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A CHARACTERISTIC SUBGROUP AND KERNELS OF
BRAUER CHARACTERS

I.M. IsAAcs AND GABRIEL NAVARRO

If G is finite group and P is a Sylow p-subgroup of G, we prove that there is a unique
largest normal subgroup L of G such that LN P = LN Ng(P). If G is p-solvable,
then L is the intersection of the kernels of the irreducible Brauer characters of G of
degree not divisible by p.

1. INTRODUCTION

Our aim in this note is to prove the following two results.

THEOREM A. Let G be an arbitrary finite group and let P be a Sylow p-subgroup
of G for some prime p. Then there exists a unique largest normal subgroup L of G such
that

LNP=LnNNg(P).

Note that the intersection property in Theorem A is equivalent to saying that N (P)
is a p-group. Also, since this property is clearly independent of the choice of P in SyL,(G),
it is clear that L is characteristic in G. Our interest in this characteristic subgroup was
motivated by the following.

THEOREM B. Suppose that G is p-solvable and let L be the largest normal sub-
group of G such that LN P = LNNg(P), where P € Syl,(G). Then L is the intersection
of the kernels of the irreducible Brauer characters of G with degree not divisible by p.

The assumption that G is p-solvable in Theorem B is essential. Consider, for exam-
ple, the simple group G = Ma; and take p = 2. Then G has a self-normalising Sylow
2-subgroup, and thus the characteristic subgroup L of Theorem A is the whole group
G. But G has an irreducible Brauer character of degree 11, and hence the conclusion of
Theorem B fails in this case.
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2. Proors

Theorem A is an immediate consequence of, 4, Lemma 5.3}, and so we take this
opportunity to offer a new and simpler proof of a somewhat more general result. The
original lemma is the case of the following where both H and K are normal in G.

LEMMA 2.1. Let G be a finite group and let P € Syl,(G), where p is a prime. Let
H and K be subgroups of G such that HK, HP and KP are subgroups. Then

Ny (P) = Ng(P)Ng(P).

PRrOOF: We argue by induction on |G: H||G : K|. Note that |H: PNH|= |HP :
P| is coprime to p, and so PN H is a Sylow p-subgroup of H and similarly, PN K is a
Sylow p-subgroup of K. It follows that
_IPNH||IPNK| _ [H|piK]

[(PNH)PNK)| = PAHNK| > HNER] =|HK|, > |[PNHK]|,

and thus (PN H)(PNK)=PNHK.
Suppose first that P is not contained in H. We can then apply the inductive hy-
pothesis with PH in place of H, and we deduce that

Npuk(P) = Npy(P)Ng(P).
By Dedekind’s lemma, Npg(P) = Ng(P)P, and thus
Npug(P) = Ny(P)PNg(P).

Now let g € Ny (P). We can then write g = zuy, where £ € Ny(P), v € P and
y € Ng(P). Since g, z and y are all in HK, we see that also u € HK, and therefore
u € PN HK. By the first paragraph, we can write u = rs, where r € PN H and
s€ PNK. Then

g = (zr)(sy) € Ny(P)Nk(P),

and we are done in this case. Similarly the lemma is proved if P is not contained in K.

We can now assume P is contained in H N K, and we denote this intersection by
D. Suppose that ¢ € Nyg(P) and write g = hk™}, with h € H and k € K. Since
P9 = P, we have P¥ = P" and this subgroup is contained in both H and K. By Sylow’s
theorem in the group D = H N K, we have P* = P? for some element d € D, and thus
hd=' € Ng(P). Also P¥ = P4, so dk™! € Ng(P). We see now that

9= (hd™')(dk™") € Ng(P)Nk(P),

and the proof is complete. 1]
Now we are ready to prove Theorem A.
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PROOF OF THEOREM A: Let P € Syl (G), and write N = Ng(P). Suppose that
H and K are normal subgroups of G, each maximal with the property that its intersection
with NV is equal to its intersection with P. We must show that H = K. By Lemma 2.1.

we have
NNHK = NHK(P) = NH(P)NK(P) .

Then NN HK is a product of two p-subgroups, and so it is a p-subgroup of N. Since P
is the unique Sylow p-subgroup of N, it follows that NN HK = PN HK. Now by the
maximality of H and K, we conclude that H = HK = K, and the proof is complete. [

To prove Theorem B, we choose to work with the p'-special characters of the p-
solvable group G. (Their properties can be found in [1]. In particular, these members of
Irr(G) form a set of lifts for the irreducible Brauer characters of G having p’-degree.)

THEOREM 2.2. Let G be a p-solvable group and let K be the intersection of the
kernels of the p'-special characters of G. Then K is the largest normal subgroup of G
such that K N P = K N Ng(P), where P € Syl,(G).

PrROOF: Write N = Ng(P). First, we prove by induction on |G} that KN P
= KN N. We may assume that K > 1, and we choose a minimal normal subgroup M of
G with M C K. Now, K/M is the intersection of the kernels of the p'-special characters
of G/M and PM/M is a Sylow p-subgroup of G/M with normaliser NM/M. By the
inductive hypothesis, we deduce that

(K/M)n (NM/M) = (K/M)N (PM/M),

or equivalently, K "N NM = KN PM. If M is a p-group, then PM = P and NM = N,
and we are done in this case. We may therefore assume that M is a p'-group. Since
M C K, Dedekind’s lemma yields that

(KNP)YM=KnNPM=KNNM=(KNN)M.

and therefore, if we can show that (K N P)NM = (K N N)N M, it will follow that
IKNP|=|KNN|, and thus KNP = KN N, as required. In particular, since M C K,
it suffices to show that NN M = 1. As M is a normal p’-subgroup of G, it follows
that N N M = Cy(P), and if this is nontrivial, then by the Glauberman character
correspondence, (see [3, Chapter 13]), there exists a nonprincipal P-invariant character
6 € Irr(M). Then there exists a p’-special character x € Irr(G) lying over & by [1,
Corollary (4.8)]. However, M C K C ker(x) and this is a contradiction.

Finally, we need to show that if K < L4 G, then LNP < LNN, and for this purpose,
we can assume that L/K is a chief factor of G. Assuming that LN N = L N P, we work
to derive a contradiction. Since K < L, there exists a p'-special character x € Irr(G)
such that L is not contained in ker(x). But x has p’-degree, and this implies that x.
has a nonprincipal P-invariant irreducible constituent 6, and 8 is necessarily p'-special
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since it lies under x. Also, K C ker(#), and thus L/K cannot be a p-group because
it has a nonprincipal p'-special character. We deduce that L/K is a p’-group, and thus
LNN=LNPC K and we have LN NK = (LN N)K = K. Observe, however,
that NK/K is the full normaliser of PK/K in G/K, and so it follows that Cp/x(P) is
trivial. By the Glauberman correspondence, however, Cp/x(P) must be nontrivial since
L/K has a nonprincipal P-invariant irreducible character. This is a contradiction and
the theorem is proved. 0

Finally, we complete the proof of Theorem B.

PROOF OF THEOREM B: By [2, Lemma (5.4) and Corollary (10.3)], we know that
restriction to p-regular elements defines a bijection from the set of p’-special characters of
G onto the irreducible Brauer characters of G having p’-degree. It follows that the inter-
section K of the kernels of all p'- special characters of G is contained in the intersection
L of the kernels of all irreducible Brauer characters having p’-degree. By Theorem 2.2,
therefore, it suffices to show that L = K.

Every p-regular element of L must lie in K, and thus L/K is a p-group. By Theo-
rem 2.2, we know that K NN = KN P, where P € Syl ,(G) and N = Ng(P). As NNK
is a p-group and L/K is a p-group, it is easy to see that N N L is also a p-group, and
thus NN L = PN L. By the maximality of K in Theorem 2.2, we conclude that L = K,
as desired. 0
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