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ON HURWITZ CONSTANTS FOR FUCHSIAN GROUPS

L. YA. VULAKH

ABSTRACT.  Explicit bounds for the Hurwitz constants for general cofinite Fuchsian
groups have been found. It is shown that the bounds obtained are exact for the Hecke
groups and triangular groups with signature (0 : 2, p, g).

1. Introduction. Itisknownthat PSL(2. R) can be identified with the group of all
orientation-preserving isometries of the upper half- plane model for hyperbolic plane
H? = {x+yi € C,y > 0} endowed with metric y=?|dz? (see e.g. [1]). Transformation

T=(2 4] € PSL@R) actson H2 by there T(2) = (az +1) /(c2+ o). A geodesic

in H? isasemicircle or aray orthogonal to the real axis. Let ' € PSL(2, R) be afinitely
generated Fuchsian group of the first kind. We assume that I" is zonal, that is, I has a
parabolic fixed point at co. Then there is aleast positive w, the width of the cusp at oo,

such that (é vlv) erl.
Let o bearea irrational number. In 1891 A. Hurwitz [5] showed that the inequality
a 1
@ o — E' <ha

has infinitely many solutions in coprime integers a and ¢ when h = /5, and /5 is the
best constant possible. The first geometric proof of this result was obtained by L. Ford
in [3] where he makes use of properties of the modular group.

Let A bethelimit set of I and P the set of cusps (parabolic vertices). Leta € A—P.
J. Lehner [6] showed that there is a positive constant h depending only on I such that
the inequality

1

holds for infinitely many left cosets of I, = Stab(co, ") in . When I is the modular
group, P = Q and (2) isreduced to (1).

For afixed @ € A — P we denote by h(«) the supremum of all such hin (2). The set
of numbers

L) ={1/h(e),ccL —P}
isthe Lagrange spectrumfor I and C(I") = sup L (") the Hurwitz constant for I".
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For any real X,, the region P, = {(x,y) € H? : X, < X < X, + W}, where w is the
width of the cusp at oo, is afundamental domain of I ,,. Theregion

D=P,N{zeH*:|T'(Q|<LTerl}

is an isometric fundamental domain for " in H2. Here T/(2) = |cz+ d|~2. (Thecircle
|cz+d| = 1liscalled theisometric circle of T) (see e.g. [1]).

Assumethat aside o of D, whichisnot avertical ray, lies on someisometric circle A.
The point of ) farthest from the real axis A is called the summit of . We shall call the
distance from the farthest from the real axis point of ¢ to thereal axisthe height of ¢ and
denoteit by ht (¢). Supposethat v = v; belongsto the cycle of verticesC = {vy, ...,V }
of D. It isknown that C lies on some horocycle Im z = const (see[1], p. 229 and p. 288).

Leto; and o, ht(oi) < ht(c]), bethesidesof D whichmeetat vi,i = 1....,n. Denote
(3) K(v) = K(C) = 2min{ht (c1), . . ., ht (on)}

We shall say that avertex of D isodd (even) if it isan elliptic fixed point of I' of an odd
(even) order. Let v be an endpoint of aside o of D. Define A(v) = 1 unlessv is an odd
vertex of D of order g and the summit of o belongsto ¢ when

2\ Y2
4 A(V) = (1+(1—cosa) ) ,
and denote
(5) hr = inf A(v)K(v),
where K(v) is defined by (3) and the infimum being taken over al the vertices and cusps
v # oo of D.

Rankin [10] found explicit upper and lower boundsfor the Hurwitz constant C(I") for
ageneral zonal cofinite Fuchsiangroup I'. In [12], amodification of the Ford geometric
approach to the problem of approximation of irrational real numbersby rational fractions
isdeveloped. This method is applied to find an upper bound for the Hurwitz constant for
ageometricaly finite discrete group acting in an n-dimensional hyperbolic space. When
n=1,thatis, whenT isageneral zonal Fuchsian group, this bound is better than the one
obtained by Rankin. In [11], thisapproachis used to find the approximation constantsfor
the imaginary quadratic fields of discriminant —20 and —24. The main purpose of this
paper is to obtain a further improvement for the upper bound for C(I"). The following
result is stronger than Theorem 1 from [12] for n = 1.

THEOREM 1. Let ' bea zonal cofinite Fuchsian group with the limit set A and set of
cuspsP. Let « € A — P. Then there are infinitely many left cosets of Stab(co, ) in T
whose members T satisfy

a
6 } 8 = o= Too| < ——
(6) o4 C| |ox OO|<hr|C|2

(c#0). Thus, C(I") <1/hr.
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We shall say that a side o of D with an endpoint v is critical if hr = A(V)K(v) =
2)\(V)ht (o). It follows from the results obtained in [12], where A(v) = 1 for al the
vertices of D, that C(I") = 1/hr if each of the endpoints of acritical side o isan elliptic
fixed point of an even order. In the following theorem, some other cases are enumerated
when the equality holds for the Hurwitz constant in Theorem 1.

THEOREM 2. Let T be azonal cofinite Fuchsian group. Let D be an isometric funda-
mental domain of I' and let o be a critical side of D. Assumethat an endpoint v of o isa
fixed point of I' and that the summit s of ¢ is an dlliptic fixed point of order two.

1. If visan dlliptic fixed point of an odd order g, then

c(r) = Wl(a)(“ (1- cosg)z)

2. Ifvisan elliptic fixed point of an even order or a cusp of D, then

-1/2

1

Moreover, if vis a cusp, then C(I") is an accumulation point in the Lagrange spectrum
for I.

In Section 2 we introduce h-neighborhoods of vertices and cusps of D, study their
properties, and use them to prove Theorem 1. In Section 3, Theorem 5, an analogue of
Theorems 1 and 2 for the disc model of the hyperbolic plane, is given. In Section 4 we
first prove Theorem 2 and the second part of Theorem 5 and then apply them to some
triangular groups, including Hecke groups Gg. In Example 1, for even g, we find aso
the second minimum in the Lagrange spectrum of Gg. It was first found by Haas and
Series[4] (see also [8]).

The author thanks the referee for his useful remarks which led to an improvement of
this work.

2. h-neighborhoods of vertices and cusps. In this section we prove Theorem 1
using a modification of the notion of an h-neighborhood of a vertex or a cusp of D
introduced in [12].

Let « € A—P. Denoteby L = L(«) the vertical ray through o in H?. Let T € T,
For any h > 0, let R (T, h) be the open Euclidean disk in H? tangent to the real
axis A\ at Too = a/c having radius 1/(hc?). We have R (T.h) = TRy, where R,, =
R (id,h) = {z: Imz > h/2}. Denote the boundaries of the horocyclic regions R (T, h)
and Ry by Q(T, h) and Q respectively. Thus, the inequality (2) holds if and only if L
cuts Q(T, h).

Since « is not a parabolic fixed point, the line L passes through infinitely many
fundamental regions T(D), T € I'. Let the fundamental region through which L passes
beTn(D),n=1,2....,takenin order asapoint zmovesalong L from oo to «. Let z, be
the point of intersection of L with the common boundary of T,,_1(D) and T,(D). Denote
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by L, the part of L between z, and «. Define N (h) to be the region in H> U P which is
exteriortoal R (T.h), TeT.

Let o and ¢’ be the sides of D that meet at v. Assume that their summits s and s’
belong to the closure of D. Let 2ht (¢) = h, < h. We denote by T (v) the component of
the closure of D which containsv and is bounded by the sidesc and ¢/, two vertical lines
passing through the summitssand &, andy = h/2. (If h < h,, then T (v) is atriangular
region). We shall call theunionof al TT (v), T € I', which contain v the h-neighborhood
of v and denoteit by N(v, h). There are two kinds of sides of N(v, h): parts of horocycles
Q(T.h), T €', whichwill be called the horocyclic sides of N(v, h), and separating them
the geodesic sides which are the images of the vertical segments, sidesof T (v).

For every vertex or cusp v of D, define k(V) to be the largest h such that any geodesic
passing through N(v, h) cuts a horocyclic side of N(v, h). Supposethat v = v; belongsto
the cycle of verticesC = {vs,..., Vn}. Let gi and o], ht(0i) < ht(o]), be the sides of D
whichmeetatvi,i = 1,....n. If h <K(V) (see (3)) then N(v, h) does not have geodesic
sides. Hence
() k(v) = K(v).

It will be shown (see Lemma 3) that the equality holds in (7) when v is an even vertex
or cusp of D but when v isan odd vertex this bound can be improved.

Let vertex v of D be an elliptic fixed point of order g. Assume that some geodesic
L intersects T (v) but does not cut the horocyclic sides of N(v, h). Then L crosses two
geodesic sides of N(v, h) one of which is a vertical side adjacent to the horocyclic side
that liesony = h/2. Sincethe order of vis g there are g horocyclic and q geodesic sides
of N(v, h). Figure 1 showsthe sets T (v) and N(v, h), h > hr, when T isthe Hecke group
Gg. (Figure 1in [12] showsthese setswhenh = hr).

Assume that the cyclic group Stab(v, I') is generated by W, W8 = id, and W(o) = ¢’.
Denote by Qy the side of N(v, h) that lies on the horocycle Q(WX, h) and by By the
geodesic side of N(v, h) that lies on the geodesic with endpoints W<oo and WK 1oo. Thus,
Bo and By—1 arethe vertical sides of N(v, h) (see Figure 1 where q = 4). The summit s of
o isthe hyperbolic midpoint of By and s, = WXs is the midpoint of By.

Theimprovement of Theorem 1 from [12] for n = 1 is based on the following.

LEMMA 3. Let D be an isometric fundamental domain for a zonal cofinite Fuchsian
group I". Assume that the sides o and ¢’ of D meet at a vertex v which is a fixed point of
I" of order g. If visan odd vertex of order g, then

1/2

k(V) = 2(1+ (1 - cosg)z) ht ().

If visan even vertex or a cusp, then k(v) = 2ht (o).

PROOF. Let ¢k = ¢(WK). Theradius of Q equals 1/(hcZ). In particular, the radius of
Q(W, h) 1/(hoc?) = ho /4 sinceit istangent to y = h, /2 at the summit of . Hence

(8) c=0, = 2/h0.
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FIGURE 1

Sincethetrace of Wis2 cosf, whered = /g, W satisfiesthe equation W? — 2 cos§W+1 =
0, where | istheidentity matrix. Thus, ¢, satisfy the finite difference equation

Cr+1 — 2(cosB)ce + ¢ =0.
Solving this equation subject to the initial conditions (8) we get

_ 2 sin(kd)

© %= b snd

Notice that when vis a cusp of D, then, taking the limit in (9) asf# — 0, we obtain

2
(20) Ck = h_ok'
Let hi (hy) be the smallest value of h for which there is a geodesic which cuts both By
(By—1) and By without cutting a horocyclic side of N(v, h). It is clear from the geometry
that the radius of a geodesic L(h) which is internally tangent to one of the horocycles
Q(W™M, h) and Q(W™, h) and externally to the other is a decreasing function of h. Hence
L(h,) and L(hy) aretangent to Qo, Qx, and Q1.

Let L be the geodesic which passes through s and s¢ and is tangent to Qp. Sincesis
the midpoint of By, L is also tangent to Q;. Let R be the reflection in H? with respect
to the geodesic which passes through v and perpendicular to L. Then R(Qk+1) = Qo,
R(Q«) = Q1, and R(S) = sc. Hence L is tangent to Q, and Q1. Thus, L = L(hy).
Similarly, L(h;) passesthrough s’ and s and is tangent to Qo, Qq-1, Qk, ad Qi+ (See
Figure 1 [12] whereT isthe Hecke group Ga). Notice that L(hg) = L(hg_1)-
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The center of Qx isx +i/(hck) where x, = WKoo. The centers ¢ and the radii h/2 of
the geodesics L(h,) and L(hy) satisfy the system

i h 1
}C—ka—cg\:é hc2
(1) \c—xk+1+h'—cﬁzg¢h—iﬁ
where
2
|Xk+1—Xk|:W

since horocycles Q, and Qy.1 are tangent to each other when h = h,. Solving system (11)
we get

1/2

Cf — Cy £ 4h2\2
h=h.l1+ k k+1 0 )
O( ( 2CCs1 )

from which, by (9), we obtain

(12) i = ho(1+ cot?(ke) sin?9) /7.

and

(13) h; = h;+l'

(k=1.....9g—1). When q = 2m+ 1 is odd, the smallest value of h; (and h,) is

k(v) = hi, = h = X(v)h, where \(v) is defined by (4), and the centersof L(h;;) and L(h},)
areRevF h,/2. When g = 2m, k(v) = hy,, = h,. If visacusp of D, then, taking the limit
in(12) as® — 0, we obtain

(14) hi = ho(1+k2)2,

and (13) also holds for k = 1.2, .... Thus, k(v) = 2ht(0) in that case. The lemma is
proved.
Now, from (5), (7), and Lemma 3 we get

(15) hr <inf k(v),
the infimum being taken over all the vertices and cusps v # oo of D.

PrOOFOFTHEOREM 1. Leth < hr. Assumethat Theorem 1 isfalse. Thenthereexists
an integer n such that L, € N (hr). Assume that L,, passes through N(v. h) in N (hr).
Since, by (15), h < hr < k(v), L, cuts a horocyclic face of N(v, h) in contradiction with
the assumption.
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FIGURE 2

3. The disc model. In this section, the unit disc A = {z € C : |z < 1} with
a metric derived from the differential ds = 2(1 — |Z?)~%|dz| is used as a model for

the hyperbolic plane. An orientation-preserving isometry of A can be identified with

T= (2 ;) € PSL(2,C). Let ' be a cofinite Fuchsian group acting in A. The unit

circle Aisthelimit setof I'. Let « € A — P. (Now P can be empty). We consider the
approximation of o by the elements of the orbit I'0. It is shown in [12] how the general
case of approximation of o by the orbit F'w where w € A can be reduced to the case of
w = 0. It is also shown that the Hurwitz constant for the orbit "0 coincides with that for
[Moo.

Let D be the Dirichlet polygon for I with center 0. For a geodesic L in A, the point
of L which is closest to the origin is the summit of L. Let 5 and n’ be the endpoints
of L. Denote by r and R the Euclidean and hyperbolic distances from the origin to L
respectively. Let h = |p — n’|. Then we have
h= 1—r? _ 2

1+r2  coshR’

Letvbeavertex or cuspof D. DenoteK = {ze C : || = r}. Wedefine h-neighborhoods
N(v, h) as in Section 2, replacing the horocycles Q(T, h) and vertical rays through the
summits in H? by hyperbolic circles T(K), T € I, and radii through the summits in
A. We intend to derive an analogue of formula (12) and then to obtain an analogue of
Theorem 1 for thedisc model. Let o beaside of D whose summit s belongsto the closure
of D. Assumethat an endpoint v of ¢ is an elliptic fixed point of order g. Denote by W a
generator of Stab(v.I"). Let s, = WKs k= 1...., q — 1. Denote by L(h,) and L(h;) the
geodesics passing through s and s, and s;—1 and s respectively. Denote by R, and R
the hyperbolic distances from the origin to s and to L(h,) respectively. Let uand u’ be
the feet of perpendicularsfrom the origin and v to L(hy) respectively (see Figure 2).
Denote A = p(v. U'), B = p(s, U'), and C = p(s, v) where p(z. Z) is the hyperbolic distance
between two points z Z € A. Let é be the angle at sin the triangle with vertices O, s,
and u. In the triangle Osv, the anglesat v and sare § = 7 /q and 7/ 2, and we denote by
¢ the angle at the origin. In the triangle vsu/, the angles at v, s, and u” are kd, 7 /2 — 4,
and 7/ 2 respectively. Then we have (see [1], pp. 146-147)

(16) sinhR, =sinhR,sing,
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and
coshC = coshAcoshB, sinhA=sinhCcosd, sinhB = sinhCsin(kd).

Eliminate A and B, substitute cosh C = (cos¢)/(sin6), and solve this system for sing, to
obtain, by (16),

o sin? 0 cot?(k) \ /2
a7) sinh R, —smhRo(1+W) ,
R = Rt
If visacusp of D, then,asf — 0in (17), we obtain
S 1 -1/2
(18) sinhR; —smhRo(l+m)

We define k’(v) asin Section 2. The following statement is an analogue of Lemma 3.

LEMMA 4. Let D be an isometric fundamental domain for a cofinite Fuchsian group
I which actsin A. Assume that the sides o and ¢’ of D meet at vertex v which is a fixed

point of I of order g. If vis an odd vertex of order g, then
R — 1—cosg\2\/2

= +({—

sinhR(v) = sin Ro( ( 059 )

wherek’(v) = 2/ coshR(v). If visan even vertex or a cusp, then k'(v) = 2/ coshR,.

Let v be an endpoint of aside o of D. Define \'(v) = 1 unlessv is an odd vertex of D
of order q and the summit of o belongs o when

1/2 n
a
Let w € D. Supposethat v = v; belongs to the cycle of vertices C = {vy, ..., Vq} of D.

Letoi andof, p(w. 0i) > p(w. of), bethesidesof D whichmeetatv;,i = 1,....n. Denote

0=

(19) V) = (1 . (1_7“’59)2)

COS¢

(20) K(w, v) = max{p(W, o1), . . ., p(W, o) }.

Assume that the orbit F'w is used to approximate @ € A — P. Let

(22) sinhRr = sup X (V)K(w, V),
where K(w, v) is defined by (20) and the supremum being taken over all the verticesand
cuspsV # oo of D. DenoteV = (1 — |w|]?)~/2 (vlv vlv) and
a’
(22) TV = (C// ?)

For afixed w € A, we define the approximation constant h(«), the Lagrange spectrum,
and the Hurwitz constant for the group I" asin Section 1. The first part of the following
theorem can now be proved asin [12].
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THEOREM 5. Suppose that I' is a cofinite Fuchsian group acting on the unit disc A.
Let w € A and D(w) be the Dirichlet polygon with center w. Let A be the limit set and
P the set of parabolic fixed pointsof I'. Let « € A — P . Then there are infinitely many
T e T satisfying
coshRr
wherec” is defined by (22) and R by (19) and (21).

Assumethat the endpointsv and V' of a critical side of D are fixed pointsof I'. Let the
summit s of o be an elliptic fixed point of order two. Then the Hurwitz constant

o —Tw| <

c(r) = % coshR-\'(v),

where \'(v) is defined by (19). Moreover, if v is a cusp, then C(I') is an accumulation
point in the Lagrange spectrumfor I".

The second part of Theorem 5 is an analogue of Theorem 2 for the disc model.

4. Applications. Inthissectionwefirst prove Theorem 2 and then apply it to Hecke
groups and some other groups. We shall say that a geodesic L with endpointsn and ;' is
extremal if

h(n) = n" —nl.

Suppose that L is the axis of a hyperbolic element S € I'. Then  and »’ are the fixed
points of S. It is known (see e.g. [4]) that

h(n) = sup|T(n") — T(n)|

where the supremum is taken over al T € TI'. It follows that the Hurwitz constant
C(r) > 1/h(n).

LEMMA 6. Let L be an axis of a hyperbolic element S TI'. Let 5 and 1’ be the fixed
points of S. Suppose that L passes through N(v, h), whereh = |" — 5|, but does not cut
a horocyclic side of N(v, h). If L 1 N(v. h) contains a fundamental domain of Stab(L, I')
on L thenL isextremal.

PrOOF. Assume that L is not extremal. Then, for some T € I, thereis L’ = T(L)
suchthat ht (L") > ht(L). Since L NN(v, h) contains afundamental domain of Stab(L. I')
on L and N(v, h) is covered by images of the regions T (v), v € C, for some cycle C of
verticesof D, Imz < h/2for z € V(L) for any V € " which contradicts the assumption
that ht (L") > ht(L).

COROLLARY 7. Let avertexv of D be a fixed point of I'. Let o and ¢’ be the sides of
D that meet at v. Assumethat the summit s of o isan élliptic fixed point of order two. Let
W be a generator of Stab(v, I'). Then the geodesic passing through the points s and WKs
isextremal.
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PROOF. Assume that As = s, A2 = id. Then S = AWKAW* < T is a hyperbolic
element, and L isthe axisof S Thearc[s, s), S« = WKs, of L is afundamental region of
Stab(L, ") on L. It was shown abovethat L = L(h,’) does not intersect a horocyclic side
of N(v, hy). Hencethe arc [s, 5¢) belongsto N(v, h,) and by Lemma6 L is extremal.

It is clear that Lemma 6 and Corollary 7 hold for the disc model too. Corollary 7
implies that all the geodesics L(h, ) and L(hy) are extremal. When v is an elliptic vertex
of order g, by (12), (13),

-1/2

(1+cot?(kf)sin’g) " /ho e L(N). k=1,..., q—1.

whered = 7/q. In particular, 1/hr € L(I") and therefore C(I") = 1/hr. This proves case
a) and the first part of case b) of Theorem 2. Similarly the second part of Theorem 5 can
be proved.

If visacusp of D, then, by (14),

L+k Y2 /h, e L), k=12,...

which implies that C(I) = 1/hr is an accumulation point of L(I"). This completes the
proof of case c) of Theorem 2.

ExAMPLE 1. Letq > 2beaninteger. Let = Gy = (A. B) where

_ (1 2codn/q) _(0 -1
A=(o ) ee (3 )
It is atriangular group with signature (0 : 2, g, 00) known as a Hecke group. A funda-
mental domain of this group is bounded by the unit circle |z| = 1 and two vertical lines
x = £ cos(m/q). Thus hy = 2 and, hr = 2\(v) = 2(1+ (1 — co:sg)z)l/2 if qis odd, and
hr = 2if giseven. Theorem 2, where o lieson |z = 1, v=€7/9, ands =1, is applicable
sinceBs=s. HenceC(I") = 1/hr.

Now let v be an even vertex of D of order g = 2m. We shall find the second point in
the Lagrange spectrum of Gg. The notation established in Section 2 is maintained in this
example. Assume that h > 2. The vertex v is the fixed point of involution R = W™ and
it lieson the geodesic L = L(hy,). Hence L is the axis of the hyperbolic element T = RB,
T(Bo) = Bm, and the geodesic interval [s, sy) is afundamental domain on L of the cyclic
group generated by T. Thus L cuts only geodesic faces T'(B,), i = 0. +1.£2, ...

Assume that an extremal geodesic L’ passes through N(v, h). If L’ cuts only the
same geodesic faces as L, then L’ = L. Assume that L’ passes through T'N(v, h) and
that it cuts T'(B,) and T'(By), k # m. Then geodesic T~'(L") passes through N(v, h)
and cuts B, and By, k # m. Hence 2ht(L') > 2ht(T7'(L")) > hg, k # m. By (12),
2ht(L") > hi =h,, =2(1+sin? : tan® g)l/z. The case when the " -orbit of geodesic L’
does not contain an extremal geodesic can be dealt with asit isdonein [2], Chapter II.
In that case one has to use an analogue of the isolation theorem (see [2], p. 25) for a
zonal cofinite Fuchsian group. Thus 1/hp,,, is the second minimum in the L(Gy). It is
attained at the endpoints of the geodesic L(hy,,,) (In Figure 1, q = 4). Theseresults were
first obtained by Haas and Series[4] (see aso [8]).
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ExAMPLE 2. LetT bethelimit of the Heckegroupsasq — oo. Thepoints+1 arethe
cusps of D. By Theorem 2, the Hurwitz constant C(I') = 1/2 is an accumulation point
in the Lagrange spectrum for I".

ExampLE 3. Let I =T (2), the principal congruence group of level 2 consisting of
matrices T = £I (mod 2) (cf. [10]). We choose the fundamental domain D as follows.
Itisbounded by x = —1/2, x = 3/2, |2z+ 1| = 1, and |2z — 3| = 1. Then Theorem 2,
whereo lieson |2z— 1| =1,v=0andV = larecuspsof D,ands= (1 +i)/2 isthe
summit of o, isapplicable since D is symmetrical with respecttox = 1/2. Itimpliesthat
C(I") = 1 isan accumulation point in L(I").

EXAMPLE4. Letnow ¢ = 7/pand 6 = 7 /qwhere p and q are positive integers such
that 1/p+1/q< 1/2. Letp = (cos?§ — si? ¢)*/2. Then (see[9], p. 87-88) the group
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is atriangular group with signature (0 : 2, p, g) which maps the unit disc A onto itself.
Let w = 0. A Dirichlet polygon D(0) of this group is bounded by the straight Euclidean
linesjoining the origin O with P = cos(¢ + 0)€? / p and P, and thecircle |z— (cosb)/p| =
(sing)/p.

If qis even then, by Theorem 5, the Hurwitz constant for ' equals (cos6)/(2sin ¢)
(cf. [12]). Similar results can be obtained for an arbitrary triangular groups using their
matrix representation givenin [9], p. 105.

When qis odd, by (19), we have
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sincesinhR, = p/ sin¢, and the Hurwitz constant for I" equals (coshRr) /2.

EXAMPLE 5. Let q = oo in Example 4. By Theorem 5, C(I') = 1/(2sin¢) and it is
an accumulation point in the Lagrange spectrum for I'. When p = 3, ' is conjugate in
SL(2, C) to the modular group and C(I') = 37%/2,
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