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1. Introduction

We consider real-valued functions f(x) which are defined for all sufficiently
large real numbers x. In discussing the behaviour of such functions as
x -> -f oo, it is useful to compare / with the functions of some "comparison
scale". The early work in this field was due to Du Bois-Reymond (see, for
example, (2), (3)). This was elaborated by Hardy, (6), who was mainly
concerned with what he calls the "logarithmico-exponential" scale of func-
tions. This "scale of Hardy" may be defined as the smallest class Jf of func-
tions / with the following properties:

(i) if / e Jf, / is defined and continuous for all sufficiently large values
of x;

(ii) (a) the function fix) = a, where a is any real constant, is in Jf;
(b) the function f(x) = x is in Jf;

(iii) if / and g are in J f and g is non-zero for all sufficiently large values
of x, then

fig, exp /, log \g\
are also in Jf.

Hardy proved the existence of such a class Jf, and showed that every finJf?
is monotonic for sufficiently large values of x. He further proved that the
functions / in J f are differentiate for large x and that /' e 34?. The system 3^
is essentially the system of elementary functions built up from a finite num-
ber of operations (+, —, X, -^, exp, log) and the functions specified in (ii)
above *. For a recent account of the system Jf, from an abstract point of
view, see Bourbaki (1).

In recent work (7), some of us required a scale of functions Sf which had
some of the properties of Jf, but in addition had the property of being maxi-
mal, i.e. with the property that there is no function f{x) defined for large
values of x such that, for each g in y , either fig -> 0 or fig -> + oo as
x -> + oo.

The existence of maximal scales can be proved without difficulty by using
1 For example x« = exp [<x/(l/log x)}, and x2 — x = log [exp {exp [2/(l/log x)]}/exp x\.
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[2] Scales of functions 397

Zorn's lemma (or the axion of choice). The proofs are given in section 3.
Clearly there will be more than one such maximal system, and the use of
Zorn's lemma does not allow much control over the properties of the system.
For example, the condition that S? is maximal does not imply, either (A)
that & contains functions which tend to + oo more rapidly than any given
function, or (B) that SP contains functions which tend to + oo more slowly
than any given function. The problem which gave rise to this paper was that
of deciding firstly whether all maximal scales have properties (A) and (B),
and secondly whether there exists at least one maximal scale with these
properties.

It is clear that the detailed structure of a maximal scale SP will not become
evident, unless some constructive method is used for its definition. We have
been unable to obtain such a method without the use of the continuum hypo-
thesis. However, in sections 5 and 6 we do assume that hypothesis and are
able to deduce the existence of two maximal scales, one having the properties
(A) and (B), and the other having neither of these properties.

In producing the maximal scale, we manage to preserve the conditions
that, if / and g are in SP, then so is fig, and that each function in SP is ulti-
mately monotonic. It is this last requirement of monotonicity which causes a
lot of the difficulties in the argument. In section 4, we extend several of the
known results about enumerable collections of functions to enable us to add
single functions to such collections and still preserve the monotonicity
requirements outlined above. The results of section 4 do not depend on the
continuum hypothesis, and are of interest in themselves.

In section 2, we give precise definitions of the ideas outlined in this intro-
duction, and describe the previous results in the field which are needed in the
sequel.

In this paper, we restrict the discussion to the behaviour of real functions
of the real variable a; as a; approaches infinity. It is clear that, by using the
terminology of Bourbaki (1), the methods apply to the study of a much wid-
er class of functions. In particular, precisely the same results are applicable
to the discussion of the behaviour of real functions f{x) as x approaches a
(any real constant) from the right or from the left.

It seems likely that all the properties (other than its minimal property)
of the scale of Hardy could be built into our new scales SP. In the present
paper, we have not attempted to do this: in particular, the functions of SP
are not restricted to be differentiate. As we proceed, the reader will realize
that the details of the proof would become extremely formidable if an
attempt were made to preserve all the properties of #P.
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2. Definitions, notation, and previous results

The class of real functions f(x) which are positive and continuous for
x ^ 0 and satisfy 2 /(0) = 1 will be denoted by <€.

Italic letters e, f, g, t, s, u, • • • will be used to denote members of "Jf; i
denotes the function

i(x) = 1, for 0 ^ x ^ 1,
i (x) = x, for x S; 1;

k denotes the function k (x) = 1 for x S: 0. The variables x, f will be restrict-
ed to non-negative real values. The early part of the Greek alphabet a, /?,
y, • • • will denote real numbers: the later part /ti, v, n, p, a, r, • • • (apart from
i) will be reserved for ordinal numbers.

Two functions f, g in & are said to be equivalent whenever the ratio
f(x)/g(x) tends to a finite positive limit as x -> -\- oo. We then write f ~ g'.
clearly ~ is an equivalence relation in the class <g. If /, g in "Jf are such that
lima,^.+0o f(x)jg(x) = 0, we say that / is of smaller order than g at plus infinity
and write / -< g, or g >- /. The relation -< introduces a partial ordering into ^
(and, by implication, into the system of equivalence classes determined by
~). We say that two functions /, g in ^ are comparable if

f <g o r / - g o r f>g;

and that they are monotonically comparable if, in addition, the ratio f{x)jg{x)
is a monotonic function of x for all sufficiently large values of x. The formula
/ < g will mean that either / < g or / ~ g. The subset of %', consisting of
functions / which tend to + co as x -> + oo, will be denoted (if'x; the subset,
consisting of functions / which, tend to 0 as x -> -foo, will be denoted ^° .

A subset S? <= # is called a scale of functions if it has the three properties:

(Pj) if /, g e Sf, then / and g are comparable;
(P2) the functions k(x) = 1, i(x) = sup (1, a;) are in if;
(P3) if /, g e £? and x, /? are real numbers, then /ag^ e ̂  [where

f'g'(x) = (/(ar))-^^))^].

The scale SP is said to be a monotone scale if it has the additional property
(P*) if /, g e £P, then / and g are monotonically comparable.

In the introduction, we discussed the scale of Hardy ̂ f. It is clear that the
functions inJfJ need not lie in "Jf, but those that are ultimately positive can be
modified for small values of x, without effecting their asymptotic properties,
to ensure that they do lie in 9f. It is clear that, provided the modification has
been done sufficiently skilfully, this modified set Jt* is a monotone scale in
the sense of our definitions. Our scales Sf need not have the other properties

2 The condition /(0) — 1 has been introduced for convenience in proofs; it clearly does not
affect the behaviour of functions / for large values of x.

https://doi.org/10.1017/S1446788700026227 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026227


[4] Scales of functions 399

of J*f *; in particular, we do not require functions / e ^ to be differentiable.
However, we now introduce properties (P4)—(P7) which seem desirable in a
scale of functions but which are not satisfied by Jf*.

(P4) If f, g e SP and / =£ g, then / is not equivalent to g.

A set SP which has the property (P4) is called irreducible. This is not a very
important property of scales: our main reason for introducing (P4) is that
proofs of theorems are easier to write out for scales with property (P4) (the
alternative is to consider the equivalence classes in SP as the elements in a
new scale SP').

(P5) If / e ^ and / is comparable with each element of SP, then /
is equivalent to at least one element of SP.

A scale SP which has the property (P5) is called a maximal scale. One cannot
adjoin an essentially different element of ^ to a maximal scale SP without
spoiling the property (Pj).

(P6) If g e <g, there is at least one / in SP such that f > g.
(P7) If g e % and g> k, there is at least one / in SP such that

g>f>k.

Note that, since every SP satisfies (P3), the property (P6) implies that, given
any g e <&, there exists an / in SP with f < g. Thus (P6) expresses formally the
idea that a scale is extensive in the sense that it contains functions which
diverge to + oo and converge to 0 arbitrarily rapidly. Similarly (P7) implies
that, if g e '£ and g <k, there is at least one / in SP such that g < f <k.
This, in turn, implies that, if g in ^ and h,u in SP are such that h -< g <u,
then there exist functions f,t'vn. SP such that h-<f-<g-<t-<u. Thus (P7)
expresses formally the idea that the scale has a fine structure, in the sense
that the subset of 6P, containing those functions which are asymptotically
larger than (or smaller than) a given function of ^ (not necessarily in SP),
has no least (or greatest) element.

A set SP, which has the properties (P6) and (P7), will be said to be dense.
At first sight, one is tempted to think that the properties (P6) and (P7)
might be a consequence of (P5). With the use of the continuum hypothesis,
we show, (i) in section 5, that there exist monotone scales with properties
(P4)—(P7), and, (ii) in section 6, that there exist monotone scales with
properties (P4) and (P5) but for which (P6), (P7) are false. Since the contin-
uum hypothesis is known to be not inconsistent with the usual axioms of
mathematics, this shows that it is impossible to prove that a scale which is
maximal must also be dense. One can similarly show that (P6) and (P7) are
independent of each other.

In the sequel we shall need

L E M M A 1 . Given a sequence of functions f1 -< /2 -< /3 -< • • • -< f „ - < • • • i n
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<S, there exists a function f in <€ such that f >» /„ for each positive integer n.
This is due to du Bois-Reymond (2). The proof is simple: take f(z) =

1 + I , s . (* - r)fr{x).
LEMMA 2. (i) Given a sequence of functions f1 -< f2 < f3 <•••-< fn •<• • • ,

and a function f in <& such that fn < f for each integer n, there exists a function
g in <£ such that fn < g -< f for each integer n.

(ii) Given a sequence of functions fx >- /2 >- /3 > • • • > fn> • • •, and a
function f in %! such that fn>- f for each integer n, there exists a function g in *€
such that fn>- g >- f for each integer n.

This is due to Hadamard (4).

LEMMA 3. If £P is any partially ordered set, then there is a maximal subset
J( <= =S? which is simply ordered (i.e. ̂ tf is not a proper subset of any simply
ordered JC' <= g).

This is the form we need of the celebrated Zorn's lemma which is known
to be equivalent to the axiom of choice or the well ordering principle.

3. Existence of maximal scales
The main result of this section is

THEOREM 1. There exists a scale of functions £f, which is irreducible and
maximal.

To prove the theorem, we have to show the existence of a subset Sf <= ^
with the properties (Px)—(P5). Let 9~ denote the collection of those subsets
<% <=. <g which have the four properties (PJ—(P4). Then &~ is not empty,
since the class % of all functions of the form {i(x)}a, for real a, is a member
of ^". Further, &" is partially ordered by the relation of inclusion, i.e. we say
that <%1 SS <2r2 if °UX <= fy2. Use lemma 3 (Zorn's lemma) to obtain a system
y c <f which is simply ordered and maximal, in the sense that it is impos-
sible to add a further class °U e (^ — "P") to "T and preserve the simple
ordering. Now put & = u<*tr *%• By using the fact that, if %, <%2e't~
then either <&x <= %2 or ^ 2 c <&lt it is easy to verify that the subset Sf <= <g
has the properties (Pj)—(P4). It only remains to show that Sf is maximal
in the sense that it has property (P6).

If SP does not satisfy (P5), there is a function t in ^ which is comparable
with every/ in SP but not equivalent to any / in SP. Let S"(t) be the subset
of ^ consisting of those elements of the form taf where a is any real number
and f e S". The set S?(t) clearly has properties (P2) and (P3). Consider any
two different functions ffv t0f2 in £P(t). If a = /S the functions are compar-
able but not equivalent, while if a # /?, we have

= Wf3]
fi~". for some / , in ST,
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and again the functions t'f^ tfif2 are comparable but not equivalent. Hence
SP{t) has properties (P4) and (PJ. Consequently SP{t) e 9~ and contains as a
proper subset every set of the system ir. This contradicts the definition of y ' ,
and proves that SP must satisfy (P5). This completes the proof of the theorem.

It is clear that the method of proof of theorem 1 can be applied to mono-
tone irreducible scales, that is, sets SP <= ^ which satisfy (P*) and (P2)—(P4).
This leads to the idea of a maximal monotone scale, defined as a set SP with
the properties (P*), (P2), (P3) and in addition:

(P*) if / e & and / is monotonically comparable with each element
of SP, then / is equivalent to some element of SP.

Thus we can obtain

THEOREM 1A. There exists a maximal monotone scale of functions which is
irreducible.

It should be noted that (P*) is weaker than (Ps) when applied to scales
satisfying (Pf). One of the objectives of this paper is to show the existence
of scales SP satisfying (P*) and (P2)—(P5). It does not seem that Zorn's
lemma can achieve this end because, when more stringent conditions are
imposed, maximality in the sense of Zorn's lemma becomes weaker 3. There
is an additional reason why we cannot use Zorn's lemma to obtain scales
with properties (P6) and (P7): the real difficulty here is to show the existence
of one such scale. This explains why, in the rest of the paper, we need to use
more constructive methods.

4. Adding a single function

The results of lemmas 1, 2 refer to enumerable sets of functions of ^
which satisfy (Px). The first step is to modify these so that, when (P*) is
true, it remains true of the set enlarged by the addition of a new function
(the latter chosen to satisfy additional requirements). We shall need the
following rather special lemma which does not seem to follow easily from
known results:

LEMMA 4. Let /, g, h be functions of <€ satisfying f < g, f < h and such that
f and g are monotonically comparable; then there are functions I and u of ^
which are monotonically comparable with f and g and satisfy

f <Kg <u, f <l<h <u.

PROOF. The function u defined by

u(x) = (1 + x)g{x) sup - ^ , for all x ^ 0,

• For example it is possible to demand that the ratio fig for any two functions /, g e SP be
monotonic for all x ^ 0. In this case maximality becomes very weak indeed, and Mr. A. Beck
has pointed out to us that there is a countable cofinal sequence for any such scale.
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clearly satisfies the required conditions. To obtain /, we first define a func-
tion by

v(x) = yf{x) inf ~ , for x ^ 0,
Six f{$)

where
f(v)y = sup — - •

,so Km
It is clear that v(x) is continuous, that

(1) v{x) £ yh(x), for all x > 0,

and that f <v, while v/f tends monotonically to -f oo. Now define a function
/ by the relation

l(x) = ]/\f(x)g(x) inf ^ 1 for x 2> 0.

Then
l(x)\* f{x)_g(x) .nf vjr.
v(x)i v(x) v(x) Q&iix

fix)

By (1) it follows that / -< h. Further,

and inf0SjSa! v(l)/g(f) does not exceed 1, and is monotonic decreasing while
f{x)lg(x) decreases monotonically for x j> Xo, and tends to zero as x ^oo .
Hence / -< g and /, g- are monotonically comparable. It only remains to
prove that I >- / and that /, / are monotonically comparable.

Let Xx be any fixed real number such that g(x) Ŝ  f{x) for x ^ Xx and
g(x)lf{x) is monotonic increasing for x S: Xv Let X satisfy Xx ^ X ^ x.
Then

(W_fM inf

> mm { inf , mf
\f()(e)

Since both / -< g and / -< v, if we let X -> + oo slowly enough a s i ^ - + oo,
we have / >- /.

Suppose, if possible, that l(x)jf{x) is not monotonic for x ^ Xv Let a;j, cc2

be such that Xx ^ xx < x2 and
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I(r ) U-r \

Then, by (2), we would have

f|rio<inJ ^>^1^ inf

Since

this implies that

mf > mf
(£)

Hence for some £0 with x1 < f0 ^ a;2, we have

inf ^ ! ) = ^ ! o ) .
0g£S 2̂ g(f) g(lo)

Thus
«(»i) > ?W inf Y^l
/ K ) = / ( ) (S)

Since v(x)/f(x) is monotonic increasing for all x, this is a contradiction which
establishes that l(x)/f(x) is monotonic for x ^ Xv This completes the proof
of the lemma.

LEMMA 5. Suppose that 2. is a countable subset of <€ such that any two
functions of 2 are monotonically comparable and that a function f of ^ is com-
parable with each element of 2. Then there exists a function g in %', with f < g,
which is monotonically comparable with each element of 2, and which satisfies

s <q
for every q in 2 with f < q.

PROOF. Let qlt q2, • • • be any enumeration of the functions of 2. Let
2+ denote the set of functions q of 2 with f <q and let 2' denote the set of
functions q of 2 with q < f. We consider separately the three cases when:

(i) 2+ contains elements but contains no minimal element 4;

* A function qa is said to be a minimal element of J?+ if every element q of £+ other than q0
satisfies q0 ̂  q.
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(ii) J?+ contains a minimal element;
(iii) J2+ is empty.

(i) In this case, we can choose a sequence vv v2, • • • of elements of 2t+

such that v1 >- v2 > v3 >- • • • and such that each q in J?+ satisfies q > vr for
all sufficiently large r. We define inductively a sequence of real numbers
{ar} and a sequence of functions {sr} by the conditions:

(i) (3) ax = 0, and s^x) = v^x) for x ^ 0;

(ii) for r = 1, 2, • • •, if ar, sr are known we take <xr+1 to be large
enough to ensure that

(4) «r+1 > ar + 1,

(5) that sT(x) > vr+1(x) > rf(x) for x ^ ar+1,

(6) that the ratio vr+1(x)/vr(x) is monotonic for x ^ ar+1,

(7) and that the ratios vr+1(x)/qs(x), s = 1, 2, • • •, r, are
all monotonic for x ^ <xr+1; and

(iii) we define sT+1(x) by

/ sr+1(x) = sr(x) for 0 ^ x
(8) s fa )

a r + 1

It is easy to check that this inductive definition can be carried out; the
fact that sr(x) satisfies (8) with r + 1 replaced by r ensures that <xr+1 can
be chosen to satisfy the condition (5).

Now put g(x) = lim,.^.^ sr(x). Note that for any fixed x, we have

( 9 ) s r ( x ) = s T + 1 { x ) = s r + 2 ( x ) = •••

provided ar+1 ^ x. It follows from (6) and (8) that g < vr for each integer r,
and therefore g •< q for all q e J?+. The conditions (5) and (8) ensure that
/ "< g> while (7) and (8) ensure that g is monotonically comparable with each
element of M. Thus g has the required properties.

(ii) Now suppose that J?+ contains at least one minimal element. Let £
be the equivalence class of minimal elements of M+. If the number of ele-
ments in £ is finite, then g will contain an element q+ such that q+(x)/q(x) is
monotonic decreasing for sufficiently large x for each q in £ other than q+.
If & is infinite and does not contain an element q+ with this property, we
must first adjoin such an element to £', taking care that the new element is
monotonically comparable with the rest of J .

Without loss of generality, we may assume that £ is such that, if qit qf

are two elements in £, the ratio qi(x)/qi(x) -> 1 as x -> + oo. If there is no
element q+ with the required property, then there must be a sequence
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hix)> h(x)> ' ' '• h(x)> • ' ' of functions of $ such that, for k = 1, 2, • • •,

4+i(*) > h{x) f°r sufficiently large x,

and for any q in (f, tk(x)/q(x), for some integer &, is monotonic decreasing
for large enough x. We define inductively a sequence of real numbers {/3r}
and a sequence of functions {sr} by the conditions

(i) j9x = 1, Sl(a!) = h{x) for « ^ 0;

(ii) for r = 1, 2, • • •, if /5r, sr are known we take /?r+1 to be large
enough to ensure that

(10) £r+1 > pT + 1;

that the ratio *r+i(a0/tfr(a0 is monotonic and satisfies

I + > > 1 ' o r * 6 ^

(12) and the ratios tr+1(x)/qs(x), s = 1, 2, • • •, r are mono-
tonic for x 2=! Br+1; and

(iii) we define sr+1(x) by

(x) = s (x) for 0 5̂  x 5S 8

IT\X) = -— 7t*-±i\X) t o r p r r ! ^ x.

Now put q+(x) = limr^+oosr(a;). The conditions (11) and (13) ensure that
q+ is equivalent to each element of S', and that q+jq is ultimately monotonic
decreasing for each q in §, tending to the finite positive limit

~ tM+i)
r=l K+lWr+l)

Conditions (12) and (13) ensure that q+ is monotonically comparable with
every element of 2..

Thus we may assume that there is a function q+ in 2+ with the property
that q+{x)jq{x) is monotonic decreasing for sufficiently large x for every
q in J+ other than q+.

There are now three possibilities to consider:

(a) 2.- is empty,
(b) £L~ is not empty and contains no element q__ such that q_/q is

ultimately monotonic increasing for each g in Q~ other than q_,
(c) Q~ is not empty and contains an element q_ such that qjq is

ultimately monotonic increasing for every q in 2.~ other than

9-
(a) Let g(x) be defined by
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g{x) = q+(x)[ini q+(£)/f(£)]-*. for x ^ 0.

Since / •< q+, the function

is monotonic increasing, and diverges to -f oo. Consequently g and q+ are
monotonicaly comparable and g ~-< q+. Hence g is monotonically comparable
with each function q of 2. Further, since

we deduce that f < g, as required.
(b) If J~ contains no maximal element, we use the argument of (i) to

adjoin an element q_ which is monotonically comparable with the elements
of 2 and satisfies / > q_ > q for each q in 3.~. On the other hand, if 2~~ con-
tains a class *& of maximal elements, we can use a similar argument to that
used in obtaining q+ from the class $, to obtain a function q_ with the prop-
erty that q_lq is ultimately monotonic increasing for every q in 2~ other
than q_. This reduces case (b) to case (c).

(c) We have now got the situation q_ < f <q+ and q_, q+ are monotoni-
cally comparable. Apply lemma 4 to obtain a function g, which is monotoni-
cally comparable with q_ and q+, and which satisfies q_ < g < q+> f < g < q+.
Clearly this function g satisfies all the conditions of the lemma.

(iii) We have now only to consider the case where 2+ is empty. If 2~ is
also empty, we may take g = if. As in case (ii) (b), we may assume that,
if 2" is not empty, then there is a function q_ such that q_/q is ultimately
monotonic increasing for every q in 2~ other than q_. It now clearly suffices
to take

g(x) = i{x)q_(x) sup

for all x ^ 0. This completes the proof.

COROLLARY. Suppose that f and 2. satisfy the conditions of lemma 5. Then
there exists a function g in ^ which is monotonically comparable with each
element cf 2 and satisfies f >- g >• q for every q in 2 with q <f.

PROOF. Let / ' = k/f and q' = k/q for each q e 2 and apply lemma 5 to / '
and the set 2' of all the functions q'.

LEMMA 6. Suppose t,u, f *'& and are such that t -< / -< w, and t, u are
monotonically comparable: then there exists an s in <& which is monotonically
comparable with t and u, and which satisfies neither f < s, nor f >- s.

PROOF. We define a sequence of real numbers {/Sr} and a sequence of
functions {sr} by the following inductive process:
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(i) p\ = 0, s^x) = u(x) for x ^ 0;

(ii) if /?!, /?2, • • •, P2r-i'>
 si» S2> • " '» S2r-i have been defined we first

choose /32r so that

(14) pir > &,_! + 1

and

(15) s2r_1( /32r)>/( i32r);

then define s2r(x) by

{s2r{x) = s^ix), if 0 ^ x ^ /?2r)

(iii) If p\, /32, • • •, fi2r; s1( s2, • • •, s2r have been defined, we first
choose /32r+1 greater than (32r and such that

(17) s2r(/?2r+1) ^ f(P2r+1),

then define s2r+1(x) by

r ( ) , if 0

s (6S
if

Finally, put s(x) =lim^_0osr(x). Note that (9) is again true. It follows
that s(x) is continuous for all x, and (15), (17) together imply that, for each
integer r, there exists fr satisfying flT < | r < /Sr+1 and s(fr) = sr+1(|r) =
/(^r). By (14), /Jr ^ oo as r -> oo and therefore neither / > s, nor / < s can
be true. The conditions (16) and (18) imply that s is monotonically compar-
able with t and u.

REMARK. It is clear that the function s defined above must satisfy
t < s < u.

We now prove a result which seems to be of some interest in itself.

THEOREM 2. If $~ is a countable set of functions of <& any two of which are
monotonically comparable, and if f is in ^ and is comparable with each element
of 3~, then there exists a function g of %', which is monotonically comparable
with each element of ZF, but which satisfies neither g -< / nor g > /.

PROOF. We may clearly suppose that no function of &" is equivalent to /.
Let J2, & be the subsets of 3~ such that t <f,t> f respectively for t in M, 8%.
Suppose first that at least one of J>, 0t is empty, say 0t. Then t < / for all
t e T. Let M in <€ be such that u is monotonically comparable with t and
t -< u -< / for all t e y (u exists by lemma 5). Put

g(x) = u(x) sup ^ - , for all x > 0.
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Then g(x) 2; f(x) for all x and there is a sequence {fr} of real numbers such
that £„ -> oo as n -»- oo and g(fn) = /(£„)• Since g(x)ju{x) is monotonic for
all x, it follows that g satisfies the requirements of the theorem.

On the other hand, suppose that neither of 2., 3% are empty. By lemma 5
we can find functions u, v which are monotonically comparable with each
element of 3~, satisfy u -< / -< v and are such that t -< u, t >- v respectively
for elements t in 2., 8%. Now apply lemma 6 to obtain a function g which is
monotonically comparable with u, v and satisfies neither g > / nor g < f.
This function g is clearly monotonically comparable with each element of 3~.
This completes the proof of the theorem.

The result of theorem 2 allows us to strengthen lemmas 1 and 2, to the case
where the functions are monotonically comparable.

LEMMA 7. If 3~ is a countable set of functions of *€, any two of which are
monotonically comparable, there is a function u in <€ which is monotonically
comparable with each element of &~ and satisfies t -< u for each t in 3".

LEMMA 8. If 3~ is a countable set of functions of <&, any two of which are
monotonically comparable, and t0 in ST is such that t0 -< t for each t in IT other
than t0, there is a function u in % which is monotonically comparable with each
function of ?7~ and satisfies t0 -< u -< t for each t in 3~ other than t0.

PROOF OF LEMMA 7. If &~ contains a maximal element m, such that, for
every t e 3~, t-<.m, then we use the argument of lemma 5 to adjoin a new
element m0 to 3~, such that m0 is equivalent to all such elements m, and
mo/t is ultimately monotonic increasing for every t in 3" other than m0. It
then suffices to take u(x) = i(x)mo(x).

On the other hand, if 3~ has no maximal element, then there exists a
sequence tx -< t2 -<•••< tn < • • • of functions of 3~ such that, for each
t e 3", t <tr for sufficiently large integers r. Apply lemma 1 to obtain a
function / in *£" such that f > tn for each integer n. Then / >- t for each t e 3~.
Apply theorem 2 to obtain a function u which is monotonically comparable
with each t e 3~ and satisfies neither u -< / nor u >- /. It is clear that u >- t
for each t e 3".

PROOF OF LEMMA 8. This is just a special case of lemma 5 for which / = t0.
Our next object is to extend Theorem 2 and lemmas 7, 8 to the case where

3~ need not be enumerable, but has an enumerable basis. Suppose 3T c <(g
is any set of functions and 3) c 3~: then we say that 88 forms a basis for 3T
if every element in 3~ can be written as a finite product of real powers of
elements in SB. The set 3~ has a countable basis if there is some countable SB
which forms a basis for &~. We need two additional lemmas.

LEMMA 9. / / 3~ is an irreducible scale which has a countable basis, there is a
sequence tx, tt, • • -,tn, • • • of elements 3~ such that tn >- k and, for any t in 3~
with t >- k, there are integers r, s with k -< tT -< t -< t,.
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PROOF. Let ev e2, • • •, en, • • • be a basis for &~ chosen so that er >- k for
each integer r. We suppose, without any loss of generality, that the basis is
such that its elements are independent in the sense that

epep • • • e*'{x) -> p, as x -> + oo, 0 < /? < + oo,

holds only when ax = a2 = • • • = ar = 0.
Let 3~T be the set of functions which can be written in the form

t = ep ep • • • e*'

for some real numbers ax, a2, • • •, ar. Since the elements ev e2, • • •, er are
independent, there is a (1, 1) correspondence between the points (<x1( <x2, • • •,
ar) of Euclidean r-space and the functions

< = « (a 1 , a , , - - - ,o r )= # # • • • < '

of yr.
Since &~ is completely ordered by the relation -<, the correspondence in-

duces a total ordering in r-dimensional space. Let this ordering be denoted
by the same symbol and let E_ be the set of points (a.1, a2, • • •, ar) such that

K , a2, • • •, ar) •< (0, 0, •••, 0);

E+ be the set of points (ax, a2, • • •, ar) such that

(xv a2, • • •, ar) > (0, 0, • • •, 0).

E_ u E+ forms the whole of r-dimensional space apart from (0, 0, • • •, 0).
It is easy to verify that E_, E+ must be convex sets in r-space. It follows,
without difficulty, that E+ can be represented as a union E+ = u[=1 Ht,
where H{ is an open z-dimensional half space, lying in the bounding hyper-
plane of Hi+1 when i < r, and bounded by an (r — 1)-dimensional hyper-
plane passing through the origin.

Now take an enumerable set of points (a{n), a2"', • • •, <x{
r
n)) which is dense

in both H1 and HT and put

If t € 3~T and t >- k, there will be integers m, p, for which

If we now reorder the elements t("\ n = 1, 2, • • •, r = 1, 2, • • • in a single
sequence tlt t2, . . . of elements of &~, we have satisfied the conditions of the
lemma since & = u~ x 9~r.

LEMMA 10. / / Sf is an irreducible scale which has a countable basis, and f
in <€ is comparable with each element of Sf, then there is a sequence sv s2, • • \
sr, • • • of elements of 6f such that (i), if s e S? and s >- /, there is an integer r
such that s >- sr >- /, and (ii), if s e Sf and s -< /, there is an integer p such that
s <sv<f.
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PROOF. If / is equivalent to an element / ' in SP, the result follows im-
mediately on applying lemma 9 to the function s/f or f'js in cases (i) and (ii).
Therefore, we may assume that / is not equivalent to any element in SP.

We now modify the method of proof used in lemma 9. Let elt e2, • • • be an
independent basis for the set SP. Let SPT be the set of elements of SP which
can be represented in the form

s = epep- • • ea
r<,

where a1( a2, • • •, ar are real numbers. We divide the points (a1; a2, • • •, ar)
of r-dimensional space into two sets E~ and E+, putting (xlt <x2> • • •, ar) in
E~, if e(oLlt OL2, • •• -, ar) -< /, and in E+, if e(<xv <x2, • • •, ar) >- /.

The two sets E~ and E+ constitute a convex partition of space into two
disjoint sets. If one of these sets, say E+, is empty, it is sufficient to take for
s'1', s£2), • • •, sjn), • • • any set of functions corresponding to a dense set of
points (a[n), a2

n), • • •, a{.n)) n = 1, 2, • • •, in ^-dimensional space. If both the
sets E~, E+ are non-empty, we proceed as follows. Let HT_1 be the (r — 1)-
dimensional hyperplane separating E~ and E+. Let E~_x = E~ n Hr_v

E+_x = E+ n Hr_v If each of these sets is non-empty, let Hr_2 be the (r — 2)-
dimensional hyperplane separating E~_v E^; and put

E~_2 = E~ n Hr_2, E+_2 = E+ n Hr_2.

If each of the sets E~_m, E+_m (m ^ 2) is not empty, let #,._„,_! be the
(r — m — 1)-dimensional hyperplane separating them, and put

E-_m_x = E~ n Hr_n_l, £+_m-i = E+ n Hr_m_v

In this way, we obtain inductively sets

where p ^ 0 is an integer, one of the sets E~, E+ is empty and none of the
sets E^v • • -, E~__v E;+1, • • • £+_i is empty. Now let (a<"\ a<n>, • • •, a f )
n = 1, 2, ••• be a set of points in r-space which is dense in each of the sets
(19); and put sJB) = e(a|n), a2

B), • • •, a}"'). It is easy to see that, if s >- / and
s e SPr, then there is an integer m for which s >• s£m) > /, while, if s -< / and
s e £Pr, then there is an integer p for which s -< s£p) -< /.

Finally, rearrange the functions s{"\ n = 1, 2, • • •, r = 1, 2, • • • as a single
sequence slf s2, • • •, and it follows that this sequence has the desired prop-
erties.

REMARK. The method of proof us^d in lemmas 9 and 10 can be extended
to prove the following more general result:

THEOREM. / / Z? is an irreducible scale which has a countable basis, and
&~ is any subset of £?, then there is a sequence tv t2, • • •, tr, • • • of elements of
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such that, for every t e 3~, there are integers r and s such that

We omit the proof since this theorem is not needed in the sequel.
The next theorem is an extension of lemmas 1 and 2.

THEOREM 3. / / SP is an irreducible scale with a countable basis, there are
functions f, g which are comparable with each element of SP and satisfy

g > s >- 1/g for every s e SP,

if s e SP and s >- k, then s >• / > k,
if s e SP and s -< k, then s -< 1// -< k.

If, in addition, any two elements of SP are monotonically comparable, then
f, g can be chosen to be monotonically comparable with each element of SP.

PROOF. Let sv s2> • • • be a sequence of elements of SP satisfying the
conditions of lemma 9. Apply lemma 1 to obtain a function g satisfying

g >• sn for each integer n,

and apply lemma 2 to obtain a function / satisfying

sn ~>~ f >~ k f°r e a c n integer n.

It follows immediately that the functions /, g have the required properties.
If SP is such that its elements are monotonically comparable, the result

follows by using lemmas 7 and 8 instead of 1 and 2.

REMARK. This theorem shows clearly that a scale which has a countable
basis cannot have any of the properties (P6), (P6) of (P7).

The next theorem is an extension of theorem 2 and will be important in
the sequel.

THEOREM 4. / / SP is an irreducible scale, any two of whose elements are
monotonically comparable, SP has a countable basis, and f eff is comparable
with each element of SP; then there is an element g e ^ which is monotonically
comparable with each element of SP, but which satisfies neither g >- / nor g -< /.

PROOF. Apply lemma 10 to obtain a sequence of functions su s2,..., sn,...
in SP with the properties stated. Let this sequence form the countable
set 3~, and apply theorem 2 to obtain a function g etf which is monotonically
comparable with each element of &~ but satisfies neither g >- / nor g < f.
If s is any element of SP and s >- /, it follows that there is an integer n such
that s >- sn >- /. Since sn is comparable with g, we must have s >- sn >» g, and
therefore g is monotonically comparable with s. Similarly, when s < f, g is
also monotonically comparable with s. This completes the proof of the
theorem.
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5. The existence of a maximal dense scale

In this section and the following, we have been forced to make use of the
continuum hypothesis. Since a continuous function is determined by the
values it takes on the rationals, the set ^ has the power 2K° of the continuum.
We suppose the subset ^°° of the functions of <€, which tend to + oo as x
tends to +oo, is well-ordered in a transfinite sequence

A. h, •••>fp,- • •, n<Q,

where Q is the first ordinal of power greater than fc$0. Then to each ordinal /z
with cardinal less than 2s", there will be a corresponding function ffi e ^°°;
and the functions / exhaust ^°°, as ju runs through each such ordinal. We
suppose, as we may, that the well-ordering is chosen so that fx = i. We give
an inductive definition for a scale SP ̂  for each ordinal /J, < Q and finally
take SP = u^f l SP ̂

First let 5PX be the scale of functions i" for all real a. It is clear that 6PX

has the properties (Pf), (P2)—(P4), and SPX has a countable basis.
Now suppose that r < Q, and that scales SP ̂  have been defined for /J, < r

with the following properties:

(20) for p<x, SP^ has properties (P*), (P2)—(P4);

(21) for fi < T, SP'p has a countable basis;

(22) for fi < r, there are functions s, t in 6P^ such that
k <s <fll<t;

(23) for fi < T, there is a function g e 6?^ such that neither
g > fp nor g < fp,

(24) for 1 g (i < v < r, SP^ c SPV.

The conditions (20)—(24) are clearly satisfied when T = 2. Our object is
to show that SPT can be defined so that the conditions are satisfied with T
replaced by (r + 1).

Let
^ T = u «$%, 2 g T < Q.

/i<T

By the continuum hypothesis, y T is an enumerable union of scales each
with a countable basis, and so ^"T itself has a countable basis.

If there is an element t in &\ such that t > fT, we put 3~'r = ^"T; otherwise
we aim to form a scale 3T'r, from ^"T, by adjoining a suitable element to ^"T.
By theorem 3, there exists a function g, which is monotonically comparable
with each element of ^~T and satisfies g >- t for every t € ̂ "T. By lemma 4
(with / = k), there is a function w which is monotonically comparable with
g (and therefore with each element of 3T7) and satisfies

u> g, u> fr.
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It follows that the set of functions of the form uat, where a is real and
te^T, is a scale, with properties (P*), (P2)—(P4), which has a countable
basis. We define &~'T to be this new scale.

If there is an element s in &~'T such that

k < s < fT,

we put y " = y'T; otherwise we aim to form y " , from &~\, by adjoining
such an element to it. By applying theorem 3 to &~\, we can find a function
h e <S, which is monotonically comparable to each element of 3T'7> and satisfies

k <h<t for * in 3"T n &°°.

By lemma 4, there is a function I which is monotonically comparable with
k and h (and therefore with each element of 3~'T) and satisfies k <l <h and
/ -< fT. We now define y " to be the set of functions of the form lat, where a
is real, and t e 3"T. Then 3~" is a scale with the properties (Pf), (P2)—(P4)
and has a countable basis.

Now, it may happen that there is an element g e y " , such that neither
g > fT nor g -< /T. In this case we put y " ' = y " ; otherwise we again form
a new scale by adjoining a suitable element to y " . Clearly fT must be com-
parable with each element of y " , so we can apply theorem 4 to obtain the
required g. Finally, we let y " ' be the set of all functions of the form gat
where a is real and t e 3~".

Define SPr = y " ' . If r is replaced by (T + 1), it is clear that each of con-
ditions (20)—(23) is satisfied. The condition (24) is immediate since £PT =
y ; " = y ; ' = y ; => y T => sr, for all p < r.

By the wording of the conditions (20)—^(24), it makes no difference to
the construction of £?T whether T has an immediate predecessor or is a limit
ordinal. Thus, by induction, Sf fl is defined for all yu < Q.

If Sf = u/ t<f l Sf p, it is immediate that Sf has the properties (P*),
(P2)—(P4); but, naturally, Sf will not have a countable basis. We now show
that SP also has the properties (P6)—(P7). If / e <€, then /' = max (/, i) e < °̂°
and therefore /' =ffl, for some ordinal /i < Q. Hence there is an element
s e Sf p, such that s >- / ' and therefore s >- /. Since s e S?, this proves that SP
has property (P6). Now suppose getf00; then g = fv, for some ordinal
a < Q. There exists s in SP'„ with k •< s -< g. Since s e SP, this proves that £P
has property (P7).

Finally, suppose / in ^ is comparable with each element of SP. Then,
since k e SP, either / is equivalent to k, or / e <&700 or / e ̂ 0 . Thus, there is an
ordinal v < Q such that either / = /„ or 1// = /„. There is an element s e SPV

such that neither s > /„ nor s -< fv. Hence, either s or 1/s, both of which are
elements of SP, is equivalent to /. This proves that the scale SP has the prop-
erty (P5); i.e. it is maximal.

Thus we have proved
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THEOREM 5. (Assuming the continuum hypothesis). There is an irreducible
scale Sf which is maximal and dense and for which any two elements are mono-
tonically comparable.

REMARK. It is perhaps worth asking whether anything like theorem 5
can be proved without using the continuum hypothesis. In fact the same
methods work, if we redefine properties (P5), (P6), (P7) relative to a subset
s/<= ̂ , for which we know that the power of stf is K1( where Kx is the smallest
cardinal greater than No. Thus we say that a scale £f is maximal relative to s/
if it has property: (P5i^) if / e si and is comparable with each element of Sf,
then / is equivalent to some element of if.

We say that a scale Sf is dense in s/, if it has properties (P6j^) and (P7j^)
obtained by making similar modifications to (P6) and (P7). The method
used to prove theorem 5 then gives, without using the continuum hypothesis:

THEOREM 5S/. Let sf be any subset of ^ of cardinal Kj. Then there is an
irreducible scale £P which is maximal relative to s/, and dense in s#', and for
which any two elements are monotonically comparable.

6. Existence of a scale which is maximal but not dense

In this section, we again need to use the continuum hypothesis, but we
modify the method of construction of theorem 5, so that the scale SP ob-
tained has neither of the properties (P6) or (P7), though the other properties
are preserved. The idea behind our construction is to ensure, (i) that every
function in Sf has, for some arbitrarily large values of x, values which are
not too large; (ii) that every function in Sf n'tf00 has, for some arbitrarily
large values of x, values which are not too small.

Thus we say that two functions /, g in %> are exponentially similar, if they
are monotonically comparable and, in addition

lim inf (z-i|log/(z) - logg(x)\} = 0.
x—H-oo

A subset $ cz <Jf is said to have the property (P8) if any two of its elements
are exponentially similar. We say that two functions /, g e # are logarith-
mically different, if they are monotonically comparable and, in addition

log f{x) - logg(z)
lim sup

x—H-oo

= +00.
log log x

A subset £ <= <̂  is said to have the property (P9) if any two of its elements,
which are not equivalent, are logarithmically different. A subset $ <= ̂  is
said to be a restricted set of functions if it has both the properties (P8) and (P9).

Our object is to obtain a scale S? which has the properties (Pf), (P2)—(P5)
and (P8), (P9). Such a scale will have neither of the properties (P6), (P7).
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In the first place take f{x) = exp x. Then no function / of SP which is
exponentially similar to the function k of Sf can satisfy g > f. Hence £f has
not got property (P6). Secondly, take

f(x) = 1, for 0 ^ x ^ e,
f{x) = log x, for e ^ x.

Then / >- k, but there is no function g in ^ which is logarithmically different
from k, and satisfies / >- g >- k. Hence Sf has not got property (P7).

To obtain a scale S? which is maximal, and at the same time a restricted
set, it is necessary to modify some of the methods and results of section 4.
We will state the results and sketch the arguments at those points where
care is needed.

In section 4, we made repeated use of the fact that, if /, g, h are in ^ and
f < g <h, and, if / and g are monotonically comparable and g and h are
monotonically comparable, then / and h are monotonically comparable.
The new situation is rather more complicated; the most useful results are
summarised in the following lemma.

LEMMA 11. Let /, g, h be monotonically comparable functions of % satisfying

f <g<h.

If f and h are exponentially similar, then so are f and g, and g and h. If f and g
or g and h are logarithmically different then so are f and h.

Lemma 5 obviously has to be weakened slightly in its new form. It remains
strong enough for our purposes.

LEMMA 5A. Suppose 2 is countable and forms a restricted set of functions
of (€, and f is comparable with every function in 2, and there is at least one qof 2
with q >- f. Then either (a) there exists a function q+ of 2 such that f -< q+ -< q,
for every q in 2, other than q+, which satisfies q >» /; or (b) there exists a func-
tion g eft such that the set 2 u {g} is a restricted set and f < g < q, for every
q in 2. satisfying q >- /.

PROOF. Note first that, since any two elements of 2 are logarithmically
different, no two elements of 2 can be equivalent. Hence, if (i) is not satis-
fied, we must be in the situation of case (i) of lemma 5. Thus it is sufficient to
prove that (b) is satisfied when the set 2+ of elements q >- f has no minimal
element. We modify the proof of (i) of lemma 5 as follows. Previously, we
chose a sequence {ar} of real constants inductively so that, when <xv a2, • • •, a,
were known, ar+1 was chosen large enough to satisfy (4)—(7). We now choose
ar+1 so that in addition it satisfies

(25) inf x-i|log sr(x) - log q,(x)\ <-, s = I, 2, • • -, r;

and
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(26) sup — > r, s — 1, 2, • • •, r,
«rs«s«r+1 log log x

unless qs = vT.
The conditions (25), (26) are sufficient to ensure that, when g is added to

J2, the new set is still a restricted set.

LEMMA 6A. Suppose t, u in *€ are exponentially similar and logarithmically
different and f in *€ satisfies t -< / -< u, then there exists s in "<? such that s, t, u
form a restricted set and neither f < s, nor f > s is true.

PROOF. The following additional conditions need to be imposed in the
inductive process used in lemma 6 which defines {/Sr}. If ^v (32, • • •, /32r_1

are known /?2r must satisfy (14) and (15), and in addition,

> f

log log x

Similarly, if (tlt • • •, /92r are known /52r+1 must satisfy (17), and in addition,

'•log log x

The conditions (27), (28) will be sufficient to ensure that s(x) is logarithmi-
cally different from both t and u.

THEOREM 2A. / / &" is a countable restricted set of functions of %', and f in ^
is comparable with each element of 3~, then there exists a function g in %? which is
exponentially similar and logarithmically different to each element of Z7~, but
which satisfies neither g -< / nor g >- /.

PROOF. If J , M are the subsets of &~ such that t < f, t> f respectively
for t in 2., 3%; the case where neither J nor 0k is empty follows immediately
as in the proof of theorem 2. The case where one of the sets 1, £M, say Si, is
empty requires a small change in the argument.

Apply lemma 5A to find an element t0 such that / >- t0 > t for all t e &"
and t0 together with 9~ form a restricted set. Let

h{x) = to(x) sup —-, for all x > 0.
t(i)

Then h(x) etf and h(x) ^ f(x) for all x. Further there will be an infinite
strictly increasing divergent sequence flt | 2 , • • • such that

It is clear that h is monotonically comparable with t0 and so with each
function of 9~. We now define a function g, which oscillates between t0 and
I = i%h, as follows:
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(i) let ax = 0, g^x) = l(x) for x > 0;
(ii) if otj, a2, • • •, a2r_j; g1, g2, • • •, g2r-i have been defined, we

choose a2r to be such that

«2r > <*2r-l + X;

and

(29) ?2r-l(a2r) > «2r/(*2r) > M«2r)-'

and define a function g2r(
a;) by

?*(*) = gjJr-lO*), if 0 ^ X ^ a2r)

, , . , to(x)
giri*) = g'2r-l(*2r) w , . l f a2r ^ «)

^o(a2r)
(iii) if a1( a2, • • •, a2r; gi, g"2, • • •, gir have been defined; we first

choose a2r+1 to be such that

fe(«2r+l) < /(«2r+l):
and

(30) inf x-1|logg-8r(a;)-log/f(a;)| < — f o r s = l , 2,---,r;

and define a function g2r+1(#) by

ftr+l(*) = ?2r(^)- if 0 ^ * ^ «2r+l-

Z(x)
) 77 r - if «2r + 1 ^ *•

Here fx, <2, • • • is an enumeration of the elements of &~.
If we put g(x) = limr_>0O gr(x), the condition (29) ensures that g is logarith-
mically different from / and therefore from each element in &~, while the
condition (30) ensures that g is exponentially similar to each element of &~.
The fact that g is monotonically comparable with each element of &~ and
that neither g > / nor g < f follows, as in the proof of lemma 6. This com-
pletes the proof of the theorem.

Lemmas 7A, 8A may now be stated in terms of countable restricted sets
ST, and the proofs are immediate. There is no lemma 4A, but lemma 11 to-
gether with lemma 4 will play the role of lemma 4A in subsequent proofs.
No change is required in lemmas 9 or 10, so we can deduce theorems 3A and
4A immediately.

In the inductive definition of scales Sf\ given in section 5, the condition
(22) is now replaced by:

(22A) for [i < T, the scale Sf M is a restricted set.

It will only be necessary to use theorem 4A to find a function g, such that g
together with &~T form a restricted set and neither g ~> fT nor g -< /T is true,
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and put in the scale «$"T all functions of the type

gat where a is real, te$~T.

All that we need to prove is that Sfr forms a restricted set. If a = ft it is
clear that gxtlt g&t2 form a restricted set, where tlt t2 are any two elements of
3T7. If a ^ ft

|log g«tx - log gH2\ = |a - p\ (log g - log t3\,
for a suitable function 3̂ e &~T.

Since g and ^~T together form a restricted set, it follows that gat1, g$t2 are
exponentially similar and logarithmically different and hence S^T is also a
restricted set.

Thus the method used in section 5 yields

THEOREM 6. (Assuming the continuum hypothesis). There is an irreducible
scale SP which is maximal, for which any two elements are monotonically com-
parable, but which has neither the property (P6) nor the property (P7).
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