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Introduction

In this paper all linear spaces are over a non-archimedean nontrivially valued field
K which is complete under the metric induced by the valuation |-|: K — [0, c0).
For fundamentals of locally convex Hausdorff spaces (l.c.s) and normed spaces we
refer to [6, 9] and [8].

The problem of perturbations of continuous linear operators between Banach
spaces has been studied in [5, 11, 12] and [1]. In [1], J. Araujo, C. Perez-Garcia
and S. Vega proved that the index of a Fredholm operator between Banach spaces
is preserved under compact perturbations. In this paper we extend this result to
Fredholm operators between Fréchet spaces. We show the following (Theorem 4).
Let X and Y be Fréchet spaces. If T is a Fredholm operator from X to Y and K is
a compact operator from X to Y, then 7+ K is a Fredholm operator, and the index
of T+ K is equal to the one of 7. We prove a similar result for Fredholm operators
from a polar regular LF-space to an LF-space (Theorem 8).

Preliminaries

Let X and Y be linear spaces. The set of all linear operators from X to ¥ we denote
by L(X, Y). We say that T € L(X, Y) has an index if dim ker 7+ dim(Y/7TX) < oco.
In this case the index of 7T is defined as y(7)=dimker7 —dim(Y/TX). If
T e L(X,Y) has an index and F € L(X, Y) is a finite-dimensional operator (that is
dim FX < 00), then T+ F has an index and y(7+ F) = y(T) ([1], Theorem 3.5).
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Let X, Y and Z be linear spaces. If two of the three operators T € L(X, Y),
S e L(Y,Z) and ST € L(X, Z) have indexes, then the third one also has an index
and y(ST) = x(T) + x(S) ([7], Proposition 7.1.6).

The identity operator on a linear space X is indicated by Iy.

By a seminorm on a linear space £ we mean a function p: E — [0, 0c0) such that
plox) = |a|p(x) for all @ € K, x € E and p(x + y) < max{p(x), p(y)} for all x,y € E.
A seminorm p on E is norm if kerp := {x € E: p(x) = 0} = {0}.

The set of all continuous seminorms on a l.c.s E'is denoted by P(E). A l.c.s E'is of
countable type if for every p e P(E), the normed space (E/kerp,p), where
p(x + ker p) = p(x) for x € E, contains a linearly dense countable subset.

The set of all continuous linear functionals on a l.c.s X is denoted by X. If X is of
countable type, then for any x € (X\{0}) there is f'€ X’ with f{x) # 0 ([9]).

A subset B of a l.c.s E is compactoid if for each neighbourhood U of 0 in E there
exists a finite subset 4 ={ay,...,a,} of E such that BC U+ coA, where
cod={> " a0, ....00 €K, |og], ..., o] <1} is the absolutely convex hull of
A. Any compactoid subset in a l.c.s E is bounded and its linear span is of countable
type (see [10], Corollary 1.5).

Let X and Y be locally convex Hausdorff spaces. The set of all continuous
linear operators from X to Y we indicate by L(X, Y). A mapping T € L(X, Y) is an
isomorphism if T is injective and surjective and T~! € I(Y, X). Amap T € L(X, Y)is
a Fredholm operator if it has an index and TX is a closed subspace of Y. The family of
all Fredholm operators from X to Yis denoted by ®(X, Y). Forany T € ®(X, Y), TX
is a complemented subspace of Y. Put ®y(X, Y)={T € L(X, Y): T has an index}.
By the open mapping theorem ([6], Corollary 2.74), ®y(X, ¥) = ®(X, Y), whenever
X and Y are Fréchet spaces (i.e. complete metrizable locally convex spaces).

An operator T € L(X, Y) is compact if there exists a neighbourhood U of 0 in X
such that T(U) is compactoid in Y. The set of all compact operators from X to Y
we denote by C(X, Y).

An LF-space (E, 1), i.e. a l.c.s which is the inductive limit of an inductive sequence
((E,, t,)) of Fréchet spaces, is regular (respectively, strict) if for every bounded subset
B of E, there is k € IN such that B C E; and B is tx-bounded (respectively, if
Tus1|Ey = 1, for any n € IN).

Every strict LF-space is regular ([3], Theorem 1.4.13); in particular the direct
sum @2, E, of any sequence (E,) of Fréchet spaces is a regular LF-space.

Any continuous linear map from an LF-space X onto an LF-space Y is open
(see [4], Theorem 3.1).

Results

To prove our main result (Theorem 4) we shall need two lemmas.

Let D be a finite-dimensional subspace of a l.c.s X. If X’ separates points of X (in
particular, if the field K is spherically complete), then D is complemented in X; so
for any K € L(X, X) there is a finite-dimensional operator F € L(X, X') such that
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F|D=K]|D (ie. F(x) = K(x) for any x € D). For arbitrary l.c.s X we have the
following lemma:

LEMMA 1. Let X and Y be locally convex Hausdorff spaces. Let K € C(X, Y') and let
D be a finite-dimensional subspace of X. Then there exists a finite-dimensional operator
Fe L(X,Y) such that F|D = K| D.

Proof. Put Dy = DN (\{kerf: f'e X'}. Let D| be an algebraic complement of D,
in D. Clearly, for any x € (D\{0}) there is f € X’ with f{x) = 1.

We shall show that there exists a continuous linear projection from X onto Dj.
Let r = dim D;. It is enough to consider the case when r > 1. Assume that | <k <r
and (x1,f1), ..., (X, fk) € D1 x X" with fi(x;) = d;; for 1 <i,j < k. Then there are
X1 € (DN ker f)) and fe X’ such that flxg)=1. Let fiy =
f= S fx)fi. Then fisi (xis1) = 1 and fig1(x) = 0 = fi(xpsr) for 1 < i < k. It fol-
lows that there exist (x1, f1), ..., (x:, f;) € Di x X' with fi(x;) = 0;; forall 1 <i, j<r.
Clearly, the operator P: X — X,x — > '_, fi(x)x; is a continuous linear projection
from X onto D;.

Put F = KP and S = (K — F). Suppose that x € (Do\ker S). Since S(X') is of coun-
table type, there exists g € (S(X)) with g(S(x)) #0. But goSe X’ and x € Dy, a
contradiction. It follows that Dy C ker S. Clearly, D; C ker S. Thus D C ker S, hence
F(x) = K(x) for x € D. O

To get Theorem 4 in a special case, when Y= X, T = Iy and K € C(X, X), it is
enough to show that there exists a finite-dimensional operator F € L(X, X) such that
the operator (Iy + K — F): X — X is an isomorphism. In the proof of Theorem 3 we
will need a more general fact.

LEMMA 2. Let X and Y be Fréchet spaces. Assume that Ke C(X,Y) and
S € L(Y, X). Then there exists a finite-dimensional operator F € L(X, Y) such that the
operator (Iy + S(K — F)): X — X is an isomorphism.

Proof. Let U be a neighbourhood of zero in X such that K(U) is compactoid in Y.
For some p € P(Y) we have S(W,) C U, where W, ={y € Y: p(y) < 1}. Takeax € K
with 0 < |a| < 1. Since K(U) is compactoid, E = K(X') is of countable type and there
exists a finite-dimensional subspace Dy of E such that K(U) C o? W, + Dy. Let D be
an algebraic complement of ker p N Dy in Dy. Then

K(U) C &*W,+kerpN Do+ D C > W, +a*W,+ D C oW, + D.
It follows that
Vxe UIx e D: (Kx — X)) e 2 W, N E.

Now, we prove that there exists a continuous linear projection P from E onto D
such that p(Px) <o/ 'p(x) for any xeE. Put E,=(E/kerp) and
p(x + ker p) = p(x) for x € E. Denote by n the quotient map from E onto E,. Let
E'p = (E,,p) be the completion of the normed space (E,,p) of countable type.
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Clearly, n(D) is a closed subspace of the Banach space Ep of countable type, so there
exists a continuous linear projection Q@ from Ep onto w(D) such that
P(0z) < |a|~'p(2) for any z € Ep (see [8], Theorem 3.16 and its proof). It is easy
to see that G=n"!(kerQNE,) is a closed subspace of E and G+ D =E.
Since kerQ Nn(D)={0} and DnNkerp=1{0}, then GND={0}. The linear
projection P:G+ D — D,g+d— d is continuous because G is closed and
dimD <oco. Let xeE. Since Q(n(x— Px))=0, then p(Px)=p(n(Px))=
PO(n(Px))) = p(O(r(x)) < |ol ™' p(n(x)) = |o| ' p(x). Thus p(Px) < |o| ' p(x) for
any x € E.

It follows that P(W,NE)C o'W, so (Ir—P)W,NE)Co 'W, Put F=
PoK and L=S(K—F). For any xe€ U we have L(x)=S{g— P)K(x)=
S(Ig — P)(Kx — x'); hence L(U) C S(aW,) C aU. Thus L"(U) C o"~'L(U) for any
n € N. Since L(U) is compactoid and |«| < 1, then lim, L"(x) =0 for any x € U
(and L"(x) = a"x,,n € N, for some bounded sequence (x,) C X). It follows that
the series - (—1x)"L"(x) is convergent in X for any x € X. Let

M:X > X, x = Y (—1g)"L"(x).
n=0

By the continuity of L we get M(Iy + L) = Iy = (Iy + L)M. Hence, by the open
mapping theorem, the operator (Iy + L): X — X is an isomorphism. O

The proof of Lemma 2 shows that for any sequentially complete l.c.s X and any
K € C(X, X) there exists a finite-dimensional operator F € L(X, X) such that the
operator (Iy + K — F): X — X is an algebraic isomorphism. Hence we get

COROLLARY 3. Let X be a sequentially complete l.c.s X. Then for any K € C(X, X)
we have Iy + K € ®y(X, X) and y(Ix + K) = 0, in particular, the operator Iy + K is
injective if and only if it is surjective.

Now, we shall prove our main result.

THEOREM 4. Let X and Y be Fréchet spaces. If T € ®(X, Y)and K € C(X, Y), then
T+Ke®X,Y)and ((T+K) = y(T).

Proof. Denote by X the quotient space X/ker T and by Q the quotient map from
X onto X. Let T:X— Y with T(Qx) Tx,x € X. Clearly, 0 € (X, X) and
Te CI)(X, Y). Since TX is a closed subspace of Y with d1m(Y/TX) < 00, then TX is
complemented in Y and by the open mapping theorem there exists S € L(Y, Ac') with
ST = I;. By Lemma 1 there is a finite-dimensional operator F e L(X, Y) such
that kerTC ker(K — F). Let G: X — Y with G(Qx) = (K— F)(x), x € X; clearly,
Ge C(X Y). By Lemma 2 there exists a finite-dimensional operator H € L(AA’ ,Y)
such that the operator (/3 + S(G — H)): X— X is an isomorphism. Since
ST=1I; I+ S(G—H)=S(T+G—H) and Te®X,Y), then Sed(Y,X),
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(f"—l— G—H)e CD(AA’,A Y), x(S) :A_X(T) and X(fl‘f’ G—-—H)= x(f"). Hence (f"+ G) e
OWX,Y) and (T+G)=x(T+G—H)=y(T). It follows that (T+K)—F=
(T+G)Qe®X,Y) and (T+K—F)= T+ G)+ Q)= (T)+ 1(Q) = 2(TQ) =
w(T). Thus T+ Ke ®(X, Y)and y(T+ K)=y(T+ K—F) = (7). O

If X is a regular LF-space, then for any sequence (o,) C K with limo, = 0 and
every bounded sequence (x,) C X, the series Y -, a,X, is convergent in X (see [3],
Propositions 2.3.2 and 2.3.3).

Using the proof of Lemma 2 we obtain

LEMMA 5. Let X be a regular LF-space and let Y be a l.c.s. Assume that
KeCX,Y) and Se€ L(Y,X). Then there exists a finite-dimensional operator
Fe L(X,Y) such that the operator (Iy + S(K — F)): X — X is an isomorphism.

(Note, that Lemma 5 is a generalization of Lemma 2, since we do not assume that
LF-spaces are proper, so Fréchet spaces are regular LF-spaces.)
To prove our last theorem we will also need the following proposition:

PROPOSITION 6. (a) (See [2]). If X and Y are LF-spaces, then ®y(X, Y) = O(X, Y).
(b) Let D be a finite-dimensional subspace of an LF-space X. Then X/D is an
LF-space, too. If X is polar and regular, then X/D is regular.
(c) Let M be a closed subspace of an LF-space X with dim(X/M) < oco. Then
M is an LF-space.

Proof. (a) Let T € L(X, Y) with dim(Y/TX) < oo and let D be an algebraic
complement of 7X in Y. Clearly, X x D is an LF-space and the linear continuous map
S: X x D — Y, (x,d) — x+ dis surjective. By the open map theorem for LF-spaces,
S is an isomorphism; so 7X = S(X x {0}) is a closed subspace of Y.

(b) Let (X, t) = lim ind(X,, t,). Without loss of generality we can assume that
D c X,. Let ne N. Let n,: X, > X,,/D and n: X — X/D be quotient maps. Put
@, Xy —> X, x — x,and y,;: X,,/D— X/D,x+D— x+D. Clearly, to ¢, =\, 0 mp;
hence for any B C X/D we have ¢,'(n~'(B)) = =, '(;,'(B)). Let y be a locally
convex linear topology on X/D such that (X/D, y) = lim ind(X,,/D, t,/D). We shall
show that y = 7/D.

Let neN. Let Uet/D. Since ,'(, (U)) = ¢, (n ' (U)), then y, (U)=
(@, ' (n"Y(U))) € 1,/D. Thus for any neN the map ¥, (X,/D, t,/D)—
(X/D, t/D) is continuous. Hence /D C y.

Clearly, n7'(y) = {n~'(U): U € y} is a locally convex linear topology on X. Let
neN. Let Ven'(y). Then for some Uecy we have V=n"!(U); hence
o\ (V)= (' (U) =, ', ' (U)) €7, Thus for any neN the map
¢,: (Xn, 1,) = (X, n7'(y)) is continuous. Hence, n~'(y) C 7, so y C ©/D.

Thus t/D = y. Clearly, t/D is a Hausdorff topology. It follows that (X/D, t/D) is
an LF-space.
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If X is polar, then D is complemented in X; thus for any bounded subset B in
X/D there exists a bounded subset 4 in X such that n(4) = B. Therefore X/D is
regular, if X is polar and regular.

(c) It follows from (b), since X is isomorphic to the product M x D, where D is an
algebraic complement of M in X. O

Using Lemma 5 and Proposition 6(a), we get the following corollary:

COROLLARY 7. Let X be a regular LF-space. Then for any K € C(X, X') we have
Iy+ Ke ®X, X) and y(Iy + K) = 0, in particular, the operator Iy + K is injective if
and only if it is surjective.

By Lemma 5, Proposition 6 and the proof of Theorem 3 we obtain the following
theorem:

THEOREM 8. Let X be a polar regular LF-space and let Y be an LF-space. If
Ted®dX,Y)and Ke C(X,Y), then T+ K € ®(X, Y) and y(T+ K) = y(T).
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