
ABSTRACT DEFINITIONS FOR REFLECTION GROUPS 

G. C. SHEPHARD 

Introduction. This paper is an appendix to " Finite unitary reflection 
groups" by J. A. Todd and the author (3) in which the irreducible finite 
groups generated by reflections in unitary space (2, p. 364) are enumerated 
and abstract definitions are given for all those ^-dimensional groups which 
may be generated by n reflections. (All real reflection groups are of this kind.) 
The purpose of this paper is to supply abstract definitions for all the remaining 
groups, namely those that require more than n reflections to generate them. 

Some of the original definitions in our paper have been elegantly modified 
by Coxeter (1). The definitions given here are constructed in such a way as to 
form natural extensions of his scheme. 

1. The groups G(m, r, 3). Let 0 be a primitive rath root of unity, r a 
divisor of ra, and 5 = m/r. Then by permuting the rows (or columns) of the 
diagonal n X n matrices 

d i a g { 0 p l , 0 P 2 , . . . , r } , £ p , = 0(modr), 

in every possible way, we obtain a group of smn~ln ! matrices which is denoted 
by G(ra, r, n) (3, p. 277). When r — 1 or r = m, this group is generated by n 
reflections: G(ra, 1, n) is the symmetry group of the poly tope yn

m (2, p. 374) 
and so, following the notation of (3), we denote it by [yn

m]. Also, when n > 2, 
G(ra, w, n) = [±yn

m] is [1 1 (n - 2)m]z in Coxeter's notation (1, pp. 248-249). 
Consider first the groups G(m, r, 3) with r j* 1, m. The matrices 

/ 0 0 1\ / 0 d 0\ / l 0 0\ / l 0 0 \ 
1.1 P = 0 1 0 1, 0 = [0-1 0 0 , R = 0 0 1 , T = 0 1 0 

\i oo/ \o o 1/ \o 10/ \o o er) 
clearly generate G(m, r, 3), and if we denote by P, Q, R, T respectively the 
corresponding group elements, then the following relations are satisfied: 

1.2 P 2 = Ç2 = R2 = (QRY = (RP)Z = (PQY = E} 

((PTP)(RT-1R) = (RT~lR)(PTP) = (QPRP)r, 
(TQ = QT, T(PRP) = (PRP)T, Ts = E. 

We shall show that these relations form an abstract definition for the group. 
Since (PTP)S = PTSP = E, (RT~lRy = RT~SR = E, and PTP t ; RT^R, 

we have 
(QPRP)m = ((QPRP)r)s = (PTP)S(RT~1R)S = E, 
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that is, 
1.4 (QPRP)m = P . 

It is known that relations 1.2 and 1.4 constitute an abstract definition for the 
group G(rn,m,3) = [11 l]m of order 6m2 (1, p. 248). Denote an arbitrary 
element of this group by G ; each occurrence of G in an expression stands for a 
(possibly) different element of the group. 

By 1.3, P, and therefore Pw, commutes with PRP and so PTUPR = RPTUP. 
This implies 

(QPRP)ru = (PTUP)(RT-UR) = RPTUPT~UR, 

from which TUP = GTU. Similarly making use of the fact that T commutes 
with RPR = PRP, we get TUR = GTU. 

Let W be any word, i.e. finite product of the elements P, Q, R, T. Then W 
must be of the form 

GTul GTU2G . . . GTUvG. 

Let w(W) be the number of factors P , Q, R occurring in all the elements G 
of W except the first. Since 

TulP = GTU\ TU1Q = QTU\ TUIR = GTUI, 

whatever letter P , Q, or R follows Tu± in W it is possible to substitute some 
product of group elements so as to form an equivalent word W with 
w{W) — w(W) > 1. Repeating this process and amalgamating powers of T 
when they become adjacent, W may be reduced, by a finite number of sub­
stitutions, to the standard form 

W* = GTU
} 0 <u <s - 1, 

with w(W*) = 0. Hence the given relations define a group of order (6m2)s 
which is G(m, r, 3). 

For G(4, 2, 3) a simpler definition than that obtained by substituting m = 4 
and r = 2 in 1.3 is given by 1.2 together with the relations 

1.5 (QPRPY = E, 

1.6 P2 = (P(?)2 = (TPRP)2 = (PP) 4 = PiTRQR)P(TRQR)-1 = P . 

This can be checked by the Todd-Coxeter method (la, Chap. 2). 

2. The other groups. Now consider G(m, r, n) {r\m\ r ^ 1, m\ n > 3) 
of order rmn~ln\. If we introduce n — 3 further generators Si, S2, . . . , Sn_3 

which satisfy the relations 

(S,2 = (PSiY = (PQPS,)2 = (S,S,)2 = (22Si)8 = P 
2.1 < (hj = 1 , 2 , . . . , » - 3; K - i | > 2 ) , 

( (S .S^) 3 = (PS,)2 = P (i = 2, 3, . . . , » - 3), 

then these, together with 1.2, 1.4, form a definition for G(w, m, n) of order 
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mn~ln\. This is the same definition as that of (2, pp. 374-5) with the notation 
changed thus: 

P = Px , Q = R&Ru R = Ru Si = Ri+1 (i = 1, 2, . . . , n - 3). 

The use of these new generators is due to Coxeter (1, p. 248) who has shown 
that they simplify the definitions of some of the reflection groups discussed 
in (3). 

Adding now the generator T satisfying 1.3 and TSt = SiT (i = 1, 
2, . . . , n — 3) we get an abstract definition for G(w, r, n). The proof is very 
similar to that of §1, remarking that every word can be reduced to the stand­
ard form G'TU, where G is an arbitrary element of G(m, m, n). 

This completes the discussion of G(m, r, n) except for the groups where 
n = 2. Here we take as generators P , Q and T corresponding to the matrices 

'-(ïi> °-̂ o0- T=C) 
and obtain the relations 

p2 = Q2 = Ts = E j T{PQ) = (PQ)P, PT~lPT = TPT~lP = (P<2)r, 

which can be shown to be an abstract definition in the same way as for the 
the above groups. 

The only remaining groups generated by more than n reflections are seven 
two-dimensional groups for which abstract definitions have already been 
given (3, pp. 281-282; 1, Table XI I I ) and the group [(è7a4)+1] (no. 31 in the 
table of (3, p. 301)). 

This group is generated by the matrices (cf. 1.1): 

( 1 0 0 0 
0 0 0 1 
0 0 1 0 
0 1 0 0 

The corresponding group elements satisfy the relations 1.2, 1.5, 1.6 and 

2.2 S2 = {SPY = (SRY = (5Ç)3 = E, 

2.3 (ST)3 = E. 

By §1, the relations 1.2, 1.5, 1.6 form an abstract definition for G(4, ?, 3), 
while 1.2, 1.5, 2.2 form an abstract definition for [1 1 2]4 = [(i7s4)+1] (2, 
p. 374). We assert that 1.2, 1.5, 1.6, 2.2, 2.3 together form an abstract de­
finition for the group [(i734)+1]. This can readily be verified by the Todd-
Coxeter method by enumerating the six cosets of the subgroup [1 1 2]4. 

1 0 0 01 

0 0 i 0 
0 -i 0 0 |' 
0 0 0 1 

R = 

1 0 0 0 ' 
0 1 0 0 
0 0 0 1 

, 0 0 1 0 

1 0 0 0 ' 
0 1 0 0 
0 0 1 0 
0 0 0 - 1 
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