both by us and by van Wyk et al. (2016, 2017) in their
GK simulations of an experimentally realistic configuration, there is still much unknown.
The details of the Dimits state in our 3-D model depend on certain peculiar features of
cold-ion physics. It is the cold-ion approximation that permits the parasitic small-scale
sITG instability that underlies the main differences between the 2-D and 3-D models.
As this is only one asymptotic limit of GK, it is difficult to extrapolate any quantitative
predictions. However, it is important to note that the kinetic, τ ∼ 1, dispersion relation
also predicts a collisionless sITG instability at arbitrarily large k⊥ (see Appendix G), as
was already established by Smolyakov, Yagi & Kishimoto (2002). Just as in the cold-ion
fluid model, these sITG modes appear to favour a ZF-dominated state (Appendix H). Thus,
the appearance of parasitic modes is not necessarily limited to our cold-ion model and, in
certain regimes, could also be a feature of low-collisionality GK. This may also require a
careful investigation of GK collisions along the lines of Frei, Hoffmann & Ricci (2022).
All of this, combined with the fact that the nature of the Dimits state in the 2-D and 3-D
models is essentially the same, encourages us to carry our ideas over into the vastly more
complex world of GK. At this point, it is unknown whether the Reynolds–diamagnetic
stress competition is also behind the Dimits transition in GK. One of the prominent
alternative ideas is the primary–secondary–tertiary scenario, first proposed by Rogers,
Dorland & Kotschenreuther (2000). Recently, there have been a number of publications
discussing the applicability of this paradigm to both fluid and kinetic models (St-Onge
2017; Zhu, Zhou & Dodin 2018, 2020a, b; Hallenbert & Plunk 2021). Note that, as we
showed in Ivanov et al. (2020), the Dimits transition that we observe cannot be explained
by the tertiary instability of ZFs. It is possible that the nature of the transition to high
transport in realistic GK simulations is, in fact, not as clear-cut as it is in the simple
models, but is rather a combination of both mechanisms, viz., the competition between
the stresses and a tertiary instability.

Another important feature that our model lacks is magnetic shear. It is well known that
this can have a significant effect on both the linear instabilities and turbulence levels in
realistic-geometry GK simulations (Kinsey, Waltz & Candy 2006). Notably, much effort
today is being devoted to spherical tokamak designs, which can have large values of
field-line-averaged magnetic shear combined with nontrivial variations in the local shear.
Therefore, we consider the addition of magnetic shear to our analytical and numerical
models to be a key direction for future work.
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Appendix A. Derivation of the 3-D model

We follow the derivation in Appendix A of Ivanov et al. (2020), but retain the
parallel-streaming term in the GK equation. For the sake of brevity, we shall use the
notation and definitions of Ivanov et al. (2020).

The electrostatic ion GK equation is

∂

∂t
(h − 〈ϕ〉R Fi) + v‖∂‖h + ρivthi

2LT

(
v2

v2
ti

− 3
2

)
Fi

∂ 〈ϕ〉R

∂Y
− ρivthi

LB

(
v2

‖
v2

thi

+ v2
⊥

2v2
thi

)
∂h
∂Y

+ 1
2
ρivthi {〈ϕ〉R , h} = 〈Cl[h]〉R , (A1)

closed via the quasineutrality condition and (2.1):

1
ni

∫
d3v 〈h〉r = ϕ + τϕ′. (A2)

The 2-D fluid model was derived in a highly collisional (∂t � νi), cold-ion (τ � 1),
long-wavelength (k2

⊥ρ2
i � 1) limit of the ion GK equation that obeys (2.3). Note that,

as discussed in § 2, in order to retain the sITG instability in the final equations, we need to
order ∂‖ ∼ L−1

B . Thus, the parallel-streaming term is ordered as

v‖∂‖h ∼ vthi

LB
h � ∂th ∼ cs

LB
h ∼ vthi

LB
√

τ
h, (A3)

i.e., it is one order of
√

τ smaller than the ∂th term. This means that here we need
to expand the distribution function in

√
τ , rather than in τ , as was done in Ivanov

et al. (2020). In order to be consistent with the notation of our 2-D derivation, we set
h = h(0) + h(1/2) + h(1) + · · · , where h(1/2) ∼ √

τh(0), etc.

A.1. Lowest-order solution
To order O(

√
τ), the ion GK equation (A1) is dominated by collisions, viz.,

Cl[h(0) + h(1/2)] = 0. (A4)
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The solution to this equation is a perturbed Maxwellian distribution (Newton, Cowley &
Loureiro 2010):

h(0) + h(1/2) =
[
δN
ni

+ δT
Ti

(
v2

v2
thi

− 3
2

)
+ 2v‖u‖

v2
thi

]
Fi. (A5)

Here δT/Ti will turn out to be just the ion-temperature perturbation, while the density-like
quantity δN/ni is

δN
ni

= ϕ + τϕ′ − 1
4
ρ2

i ∇2
⊥

(
ϕ + δT

Ti

)
+ O

(
k4

⊥ρ4
i ϕ

)
. (A6)

For more details, see the derivations in Ivanov et al. (2020). The ordering u‖ ∼ τcsϕ,
which we established using (2.8), implies that

2v‖u‖
v2

thi

∼ τcsϕ

vthi
∼ √

τϕ. (A7)

Therefore, the perturbed parallel flow does not enter into h(0). We define solution for the
distribution function to two lowest orders as

h(0) =
[
δN
ni

+ δT
Ti

(
v2

v2
thi

− 3
2

)]
Fi, (A8)

h(1/2) = 2v‖u‖
v2

thi

Fi (A9)

and the solubility conditions∫
d3v h(n) =

∫
d3v v2h(n) =

∫
d3v v‖h(n) = 0 (A10)

for n ≥ 1.
Note that our expansion implies that parallel collisional effects (parallel heat flux and

parallel viscosity) enter via h(3/2) and so are asymptotically too small to appear in any of
our fluid equations.

A.2. Fluid equations
We proceed by taking the density, temperature, and parallel-velocity moments of (A1).
The derivation for the ‘2-D parts’ of the equations for ϕ and T can be found in Ivanov
et al. (2020).

The density moment at fixed particle position, (1/ni)
∫

d3v 〈.〉r, of (A1) is

∂

∂t

(
τϕ′ − 1

2
ρ2

i ∇2
⊥ϕ

)
+

∫
d3v v‖∂‖

〈
h(1/2)

〉
r − ρivthi

LB

∂

∂y
(ϕ + T) + ρivthi

2LT

∂

∂y

(
1
2
ρ2

i ∇2
⊥ϕ

)
+ 1

2
ρivthi

({
ϕ, τϕ′ − 1

2
ρ2

i ∇2
⊥ϕ

}
+ 1

2
ρ2

i ∇⊥ · {∇⊥ϕ, T}
)

= −1
2
χρ2

i ∇4
⊥(aϕ − bT), (A11)
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where all terms are of order O(τh(0)). The parallel-velocity moment is, using (A9),

1
ni

∫
d3v v‖∂‖

〈
h(1/2)

〉
r ≈ ∂‖u‖. (A12)

Combining (A12) with (A11) yields (2.4).
Similarly, the temperature moment, (1/ni)

∫
d3v v2/v2

thi 〈.〉r, of (A1) is

∂T
∂t

+ 1
ni

∫
d3vv‖∂‖

v2

v2
thi

〈
h(1/2)

〉
r + ρivthi

2LT

∂ϕ

∂y
+ 1

2
ρivthi {ϕ, T} = χ∇2

⊥T, (A13)

where the parallel-streaming term is

1
ni

∫
d3vv‖∂‖

v2

v2
thi

〈
h(1/2)

〉
r = 5

2
∂‖u‖. (A14)

Hence we obtain (2.5).
Finally, we take the parallel-velocity moment, (1/ni)

∫
d3v v‖ 〈.〉r, of (A1). The first

term is the time derivative of

1
ni

∫
d3v v‖ 〈h − 〈ϕ〉R Fi〉r ≈ 1

ni

∫
d3v v‖h(1/2) = u‖. (A15)

The parallel-streaming term is

1
ni

∫
d3v v2

‖∂‖ 〈h〉r ≈ 1
ni

∫
d3v v2

‖∂‖h(0) = 1
2
v2

thi∂‖(ϕ + T). (A16)

The temperature-gradient term integrates to 0 because the integrand is odd in v‖. The
magnetic-gradient term is one order of LT/LB ∼ O(τ ) � 1 smaller than the rest (the
magnetic curvature is absent from (A13) for the same reason). The nonlinear term
integrates to

1
ni

∫
d3v v‖ 〈{〈ϕ〉R , h}〉r ≈ 1

ni

∫
d3vv‖

{
ϕ, h(1/2)

} = 1
2
ρivthi

{
ϕ, u‖

}
. (A17)

Finally, the parallel-velocity moment of the collisional operator is

1
ni

∫
d3v v‖ 〈〈Cl[h]〉R〉r ≈ 1

ni

∫
d3v v‖Cl[h(1/2)] = s∇2

⊥u‖, (A18)

where s = 9/10 is a numerical factor (see Newton et al. 2010). Putting together
(A15)–(A18), we arrive at (2.6).

Appendix B. The sITG instability condition

Here we derive the instability boundaries (3.13) for the dispersion relation (3.12). Note
that the left-hand side of (3.12) is a cubic polynomial in ω̂k with one positive and two
negative roots, while the right-hand side is a simple quadratic proportional to ω̂2

k (see
figure 19). First, if γ̂ 2

k < 0, then the right-hand side is a concave parabola and it is
geometrically evident that there will always be three intersections of the parabola and
the cubic, and so there are no unstable solutions. On the other hand, if γ̂ 2

k > 0, then
these two curves cross three times if and only if the cubic left-hand side is larger than
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FIGURE 19. The left-hand (red) and right-hand (blue) sides of the sITG dispersion relation
(3.12) for k̂‖ = 2, k2

⊥ = 0.2. There is only one real solution, so there exists a complex one with
positive imaginary part. Thus, there are linearly unstable modes for k̂‖ = 2, k2

⊥ = 0.2.

the quadratic right-hand side at ω̂k = ω̂
(0)

k < 0, where the two curves have the same slope.
We differentiate (3.12) to find that ω̂

(0)

k is the negative solution to(
ω̂

(0)

k

)2
+

[
2
3

− 4k2
⊥γ̂ 2

k

3(1 + k2
⊥)

]
ω̂

(0)

k − 1
3

k2
‖

1 + k2
⊥

= 0. (B1)

Using (B1) to substitute for ω̂
(0)

k , the instability condition that the left-hand side of (3.12)
be smaller than its right-hand side is then found to be equivalent to

ω̂
(0)

k > −k̂2
‖

4(1 + k2
⊥) + k2

⊥γ̂ 2
k

3k̂2
‖(1 + k2

⊥) + (
1 + k2

⊥ − 2k2
⊥γ̂ 2

k

)2 ≡ ω̂min
k . (B2)

Since ω̂
(0)

k is the negative solution of the quadratic (B1) and ω̂min
k < 0, (B2) can be true if

and only if the quadratic (B1) is positive when we substitute ω̂min
k for ω̂

(0)

k . Performing that
substitution and simplifying the resulting expression yields a quadratic inequality for k̂2

‖:

− (1 + k2
⊥)k̂4

‖ + k̂2
‖
[
2(1 + k2

⊥)2 + 10k2
⊥γ̂ 2

k (1 + k2
⊥) − k4

⊥γ̂ 4
k

] − (1 + k2
⊥ − 2k2

⊥γ̂ 2
k )3 > 0.

(B3)
Its solution is the interval k̂2

‖ ∈ (k̂2
‖,−, k̂2

‖,+), where k̂2
‖,± are given by (3.13).

Appendix C. Collisional slab instability

To simplify the dispersion relation and focus on the χ ITG instability promised at the
end of § 3.4, let us consider the k⊥ � 1 limit of (3.27)–(3.29), i.e., drop the ∂tϕ

′ term
in (3.27), and also drop the collisionless-resonance term ∂tϕ

′ from the right-hand side of
(3.28). The dispersion relation for the thus simplified equations becomes

(ω̂k + 1)(ω̂k + isβk)(ω̂k + iβk) − αk(ω̂k + 1 + iβk)

+ iβk(ω̂k + isβk)(aω̂k + iaβk − b) = 0, (C1)

where we have defined ω̂k ≡ ωk/κTky, αk ≡ k2
‖/κ

2
Tk2

yk2
⊥, βk ≡ χk2

⊥/κTky. Note that the five
parameters of a Fourier mode, viz., κT , χ , and the three components of k have collapsed
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(b)(a)

FIGURE 20. (a) Largest growth rate Im(ω̂k) obtained by solving (C1). (b) The ratio Re(Tk/ϕk)
for the most unstable mode. The solid black line is the stability boundary Im(ω̂k) = 0. The
dotted lines in (a) show the analytic approximations to the αk and βk instability boundaries,
given by (C4) (for βk � 1) and (C10) (for βk ∼ λ� 1). We see perfect agreement with (C4),
but a slight discrepancy with (C10), whose derivation is accurate only under the assumption that
1 − a − b = λ ≈ 0.36 is small. All unstable modes lie within Re(Tk/ϕk) > −1.

into only two effective parameters: αk and βk. Thus, we only need to solve (C1) in the
(αk, βk) plane. The solution (in particular, its imaginary part) is shown in figure 20,
alongside the value of Re(Tk/ϕk) for the most unstable mode – a quantity that is crucial
for the Dimits regime (see § 4.1 and also Ivanov et al. 2020). Let us discuss this solution
in some easy limits.

First, consider the case of βk � 1 ∼ αk. As βk ∼ k⊥, this limit corresponds to the
low-k⊥ end of the wavenumber spectrum of the collisional instability. Note that this is
a subsidiary expansion to the k⊥ � 1 one used to obtain (C1). To lowest order in βk, (C1)
yields

(ω̂2
k − αk)(ω̂k + 1) = 0, (C2)

whence ω̂k ≈ ω̂
(0)

k = −1,±√
αk. Letting ω̂k = ω̂

(0)

k + δω̂k, where δω̂k/ω̂k ∼ βk � 1, we
find in the next order

ω̂k = −1 + −iβk(a + b − αk)

1 − αk
, ±√

αk + −iβk
[√

αk(s + a) ± (s + 1 − b)
]

2(
√

αk ± 1)
. (C3)

It is then evident that the ω̂
(0)

k = √
αk solution is always stable, while the other two give

the following condition for instability:

αk = k2
‖

κ2
Tk2

yk2
⊥

∈
(

a + b,

(
s + 1 − b

s + a

)2
)

≈ (0.64, 1.73), (C4)

the numerical values being valid for a, b and s as given after (2.7). The instability
boundaries in (C4) agree with figure 20. Note that for a + b → 1, (C4) implies that
αk → 1, i.e., k‖ → κTkyk⊥, which is precisely the resonance condition we discovered
in § 3.4. In hindsight, this is expected because the collisional coupling term on the
right-hand side of (3.28) goes to zero in the limit a + b → 1.
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Equation (C3) implies that the growth rate Im(ω̂k) of the βk � 1 collisional modes
satisfies Im(ω̂k) ∼ βk. However, these expressions break down when αk = 1 + O(βk).
We now show that this is precisely where the fastest-growing mode resides, similarly
to what we found in § 3.3.2 for the collisionless sITG mode. Setting ω̂k = −1 + δω̂k,
αk = 1 + δαk, where δω̂k ∼ δαk ∼ √

βk � 1, we find from (C1) that

2δω̂2
k + δαk + i(a + b − 1)βk = 0 =⇒ Im

(
ω̂k

) = ±
√

δα2
k − 8i(a + b − 1)βk

4
, (C5)

which implies that Im
(
ω̂k

)
is largest when δαk = 0. To see this, note that the imaginary

part of the square root of a complex number u + iv is equal to

Im
(√

u + iv
)

=
√

−u + √
u2 + v2

2
, (C6)

which can easily be shown to be a decreasing function of u. Therefore, the growth rate in
(C5) is largest when δαk = 0 and is given by

Im
(
ω̂k

) = 1
2

√
|a + b − 1|βk, (C7)

so it scales as Im
(
ω̂k

) ∼ √
βk. Note that this growth rate vanishes when a + b = 1, i.e.,

when the instability boundaries (C4) lie on top of each other.
The growth rate given by (C7) is comparable to the collisionless growth rate (3.25) when

κTky
√

βk ∼ κT , i.e., when k⊥ ∼ (κT/χ)1/3, where we assumed ky ∼ k⊥. This is precisely
the condition k⊥ ∼ kχ for the transition from the collisionless to the collisional regime that
we found in § 3.4.

In the opposite limit of βk � 1 ∼ αk, (C1) gives

ω̂3
k + i(s + a + 1)βkω̂

2
k − (s + a + as)β2

kω̂k − iasβ3
k = 0, (C8)

which has three stable solutions: ω̂k = −iβk,−iaβk,−isβk. We can therefore conclude
that there exists a βmax ∼ 1 such that unstable solutions are possible only for βk < βmax. A
simple analytical estimate for βmax is obtainable if we make an additional approximation:
let λ ≡ 1 − a − b � 1 and consider an expansion in small λ.8 In this limit, the
collisional coupling in (3.28) is small and (C4) requires αk = 1 + O(λ). We let
ω̂k = −1 + δω̂k, αk = 1 + δαk, where δω̂k ∼ δαk ∼ βk ∼ λ� 1, and expand (C1) to
O(λ) to find

δω̂k =
−δαk − iβk(a + s + 2) ±

√
[δαk + iβk(a + s + 2)]2 − 8iβk(λ+ δαk) + 8(a + s)β2

k

4
.

(C9)
After some unenlightening algebra, we find that (C9) supports unstable solutions for

βk < βmax ≈ λ

2(a + s)
= 1 − a − b

2(a + s)
≈ 0.16, (C10)

which is in reasonable agreement with the numerically determined βmax ≈ 0.18.
Numerically, we find that the fastest-growing mode is located at βfastest ≈ 0.04,

α ≈ 1.01, and has a growth rate Im(ω̂k) = γ̂fastest ≈ 0.03.9 The dependence of Im(ω̂k) on

8In our case, λ = 57/160 ≈ 0.36, so the quality of this approximation is marginal.
9The same result can be obtained analytically from (C9).
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αk and βk is shown in figure 20. Undoing the normalisations of αk, βk, and ω̂k, we find
that this collisional instability is localised at k‖ ≈ κTkyk⊥ (just as the collisionless modes
are), is bounded by βmax ≈ 0.18 > β, and has its largest growth rate

Im(ωk) = κTkyγfastest ≈ 0.03κTky at
k2

⊥
ky

= βfastestκT

χ
≈ 0.04κT

χ
. (C11)

As ω̂k depends on k⊥ through βk, the contours of constant ω̂k in the (kx, ky) plane coincide
with those of constant βk. Since βk = χk2

⊥/κTky, these are circles with radius κTβk/2χ ,
centred at kx = 0 and ky = κTβk/2χ . Since ωk = κTkyω̂k, the largest Im(ωk) for a given
βk is found at kx = 0 and ky = κTβk/χ . In particular, the most unstable mode has

ky = βfastestκT

χ
≈ 0.04κT

χ
, Im(ωk) ≈ 0.0012

κ2
T

χ
. (C12)

The growth rate (C12) scales quadratically with κT , unlike the collisionless sITG
instabilities considered in § 3.3, and also diverges as χ → 0. Therefore, either for
sufficiently large κT or sufficiently small χ , the collisional instability will dominate.
However, the small numerical factor in (C12) means that this collisional mode will be
more unstable than the collisionless small-scale sITG mode (3.25) only if

κT

χ
� 830, (C13)

at scales ky ∼ 0.04κT/χ � 33. Such a regime is both numerically difficult to access
and physically questionable, so for all the rest of the paper, we shall consider only
κT/χ � 830 and ignore the collisional modes. In the absence of collisions, the sITG
growth rate asymptotically approaches its maximum value (3.25) as k⊥ → ∞, so we
conclude that if κT/χ � 830, i.e., if the χ ITG growth rate is much smaller than the sITG
one, then ky ∼ kχ ∼ (κT/χ)1/3 is also the scale of the fastest-growing sITG mode.

Appendix D. The sITG instability with general gradients and low collisionality
Here we solve the dispersion relation of (4.13)–(4.15) in the k‖ ∼ k2

⊥ � 1 limit,
neglecting the magnetic-drift contributions, and ordering collisionality as χk3

⊥ ∼ κT .
Ignoring the magnetic-drift term −∂y (ϕ + T) (as it is subdominant for the small-scale
sITG modes, see § 3.3.2), we find the following dispersion relation:

ωk(1 + k2
⊥) −

k2
‖

ωk + isχk2
⊥

(
1 + κT · k

ωk + iχk2
⊥

)
+ k2

⊥κT · k − κn · k + iaχk4
⊥ − ibk4

⊥κT · k

ωk + iχk2
⊥

= 0. (D1)

As already mentioned in § 4.2.3, the dispersion relation must be invariant under k �→ −k
and ωk �→ −ω∗

k, so, without loss of generality, we assume that κT · k > 0. We then write
(D1) as[

ω̂2
k(1 + k2

⊥) − k̂2
‖
] (

ω̂k + 1
) = 2k2

⊥γ̂ 2
k ω̂2

k − iβkk2
⊥

[
sk̂2

‖
k2
⊥

(
1 + 1

ω̂k

)
+

k̂2
‖

k2
⊥ω̂k

+ aω̂2
k − bω̂k

]
,

(D2)

where, in addition to the definitions in § 3.3, we have (re)defined the following quantities:

γ̂k ≡
√

(κT + κn) · k
2k2

⊥κT · k
, βk ≡ χk2

⊥
κT · k

. (D3a,b)

https://doi.org/10.1017/S002237782200071X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782200071X


42 P.G. Ivanov, A.A. Schekochihin and W. Dorland

Here γ̂k is the largest collisionless growth rate (4.19).
As we discussed in § 3.3.2, the linearly unstable solutions lie close to k̂‖ = k⊥

and are given by ω̂k = −1 + δω̂k, where δω̂k ∼ O (1/k⊥) � 1. Substituting into (D2)
ω̂k = −1 + δω̂k and k̂‖ = k⊥ + δk̂‖, where δω̂k/ω̂k ∼ δk̂‖/k̂‖ ∼ O (1/k⊥) � 1, we find

δω̂k = − δk̂‖
2k⊥

±
√

δk̂2
‖

4k2
⊥

− γ̂ 2
k + i(a + b − 1)βk

2
+ O

(
k−2

⊥
)
. (D4)

As we discussed in Appendix C, Im(
√

u + iv) is a decreasing function of u, where we
have taken the square root with a positive imaginary part. Therefore, (D4) attains its
largest imaginary part, i.e., the largest growth rate, when δk̂‖ = 0. Moreover, the sign
of Re(

√
u + iv) for the branch with Im(

√
u + iv) > 0 is determined by the sign of v.

Then, using (2.12), we obtain

Tk

ϕk
= κT · k

ωk + iχk2
⊥

= 1
ω̂k

+ O
(
k−2

⊥
) = −1 − δω̂k + O

(
k−2

⊥
)
, (D5)

where we have dropped the iχk2
⊥ term from the denominator because

χk2
⊥ ∼ |κT |k−1

⊥ ∼ ωkk−2
⊥ is small. Substituting (D4) into (D5) then gives

Tk

ϕk
= −1 −

√
−γ̂ 2

k + i(a + b − 1)βk

2
+ O

(
k−2

⊥
)

(D6)

for the linearly unstable mode with the largest growth rate. This is (4.29). The sign of
the real part of Tk/ϕk + 1 for the most unstable mode is, therefore, the same as the sign
of a + b − 1.

Appendix E. Quasilinear damping of 〈u〉‖
Here we show that the parallel velocity of the large-scale 2-D perturbations is damped

by the parasitic modes excited by them. We shall do so by proving that the norm of 〈u〉‖
always decays.

Multiplying (4.8) by 〈u〉‖ and integrating gives

1
2
∂t

∫
d3r 〈u〉2

‖ = −sχ
∫

d3r |∇⊥ 〈u〉‖ |2 −
∫

d3r 〈u〉‖ 〈{ϕ̃, ũ}〉‖ , (E1)

where the first term on the right-hand side is negative-definite and corresponds to the
collisional damping of the parallel flow, and the second term is the energy transfer from
small scales. The latter can be rewritten as

−
∫

d3r 〈u〉‖ 〈{ϕ̃, ũ}〉‖ = −
∫

d3r ũ
{〈u〉‖ , ϕ̃

} =
∫

d3r ũκu · ∇⊥ϕ̃, (E2)

where we have defined the gradient of the large-scale parallel flow as

κu ≡ −ẑ × ∇⊥ 〈u〉‖ . (E3)

Our objective now is to show that the right-hand side of (E2) is always negative.
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Let us incorporate κu into (4.11). Instead of (4.15), we find(
∂t + 〈VE〉‖ · ∇⊥

)
ũ + ∂‖

(
ϕ̃ + T̃

) + κu · ∇⊥ũ = s∇2
⊥ũ. (E4)

We now proceed just as we did in § 4.2.3, viz., we assume that the large-scale
gradients are constant, ignore collisions, and look for Doppler-shifted Fourier modes
ϕ̃k, T̃k, ũk ∝ exp

[−i
(
ωk + 〈VE〉‖ · k

)
t + ik · r

]
. Combining (4.13), (4.14), and (E4), and

going through the algebra yields a dispersion relation that is a modified version of (4.17),(
ω̂2

k − k̂2
‖

1 + k2
⊥

) (
ω̂k + 1

) = 2k2
⊥γ̂ 2

k ω̂2
k

1 + k2
⊥

+ k̂‖κu · kω̂k

(1 + k2
⊥)κT · k

, (E5)

where, as before, we assumed κT · k > 0 (see § 4.2.3), ωk = κT · kω̂k, k‖ = κT · kk̂‖,
and γ̂k is given by (4.18). Again, we shall be concerned with the small-scale limit
k̂‖ ∼ k⊥ � 1. Motivated by the numerical observation that 〈u〉‖ is much smaller than
〈ϕ〉‖ and 〈T〉‖ (and hence |κu| is much smaller than |κn| and |κT |), we consider the case
when the second term on the right-hand side of (E5) is a small correction to the first
one, viz., we assume κu · k/κT · k � k−1

⊥ . In this case, the solution to (E5) is given by
ω̂k = −1 + δω̂k, k̂‖ = k̂(0)

‖ + δk̂‖, k̂(0)

‖ = ±k⊥, where δω̂k satisfies

δω̂k

(
δω̂k + δk̂‖

k̂(0)

‖

)
≈ −

(
γ̂ 2

k − k̂(0)

‖ κu · k

2k2
⊥κT · k

)
. (E6)

The maximum growth rate is attained for δk̂‖ = 0 (see § 3.3.2). It is

δω̂k ≈ i

√
γ̂ 2

k − k̂(0)

‖ κu · k

2k2
⊥κT · k

. (E7)

Thus, we see that to lowest order in κu · k/κT · k � k−1
⊥ , the role of κu is to modify the

sITG growth rate in a way that breaks the symmetry between the k̂‖ = ±k⊥ branches of
the instability (see figure 2). Specifically, the k‖κu · k > 0 branch is stabilised and the
k‖κu · k < 0 one is destabilised.

Now let us return to the equation (E2) for the large-scale 〈u〉‖. Repeating the arguments
in § 4.2.4, we write (E2) as a sum over small-scale modes,∫

d3r ũκu · ∇⊥ϕ̃ ≈ −i
∑

q

ũqκu · qϕ̃∗
q =

∑
q

[
q‖κu · q

iωq

(
1 + T̃q

ϕ̃q

)
+ (κu · q)2

iωq

]
|ϕ̃q|2, (E8)

where we used the χ = 0 versions of (4.14) and (E4) to find the (quasi)linear expression for
ũq/ϕ̃q. Assuming that the small-scale perturbations are dominated by the linearly unstable
sITG modes with Im

(
ωq

)
> 0, the second term in the square brackets in (E8) is clearly

negative-definite. The first term requires some work,

q‖κu · q
iωq

(
1 + T̃q

ϕ̃q

)
= q‖κu · q

iω̂qκT · q

(
1 + 1

ω̂q

)
≈ q‖κu · q

κT · q
Im

(
δω̂q

)
, (E9)

where we expressed T̃q/ϕ̃q = 1/ω̂k using (4.14). The linearly unstable modes have
Im

(
δω̂q

)
> 0. Additionally, (E7) tells us that the modes with largest growth rate have
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q‖κu · q < 0, so (E9) is always negative for these modes. Assuming that (E8) is dominated
by the most unstable modes, we conclude that it, too, is always negative. So, given a small
〈u〉‖, the right-hand side of (E1) is negative-definite. Therefore, 〈u〉‖ = 0 is a quasilinearly
stable state.

Appendix F. Scale-separated conservation laws

In deriving the simple model for scale-separated dynamics, which consists of the
small-scale system (4.13)–(4.15) and the large-scale one (4.26)–(4.27), we made several
critical approximations: we ignored all but the lowest-order variation of the large-scale
fields in (4.13)–(4.15); we argued that 〈u〉‖ = 0; and we showed that the nonlinear terms
in (4.13) were subdominant, hence, to lowest order, (4.26) did not couple to small scales.
Let us show that under these assumptions, the conservation laws of W and I still hold in
the scale-separated system of (4.13)–(4.15) and (4.26)–(4.27). We shall be concerned only
with the nonlinear terms in the relevant equations because they are responsible for the
interactions of small and large scales.

Let us first check the conservation of the free energy W. Multiplying (4.14) by T̃ and
integrating gives

∂t

∫
d3r

1
2

T̃2 + linear terms = −
∫

d3r T̃κT · ∇⊥ϕ̃. (F1)

Similarly, multiplying the large-scale temperature equation (4.27) by 〈T〉‖ and integrating
gives

∂t

∫
d3r

1
2

〈T〉2
‖ + linear terms = −

∫
d3r 〈T〉‖

{
ϕ̃, T̃

} = −
∫

d3r T̃
{〈T〉‖ , ϕ̃

}
=

∫
d3r T̃

(−ẑ × ∇⊥ 〈T〉‖
) · ∇⊥ϕ̃ =

∫
d3r T̃κT · ∇⊥ϕ̃. (F2)

Adding (F1) and (F2) then gives

∂t

∫
d3r

1
2

(
T̃2 + 〈T〉2

‖
) + linear terms = 0, (F3)

which is precisely the statement of conservation of free energy, see (2.14).
Let us now check the conservation of the second conserved quantity I. We

multiply (4.13) by ϕ̃ + T̃ , (4.14) by ϕ̃ + T̃ − ∇2
⊥T̃ , and (4.15) by ũ, sum, and integrate

to obtain

∂t

∫
d3r

[
1
2
(ϕ̃ + T̃)2 + 1

2
(∇⊥ϕ̃ + ∇⊥T̃)2 + 1

2
ũ2

]
+ linear terms

= −
∫

d3r
[
(ϕ̃ + T̃)κT · ∇⊥∇2

⊥ϕ̃ + (ϕ̃ + T̃)κn · ∇⊥ϕ̃ + (ϕ̃ + T̃ − ∇2
⊥T̃)κT · ∇⊥ϕ̃

]
= −

∫
d3r T̃ (κT + κn) · ∇⊥ϕ̃, (F4)

where we got to the last line from the penultimate one using integration by parts and the
periodicity of the spatial domain. We now repeat the same procedure with the large-scale
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equations: we multiply (4.26) and (4.27) by 〈ϕ〉‖ + 〈T〉‖, sum and integrate to obtain

∂t

∫
d3r

1
2

(〈
ϕ′〉

‖ + 〈T〉‖
)2

+ linear terms = −
∫

d3r
(〈ϕ〉‖ + 〈T〉‖

) {
ϕ̃, T̃

}
= −

∫
d3r T̃

{〈ϕ〉‖ + 〈T〉‖ , ϕ̃
} =

∫
d3r T̃(κT + κn) · ∇⊥ϕ̃. (F5)

Therefore, summing (F4) and (F5), we obtain the conservation law (2.16), where we have
ignored the O(k2

⊥) terms in the large-scale contributions to I. Note that due to the large
2-D scale k⊥ � 1, the zonal ϕ is not included in (F5).

Since 〈u〉‖ ≈ 0 (see Appendix E), we can obtain simple conservation laws for the 2-D
equations directly from (4.6)–(4.8) without any additional simplification. Multiplying (4.6)
by 〈ϕ〉‖ and (4.7) by 〈T〉‖, and integrating gives

∂t
1
2

∫
d3r

[〈ϕ〉2
‖ + 〈∇⊥ϕ〉2

‖
] − Q2D + D〈ϕ〉‖ = −Tϕ,2D→3D, (F6)

∂t
1
2

∫
d3r 〈T〉2

‖ − κTQ2D + D〈T〉‖ = −TT,2D→3D, (F7)

where the 2-D heat flux Q2D, the collisional dissipation terms D〈ϕ〉‖ and D〈T〉‖ , and the
energy transfer terms Tϕ,2D→3D and TT,2D→3D are given by

Q2D = −
∫

d3r 〈ϕ〉‖ ∂y 〈T〉‖ , (F8)

D〈ϕ〉‖ = χ

∫
d3r

[
a
〈∇2

⊥ϕ
〉2
‖ − b

〈∇2
⊥ϕ

〉
‖
〈∇2

⊥T
〉
‖

]
, (F9)

D〈T〉‖ = χ

∫
d3r 〈∇⊥T〉2

‖ , (F10)

Tϕ,2D→3D =
∫

d3r 〈ϕ〉‖ ∇⊥ · {∇⊥ϕ̃, ϕ̃ + T̃
}
, (F11)

TT,2D→3D =
∫

d3r 〈T〉‖
{
ϕ̃, T̃

}
. (F12)

In a steady state, (F6) and (F7) imply that Q2D − D〈ϕ〉‖ ≈ Tϕ,2D→3D and that
κTQ2D − D〈T〉‖ ≈ TT,2D→3D. In other words, the energy injected into the 2-D fields (by the
Q2D terms) is either dissipated by those fields (through D〈ϕ〉‖ and D〈T〉‖) or nonlinearly
transferred to the 3-D fields. According to our results and analysis in § 4.2, we expect
that the overall energy injection is dominated by the 2-D modes, i.e., Q ≈ Q2D (within
20 %–30 %, see § 4.2.1), the nonlinear transfer in (4.6) is small, i.e., Q2D ≈ D〈ϕ〉‖ ,
confirming the asymptotic analysis in § 4.2.4, and the nonlinear transfer in the 〈T〉‖
equation (4.7) is large, i.e., κTQ2D � D〈T〉‖ , which allows 〈T〉‖ ∼ 〈ϕ〉‖ even when the
unstable linear 2-D modes do not satisfy this. This picture of the saturated state agrees
with numerical simulations, as illustrated by figure 21.

Appendix G. Kinetic sITG instability

The results in § 4.3.2 rely on the existence of the collisionless sITG instability at
short parallel and perpendicular wavelengths k‖ ∼ κTk2

⊥ � 1. However, the existence of
a collisionless sITG instability at infinitely short perpendicular scales is a more general

https://doi.org/10.1017/S002237782200071X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782200071X


46 P.G. Ivanov, A.A. Schekochihin and W. Dorland

FIGURE 21. Plot of the time-averaged 2-D heat flux Q2D given by (F8) (solid blue), the 3-D heat
flux Q3D ≡ Q − Q2D (dash–dotted black), the collisional dissipation in (F6) D〈ϕ〉‖ given by (F9)
(dashed green), and the collisional dissipation in (F7), D〈T〉‖/κT given by (F10) (dashed orange)
versus κT for χ = 0.05, Lx = Ly = 60 and L‖ = 0.5. We see that Q2D is more than twice Q3D,
and is balanced nearly perfectly by D〈ϕ〉‖ , i.e., the nonlinear transfer in (4.6) is small. On the other
hand, D〈T〉‖/κTQ2D � 1, so the majority of energy injected into 〈T〉‖ is nonlinearly transferred
to 3-D modes.

fact that can be established without resorting to a fluid limit. To show this, let us find the
sITG dispersion relation directly from the collisionless kinetic equation.

We begin at (A1) with zero collisionality (νi = 0), no magnetic curvature (L−1
B = 0),

and linearised:

∂

∂t
(h − 〈ϕ〉R Fi) + v‖∂‖h + ρivthi

2LT

(
v2

v2
ti

− 3
2

)
Fi

∂ 〈ϕ〉R

∂Y
= 0. (G1)

We shall consider Fourier modes h, ϕ ∝ exp (−iωkt + ik · r). Rearranging (G1) and using
the fact that Fi is a Maxwellian with density ni and thermal speed vthi, we find

hk

ϕk
= ni

π3/2v3
thi

ζ + ζ∗
(
v̂2 − 3

2

)
ζ − sgn

(
k‖
)
v̂‖

e−v̂2
J0

(
k⊥ρiv̂⊥

)
, (G2)

where ζ ≡ ωk/|k‖|vthi, ζ∗ ≡ ρivthiky/2LT |k‖|vthi, v̂ ≡ v/vthi, sgn(k‖) ≡ k‖/|k‖|, and J0 is
the zeroth-order Bessel function of the first kind. Substituting (G2) into the quasineutrality
condition (A2), we find

1 + τ = 1
ni

∫
d3v J0

(
k⊥ρiv̂⊥

) hk

ϕk

= 1√
π

∫ +∞

−∞
dv̂‖ e−v̂2

‖

∫ +∞

0
d(v̂2

⊥)e−v̂2
⊥
ζ + ζ∗

(
v̂2 − 3

2

)
ζ − v̂‖

J2
0

(
k⊥ρiv̂⊥

)
, (G3)

where sgn
(
k‖
)

is absorbed into v̂‖ and the integral over v̂‖ is taken along the Landau
contour (i.e., below the pole). After performing the integrals in (G3), we find the sITG
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dispersion relation,{
−

(
ζ − 1

2
ζ∗

)
Γ0(α) + ζ∗αΓ1(α)

}
Z(ζ ) − ζ∗ζΓ0(α) [1 + ζZ(ζ )] = 1 + τ, (G4)

where α ≡ k2
⊥ρ2

i /2, Γ0(α) ≡ I0(α)e−α, Γ1(α) ≡ [I0(α) − I1(α)] e−α, I0(α) and I1(α) are
the zeroth- and first-order modified Bessel functions of the first kind, and

Z(ζ ) = 1√
π

∫
dz

e−z2

z − ζ
(G5)

is the plasma dispersion function (Fried & Conte 1961), with the integral taken along the
Landau contour. To express the relevant integral moments of J2

0 , we used the relation∫ +∞

0
d(x2) Jm(bx)Jn(cx)e−x2/a = aI0

(
a

b2 + c2

4

)
e−abc/2δmn, (G6)

for a = 1 and b = c = k⊥ρi (Watson 1966, p. 395).
We can verify that the ‘fluid’ dispersion relation (3.12) is an asymptotic limit

of (G4) by expanding the latter for the ordering in (2.3). Under this ordering,
ζ ∼ ζ∗ ∼ 1/

√
τ ∼ 1/

√
α � 1. The large-ζ and small-α expansions of the plasma

dispersion function and the Bessel functions are

Z(ζ ) ≈ −1
ζ

(
1 + 1

2ζ 2

)
, Γ0(α) = 1 − α + O

(
α2) , Γ1(α) = 1 + O (α) . (G7)

Using these along with α/τ = k2
⊥ρ2

s , and adopting the normalisations (2.10), we find that
(G4) reduces to (3.12).

We can also find the general stability boundary of (G4) in the standard way, by looking
for the parameters that allow a Im(ζ ) = 0 solution. For such a solution, the only imaginary
contributions to (G4) come from the terms containing the plasma dispersion function, so
the coefficient of Z(ζ ) must be zero. This gives us a system of two equations:

(1 + τ) + ζ ζ∗Γ0(α) = 0, (G8)(
ζ − 1

2
ζ∗

)
Γ0(α) − ζ∗αΓ1(α) + ζ 2ζ∗Γ0(α) = 0. (G9)

Solving this, we find

ζ 2
∗ = 2(1 + τ) [1 + τ − Γ0(α)]

Γ 2
0 (α) + 2αΓ0(α)Γ1(α)

. (G10)

Using ω∗ ≡ ρivthiky/2LT and (2.10), we can express ζ∗ and α in terms of the normalised
k̂x, k̂y and k̂‖.10 This gives us an analytic expression for the stability boundary. In the limit
k⊥ � 1, i.e., α � 1, we can expand (G10) to find that an instability exists for

k‖<
1

2
√

π(1 + τ)LT
≡ k(c)

‖ . (G11)

Similarly to the parallel wavenumber at which Braginskii viscosity would kick in (see
§ 4.3.2), k(c)

‖ exists outside of the cold-ion ordering for our model, as it is asymptotically

10Recall that we have been using the normalised k̂x, k̂y and k̂‖ throughout this work, but in § 2 dropped the ‘hats’.
These ‘hats’ are not related to the ones in § 3.
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FIGURE 22. The linear growth rate Im(ωk) of the kinetic dispersion relation (G4) for τ = 0.01,
normalised as ω̂k = LTωk/csτ , which is equivalent to normalisation of time in (2.10) for κT = 1.
The wavenumbers ky and k‖ are also normalised according to (2.10) with κT = 1. The largest
kinetic growth rate is Im(ω̂kin

k ) ≈ 1.07, while the largest cold-ion growth rate, given by (3.25),
is Im(ω̂cold

k ) ≈ 0.71. The vertical dotted line is the critical parallel wavenumber k(c)
‖ for k⊥ � 1

kinetic modes (G11). The dashed black lines are the cold-ion stability boundary (3.14). The solid
black line is the kinetic stability boundary (G10). The kinetic sITG instability has a finite growth
rate at k⊥ → ∞.

large in the ordering (2.3): k(c)
‖ LB ∼ O(LB/LT) ∼ O(τ−1) � 1. Figure 22 shows the growth

rate obtained from solving (G4) numerically, along with the stability boundary of the
cold-ion limit (3.14).

Appendix H. Quasilinear ZF stress of kinetic sITG modes

The stability of the zonal staircase in the 3-D system (2.11)–(2.13) was attributed to the
turbulent stress in the presence of strong zonal shear (see § 4.2.5, as well as Ivanov et al.
2020). In the fluid limit, this stress was found to be the sum of Reynolds and diamagnetic
stresses. Therefore, we were able to conclude that whether a mode with wavenumber q
feeds or destroys the ZFs depends on the sign of the quantity 1 + Re(Tq/ϕq) (see § 4.1).
We then found that we could predict the Dimits threshold by investigating the value of
this quantity for the fastest-growing linear ITG modes. Here we generalise this approach
to kinetic sITG modes.

We start with the ion GK equation (A1) and the quasineutrality condition (A2). We
shall ignore the influence of collisions, so drop the collision operator on the right-hand
side of (A1). Taking a (1/ni)

∫
d3v moment of (A1) at constant r and integrating over a

flux surface, we find

∂t(ϕ − 〈〈ϕ〉R〉r) + ρivthi

2ni

∫
d3v 〈{〈ϕ〉R , h}〉r = 0. (H1)

With ϕ and h decomposed into Fourier modes, ϕk, hk ∝ exp (ik · r), (H1) gives the
following equation for each mode:

∂t [1 − Γ0(α)] ϕk + ρivthi

2ni

∫
d3v J0

(
kρiv̂⊥

)∑
q

ẑ · (q⊥ × k)J0
(|q⊥ − k|ρiv̂⊥

)
ϕk−qhq = 0,

(H2)
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where k is a zonal wavenumber, i.e., k = kx̂, α = k2ρ2
i /2, and the rest of the notation is

the same as in Appendix G. To make progress, let us assume that the scale of the ZF is
much larger than the scale of the modes that contribute to the nonlinear term in (H2),
i.e., that kρi � q⊥ρi ∼ 1. We can then expand

|q⊥ − k| =
√

(q⊥ − k)2 = q⊥

[
1 − k · q⊥

q2
⊥

+ O
(
k2ρ2

i

)]
, (H3)

whence

J0
(|q⊥ − k|ρiv̂⊥

) = J0
(
q⊥ρiv̂⊥

) + q⊥ρiv̂⊥
k · q⊥

q2
⊥

J1
(
q⊥ρiv̂⊥

) + O
(
k2ρ2

i

)
, (H4)

J0
(
k⊥ρiv̂⊥

) = 1 + O
(
k2ρ2

i

)
, (H5)

1 − Γ0(α) = 1
2

k2ρ2
i + O

(
k4ρ4

i

)
. (H6)

The integral in (H2) vanishes to the lowest order in kρi, viz.,∫
d3v

∑
q

ẑ · (q⊥ × k)J0
(
q⊥ρiv̂⊥

)
ϕk−qhq =

∫
d3v {ϕ, 〈h〉r}k = ni(1 + τ) {ϕ, ϕ}k = 0

(H7)
by quasineutrality (A2). To the next order in kρi, (H2) becomes

1
2

k2ρ2
i ∂tϕk + 1

4
ρ3

i vthi

∑
q

ẑ · (q⊥ × k)k · q⊥ϕk−qPq = 0, (H8)

where we have defined the GK perpendicular pressure perturbation

Pq ≡ 1
ni

∫
d3v v̂2

⊥
2J1

(
q⊥ρiv̂⊥

)
q⊥ρiv̂⊥

hq. (H9)

Note that for q⊥ρi � 1, J1
(
q⊥ρiv̂⊥

) ≈ q⊥ρiv̂⊥/2, and (H9) gives

Pq ≈ 1
ni

∫
d3v v̂2

⊥hq = pq, (H10)

where pq is the pressure perturbation in the cold-ion model.
Fourier transforming (H8) back to real space, we find

∂tϕ + 1
2
ρivthi∂xP∂yϕ = 0. (H11)

Therefore, ∂xP∂yϕ is the GK version of the turbulent stress �t (see § 4.1.1) for
large-scale ZFs, but ρi-scale turbulence. In the limit of large-scale turbulence (q⊥ρi � 1),
(H11) reduces to

∂tϕ + 1
2
ρivthi∂xP∂yϕ = 0. (H12)

Note that (H12) is not the same as (4.1) with �χ = 0. This is expected because (4.1) was
obtained in the limit k⊥ρi ∼ q⊥ρi � 1, where k and q were the typical wavenumbers of
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(b)(a)

FIGURE 23. (a) Growth rate Im(ω̂q), normalised as ω̂q = LTωq/csτ , which is equivalent to
normalisation of time in (2.10) for κT = 1. (b) The ratio Re(Pq/ϕq), given by (H17). For both
panels, τ = 0.01 and qx = 0. The wavenumbers qy and q‖ are also normalised according to (2.10)
with κT = 1. The solid black lines show the kinetic stability boundary (G10). It is evident that
the vast majority of sITG modes, including the dominant ones, support the ZFs, i.e., satisfy
Re(Pq/ϕq) > 0.

zonal and nonzonal modes, respectively. In contrast, taking q⊥ρi � 1 in (H11) is actually
the limit k⊥ρi � q⊥ρi � 1. The difference between (4.1) and (H12) is an exact derivative,
viz., ∂x(ϕ∂yp), and so does not influence the integrated momentum transport in a shear
zone of radial width d:

1
d

∫
dx∂xP∂yϕ = −

∑
q

qxqy|ϕq|2Re
(Pq

ϕq

)
, (H13)

where the correspondence with (4.3) is evident. Therefore, following the arguments in
§ 4.1.1 and Ivanov et al. (2020), we can conclude that the effect on the ZFs of a mode with
wavenumber q depends on the sign of Re(Pq/ϕq), viz., modes with Re(Pq/ϕq > 0) feed
momentum into the ZFs, while those with Re(Pq/ϕq) < 0 take momentum away from
the ZFs.

Let us calculate Re(Pq/ϕq) for the kinetic sITG modes that we found in Appendix G.
From (H9), we find

Pq

ϕq
= 2

ni

∫
d3v

v̂⊥
q⊥ρi

J1
(
q⊥ρiv̂⊥

)
= 1√

π

∫ +∞

−∞
dv̂‖ e−v̂2

‖

∫ +∞

0
d(v̂2

⊥)e−v̂2
⊥
ζ + ζ∗

(
v̂2 − 3

2

)
ζ − v̂‖

2v̂⊥
q⊥ρi

J1
(
q⊥ρiv̂⊥

)
J0

(
q⊥ρiv̂⊥

)
,

(H14)

where we have substituted the linear GK expression (G2) for h, v̂ = v/vthi, and ζ and ζ∗
are defined equivalently to those after (G2), but with k replaced by q. Notice that

2v̂⊥
q⊥ρi

J1
(
q⊥ρiv̂⊥

)
J0

(
q⊥ρiv̂⊥

) = − 1
q⊥ρi

∂

∂(q⊥ρi)
J2

0

(
q⊥ρiv̂⊥

) = − ∂

∂α
J2

0

(
q⊥ρiv̂⊥

)
,

(H15)
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(b)(a)

FIGURE 24. Same as figure 23, but for τ = 1. Evidently, the small-scale sITG modes at qy � 1
have Re(Pq/ϕq) > 0, i.e., they support the ZFs. However, it is no longer obvious whether the
dominant sITG modes support or destroy the ZFs.

where α = q2
⊥ρ2

i /2. Therefore, (H14) can be written as

Pq

ϕq
= − ∂

∂α

1√
π

∫ +∞

−∞
dv̂‖ e−v̂2

‖

∫ +∞

0
d(v̂2

⊥)e−v̂2
⊥
ζ + ζ∗

(
v̂2 − 3

2

)
ζ − v̂‖

J2
0

(
q⊥ρiv̂⊥

)
, (H16)

where the partial derivative with respect to α is taken at constant ζ∗. We have already
calculated the expression in (H16) that needs to be differentiated – this is precisely the
left-hand side of (G4). Taking the derivative, we obtain

Pq

ϕq
=

[
−

(
ζ − 1

2
ζ∗

)
Γ1(α) − ζ∗Γ0(α) + 2ζ∗αΓ1(α)

]
Z(ζ ) − ζ ζ∗Γ1(α) [1 + ζZ(ζ )] .

(H17)

We determine Re(Pq/ϕq) for the sITG modes by solving for ζ using the dispersion
relation (G4) and then substituting for ζ into (H17). As we can see in figures 23 and 24,
both for τ � 1 and τ ∼ 1, the small-scale sITG instability drives the ZFs. The role of
the dominant sITG modes (i.e., those with the largest growth rate) in the cold-ion limit is
clear – they support the ZFs, just as they do in the fluid model. However, as τ approaches
1, it is difficult to discern their effect on the ZFs without the knowledge of the spectrum
of the fluctuation amplitudes at the relevant wavenumbers. However, it appears that the
number of ZF-destabilising modes increases with increasing τ . This suggests that the
Dimits threshold might be sensitive to the value of τ .
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