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Abstract. It is proved that the index of a Fredholm operator between non-Archimedean

Fréchet spaces is preserved under compact perturbations. A similar result is shown for
Fredholm operators between non-Archimedean polar regular LF-spaces.
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Introduction

In this paper all linear spaces are over a non-archimedean nontrivially valued field

K which is complete under the metric induced by the valuation j�j:K ! ½0;1Þ.

For fundamentals of locally convex Hausdorff spaces (l.c.s) and normed spaces we

refer to [6, 9] and [8].

The problem of perturbations of continuous linear operators between Banach

spaces has been studied in [5, 11, 12] and [1]. In [1], J. Araujo, C. Perez-Garcia

and S. Vega proved that the index of a Fredholm operator between Banach spaces

is preserved under compact perturbations. In this paper we extend this result to

Fredholm operators between Fréchet spaces. We show the following (Theorem 4).

Let X and Y be Fréchet spaces. If T is a Fredholm operator from X to Y and K is

a compact operator from X to Y, then Tþ K is a Fredholm operator, and the index

of Tþ K is equal to the one of T. We prove a similar result for Fredholm operators

from a polar regular LF-space to an LF-space (Theorem 8).

Preliminaries

Let X and Y be linear spaces. The set of all linear operators from X to Y we denote

by LðX;Y Þ. We say that T 2 LðX;Y Þ has an index if dimkerTþ dimðY=TX Þ < 1.

In this case the index of T is defined as wðT Þ ¼ dimkerT� dimðY=TX Þ. If

T 2 LðX;Y Þ has an index and F 2 LðX;Y Þ is a finite-dimensional operator (that is

dimFX < 1), then Tþ F has an index and wðTþ F Þ ¼ wðT Þ ([1], Theorem 3.5).
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Let X;Y and Z be linear spaces. If two of the three operators T 2 LðX;Y Þ,

S 2 LðY;Z Þ and ST 2 LðX;Z Þ have indexes, then the third one also has an index

and wðST Þ ¼ wðT Þ þ wðSÞ ([7], Proposition 7.1.6).

The identity operator on a linear space X is indicated by IX.

By a seminorm on a linear space E we mean a function p:E ! ½0;1Þ such that

pðaxÞ ¼ jajpðxÞ for all a 2 K; x 2 E and pðxþ yÞ4 maxfpðxÞ; pðyÞg for all x; y 2 E.

A seminorm p on E is norm if ker p :¼ fx 2 E : pðxÞ ¼ 0g ¼ f0g.

The set of all continuous seminorms on a l.c.s E is denoted by PðE Þ. A l.c.s E is of

countable type if for every p 2 PðE Þ, the normed space ðE= ker p; �ppÞ, where

�ppðxþ ker pÞ ¼ pðxÞ for x 2 E, contains a linearly dense countable subset.

The set of all continuous linear functionals on a l.c.s X is denoted by X 0. If X is of

countable type, then for any x 2 ðXnf0gÞ there is f 2 X 0 with fðxÞ 6¼ 0 ([9]).

A subset B of a l.c.s E is compactoid if for each neighbourhood U of 0 in E there

exists a finite subset A ¼ fa1; . . . ; ang of E such that B � Uþ coA, where

coA ¼ f
Pn

i¼1 aiai : a1; . . . ; an 2 K; ja1j; . . . ; janj4 1g is the absolutely convex hull of

A. Any compactoid subset in a l.c.s E is bounded and its linear span is of countable

type (see [10], Corollary 1.5).

Let X and Y be locally convex Hausdorff spaces. The set of all continuous

linear operators from X to Y we indicate by LðX;Y Þ. A mapping T 2 LðX;Y Þ is an

isomorphism if T is injective and surjective and T�1 2 LðY;X Þ. A map T 2 LðX;Y Þ is

a Fredholm operator if it has an index and TX is a closed subspace of Y. The family of

all Fredholm operators from X to Y is denoted by FðX;Y Þ. For any T 2 FðX;Y Þ, TX

is a complemented subspace of Y. Put F0ðX;Y Þ ¼ fT 2 LðX;Y Þ:T has an indexg.

By the open mapping theorem ([6], Corollary 2.74), F0ðX;Y Þ ¼ FðX;Y Þ, whenever

X and Y are Fréchet spaces (i.e. complete metrizable locally convex spaces).

An operator T 2 LðX;Y Þ is compact if there exists a neighbourhood U of 0 in X

such that TðU Þ is compactoid in Y. The set of all compact operators from X to Y

we denote by CðX;Y Þ.

An LF-space ðE; tÞ, i.e. a l.c.s which is the inductive limit of an inductive sequence

ððEn; tnÞÞ of Fréchet spaces, is regular (respectively, strict) if for every bounded subset

B of E, there is k 2 N such that B � Ek and B is tk-bounded (respectively, if

tnþ1jEn ¼ tn for any n 2 N).

Every strict LF-space is regular ([3], Theorem 1.4.13); in particular the direct

sum
L1

n¼1 En of any sequence ðEnÞ of Fréchet spaces is a regular LF-space.

Any continuous linear map from an LF-space X onto an LF-space Y is open

(see [4], Theorem 3.1).

Results

To prove our main result (Theorem 4) we shall need two lemmas.

Let D be a finite-dimensional subspace of a l.c.s X. If X 0 separates points of X (in

particular, if the field K is spherically complete), then D is complemented in X; so

for any K 2 LðX;X Þ there is a finite-dimensional operator F 2 LðX;X Þ such that
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F jD ¼ K jD (i.e. FðxÞ ¼ KðxÞ for any x 2 D). For arbitrary l.c.s X we have the

following lemma:

LEMMA 1. Let X and Y be locally convex Hausdorff spaces. Let K 2 CðX;Y Þ and let

D be a finite-dimensional subspace of X. Then there exists a finite-dimensional operator

F 2 LðX;Y Þ such that F jD ¼ K jD.

Proof. Put D0 ¼ D \
T
fker f : f 2 X 0g. Let D1 be an algebraic complement of D0

in D. Clearly, for any x 2 ðD1nf0gÞ there is f 2 X 0 with fðxÞ ¼ 1.

We shall show that there exists a continuous linear projection from X onto D1.

Let r ¼ dimD1. It is enough to consider the case when r > 1. Assume that 14 k < r

and ðx1; f1Þ; . . . ; ðxk; fkÞ 2 D1 � X 0 with fiðxjÞ ¼ di;j for 14 i; j4 k. Then there are

xkþ1 2 ðD1 \
Tk

i¼1 ker fiÞ and f 2 X 0 such that fðxkþ1Þ ¼ 1. Let fkþ1 ¼

f�
Pk

i¼1 fðxiÞfi. Then fkþ1ðxkþ1Þ ¼ 1 and fkþ1ðxiÞ ¼ 0 ¼ fiðxkþ1Þ for 14 i4 k. It fol-

lows that there exist ðx1; f1Þ; . . . ; ðxr; frÞ 2 D1 � X 0 with fiðxjÞ ¼ di;j for all 14 i; j4 r.

Clearly, the operator P:X ! X; x !
Pr

i¼1 fiðxÞxi is a continuous linear projection

from X onto D1.

Put F ¼ KP and S ¼ ðK� F Þ. Suppose that x 2 ðD0nkerSÞ. Since SðX Þ is of coun-

table type, there exists g 2 ðSðX ÞÞ
0 with gðSðxÞÞ 6¼ 0. But g � S 2 X 0 and x 2 D0, a

contradiction. It follows that D0 � kerS. Clearly, D1 � kerS. Thus D � kerS, hence

FðxÞ ¼ KðxÞ for x 2 D. &

To get Theorem 4 in a special case, when Y ¼ X;T ¼ IX and K 2 CðX;X Þ, it is

enough to show that there exists a finite-dimensional operator F 2 LðX;X Þ such that

the operator ðIX þ K� F Þ:X ! X is an isomorphism. In the proof of Theorem 3 we

will need a more general fact.

LEMMA 2. Let X and Y be Fréchet spaces. Assume that K 2 CðX;Y Þ and

S 2 LðY;X Þ. Then there exists a finite-dimensional operator F 2 LðX;Y Þ such that the

operator ðIX þ SðK� F ÞÞ:X ! X is an isomorphism.

Proof. Let U be a neighbourhood of zero in X such that KðU Þ is compactoid in Y.

For some p 2 PðY Þ we have SðWpÞ � U, where Wp ¼ fy 2 Y : pðyÞ4 1g. Take a 2 K

with 0 < jaj < 1. Since KðU Þ is compactoid, E ¼ KðX Þ is of countable type and there

exists a finite-dimensional subspace D0 of E such that KðU Þ � a2Wp þD0. Let D be

an algebraic complement of ker p \D0 in D0. Then

KðU Þ � a2Wp þ ker p \D0 þD � a2Wp þ a2Wp þD � a2Wp þD:

It follows that

8x 2 U 9x0 2 D : ðKx� x0Þ 2 a2Wp \ E:

Now, we prove that there exists a continuous linear projection P from E onto D

such that pðPxÞ4 jaj�1pðxÞ for any x 2 E. Put Ep ¼ ðE= ker pÞ and

�ppðxþ ker pÞ ¼ pðxÞ for x 2 E. Denote by p the quotient map from E onto Ep. Let
~EpEp ¼ ð ~EpEp; ~ppÞ be the completion of the normed space ðEp; �ppÞ of countable type.
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Clearly, pðDÞ is a closed subspace of the Banach space ~EpEp of countable type, so there

exists a continuous linear projection Q from ~EpEp onto pðDÞ such that

~ppðQzÞ4 jaj�1 ~ppðzÞ for any z 2 ~EpEp (see [8], Theorem 3.16 and its proof). It is easy

to see that G ¼ p�1ðkerQ \ EpÞ is a closed subspace of E and GþD ¼ E.

Since kerQ \ pðDÞ ¼ f0g and D \ ker p ¼ f0g, then G \D ¼ f0g. The linear

projection P:GþD ! D; gþ d ! d is continuous because G is closed and

dimD < 1. Let x 2 E. Since Qðpðx� PxÞÞ ¼ 0, then pðPxÞ ¼ �ppðpðPxÞÞ ¼
�ppðQðpðPxÞÞÞ ¼ �ppðQðpðxÞÞÞ4 jaj�1 �ppðpðxÞÞ ¼ jaj�1pðxÞ. Thus pðPxÞ4 jaj�1pðxÞ for

any x 2 E.

It follows that PðWp \ E Þ � a�1Wp, so ðIE � PÞðWp \ E Þ � a�1Wp. Put F ¼

P � K and L ¼ SðK� F Þ. For any x 2 U we have LðxÞ ¼ SðIE � PÞKðxÞ ¼

SðIE � PÞðKx� x0Þ; hence LðU Þ � SðaWpÞ � aU. Thus LnðU Þ � an�1LðU Þ for any

n 2 N. Since LðU Þ is compactoid and jaj < 1, then limn L
nðxÞ ¼ 0 for any x 2 U

(and LnðxÞ ¼ anxn; n 2 N, for some bounded sequence ðxnÞ � X). It follows that

the series
P1

n¼0ð�1KÞ
nLnðxÞ is convergent in X for any x 2 X. Let

M:X ! X; x !
X1

n¼0

ð�1KÞ
nLnðxÞ:

By the continuity of L we get MðIX þ LÞ ¼ IX ¼ ðIX þ LÞM. Hence, by the open

mapping theorem, the operator ðIX þ LÞ:X ! X is an isomorphism. &

The proof of Lemma 2 shows that for any sequentially complete l.c.s X and any

K 2 CðX;X Þ there exists a finite-dimensional operator F 2 LðX;X Þ such that the

operator ðIX þ K� F Þ:X ! X is an algebraic isomorphism. Hence we get

COROLLARY 3. Let X be a sequentially complete l.c.s X. Then for any K 2 CðX;X Þ

we have IX þ K 2 F0ðX;X Þ and wðIX þ KÞ ¼ 0; in particular, the operator IX þ K is

injective if and only if it is surjective.

Now, we shall prove our main result.

THEOREM 4. Let X and Y be Fréchet spaces. If T 2 FðX;Y Þ and K 2 CðX;Y Þ, then

Tþ K 2 FðX;Y Þ and wðTþ KÞ ¼ wðT Þ.

Proof. Denote by X̂X the quotient space X=kerT and by Q the quotient map from

X onto X̂X. Let T̂T: X̂X ! Y with T̂TðQxÞ ¼ Tx; x 2 X. Clearly, Q 2 FðX; X̂XÞ and

T̂T 2 FðX̂X;Y Þ. Since T̂TX̂X is a closed subspace of Y with dim ðY=T̂TX̂XÞ < 1, then T̂TX̂X is

complemented in Y and by the open mapping theorem there exists S 2 LðY; X̂XÞ with

ST̂T ¼ IX̂X. By Lemma 1 there is a finite-dimensional operator F 2 LðX;Y Þ such

that kerT � kerðK� F Þ. Let G: X̂X ! Y with GðQxÞ ¼ ðK� F ÞðxÞ; x 2 X; clearly,

G 2 CðX̂X;Y Þ. By Lemma 2 there exists a finite-dimensional operator H 2 LðX̂X;Y Þ

such that the operator ðIX̂X þ SðG�HÞÞ: X̂X ! X̂X is an isomorphism. Since

ST̂T ¼ IX̂X; IX̂Xþ SðG�HÞ ¼ SðT̂Tþ G�HÞ and T̂T 2 FðX̂X;Y Þ, then S 2 FðY; X̂XÞ;
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ðT̂Tþ G�HÞ 2 FðX̂X;Y Þ; wðSÞ ¼ �wðT̂TÞ and wðT̂Tþ G�HÞ ¼ wðT̂TÞ. Hence ðT̂Tþ GÞ 2

FðX̂X;Y Þ and wðT̂Tþ GÞ ¼ wðT̂Tþ G�HÞ ¼ wðT̂TÞ. It follows that ðTþ KÞ � F ¼

ðT̂Tþ GÞQ 2 FðX;Y Þ and wðTþK�F Þ ¼ wðT̂TþGÞ þ wðQÞ ¼ wðT̂TÞ þ wðQÞ ¼ wðT̂TQÞ ¼

wðT Þ. Thus Tþ K 2 FðX;Y Þ and wðTþ KÞ ¼ wðTþ K� F Þ ¼ wðT Þ: &

If X is a regular LF-space, then for any sequence ðanÞ � K with lim an ¼ 0 and

every bounded sequence ðxnÞ � X, the series
P1

n¼1 anxn is convergent in X (see [3],

Propositions 2.3.2 and 2.3.3).

Using the proof of Lemma 2 we obtain

LEMMA 5. Let X be a regular LF-space and let Y be a l.c.s. Assume that

K 2 CðX;Y Þ and S 2 LðY;X Þ: Then there exists a finite-dimensional operator

F 2 LðX;Y Þ such that the operator ðIX þ SðK� F ÞÞ:X ! X is an isomorphism.

(Note, that Lemma 5 is a generalization of Lemma 2, since we do not assume that

LF-spaces are proper, so Fréchet spaces are regular LF-spaces.)

To prove our last theorem we will also need the following proposition:

PROPOSITION 6. ðaÞ ðSee ½2�Þ: If X and Y are LF-spaces, then F0ðX;Y Þ ¼ FðX;Y Þ.

ðbÞ Let D be a finite-dimensional subspace of an LF-space X. Then X=D is an

LF-space, too. If X is polar and regular, then X=D is regular.

ðcÞ Let M be a closed subspace of an LF-space X with dimðX=MÞ < 1. Then

M is an LF-space.

Proof. (a) Let T 2 LðX;Y Þ with dimðY=TX Þ < 1 and let D be an algebraic

complement of TX in Y. Clearly, X�D is an LF-space and the linear continuous map

S:X�D ! Y; ðx; d Þ ! xþ d is surjective. By the open map theorem for LF-spaces,

S is an isomorphism; so TX ¼ SðX� f0gÞ is a closed subspace of Y.

(b) Let ðX; tÞ ¼ lim indðXn; tnÞ. Without loss of generality we can assume that

D � X1. Let n 2 N. Let pn: Xn ! Xn=D and p: X ! X=D be quotient maps. Put

jn: Xn ! X; x ! x, and cn: Xn=D!X=D;xþD!xþD. Clearly, p � jn ¼ cn � pn;
hence for any B � X=D we have j�1

n ðp�1ðBÞÞ ¼ p�1
n ðc�1

n ðBÞÞ. Let g be a locally

convex linear topology on X=D such that ðX=D; gÞ ¼ lim indðXn=D; tn=DÞ. We shall

show that g ¼ t=D.

Let n 2 N. Let U 2 t=D. Since p�1
n ðc�1

n ðU ÞÞ ¼ j�1
n ðp�1ðU ÞÞ, then c�1

n ðU Þ ¼

pnðj�1
n ðp�1ðU ÞÞÞ 2 tn=D. Thus for any n 2 N the map cn: ðXn=D; tn=DÞ !

ðX=D; t=DÞ is continuous. Hence t=D � g.
Clearly, p�1ðgÞ ¼ fp�1ðU Þ :U 2 gg is a locally convex linear topology on X. Let

n 2 N. Let V 2 p�1ðgÞ. Then for some U 2 g we have V ¼ p�1ðU Þ; hence

j�1
n ðV Þ ¼ j�1

n ðp�1ðU ÞÞ ¼ p�1
n ðc�1

n ðU ÞÞ 2 tn. Thus for any n 2 N the map

jn: ðXn; tnÞ ! ðX; p�1ðgÞÞ is continuous. Hence, p�1ðgÞ � t, so g � t=D.

Thus t=D ¼ g. Clearly, t=D is a Hausdorff topology. It follows that ðX=D; t=DÞ is

an LF-space.
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If X is polar, then D is complemented in X; thus for any bounded subset B in

X=D there exists a bounded subset A in X such that pðAÞ ¼ B. Therefore X=D is

regular, if X is polar and regular.

(c) It follows from (b), since X is isomorphic to the product M�D, where D is an

algebraic complement of M in X. &

Using Lemma 5 and Proposition 6(a), we get the following corollary:

COROLLARY 7. Let X be a regular LF-space. Then for any K 2 CðX;X Þ we have

IX þ K 2 FðX;X Þ and wðIX þ KÞ ¼ 0; in particular, the operator IX þ K is injective if

and only if it is surjective.

By Lemma 5, Proposition 6 and the proof of Theorem 3 we obtain the following

theorem:

THEOREM 8. Let X be a polar regular LF-space and let Y be an LF-space. If

T 2 FðX;Y Þ and K 2 CðX;Y Þ, then Tþ K 2 FðX;Y Þ and wðTþ KÞ ¼ wðT Þ.
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