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ONE-DIMENSIONAL REPRESENTATIONS OF THE
CYCLE SUBALGEBRA OF A SEMI-SIMPLE LIE
ALGEBRA

BY
F. W. LEMIRE

0. Introduction. Let L denote a semi-simple, finite dimensional Lie algebra over
an algebraically closed field K of characteristic zero. If # denotes a Cartan
subalgebra of L and % denotes the centralizer of 5# in the universal enveloping
algebra U of L, then it has been shown that each algebra homomorphism y: € — K
(called a “mass-function” on %) uniquely determines a linear irreducible repre-
sentation of L. The technique involved in this construction is analogous to the
Harish-Chandra construction [2] of dominated irreducible representations of L
starting from a linear functional A: # — K. The difference between the two results
lies in the fact that all linear functionals on 5 are readily obtained, whereas
since % is in general a noncommutative algebra the construction of mass-functions
is decidedly nontrivial. For the simple Lie algebras 4; and A,, Bouwer [1] has
computed all mass functions. In this paper we investigate a means of constructing
more general mass-functions for arbitrary semi-simple Lie algebras.

1. Complete subsystems of the system of roots of L. Let A denote the system of
roots(?) of the semi-simple Lie algebra L relative to the Cartan subalgebra 5. A
subset ®={ay, ..., «,} of A is said to be fundamental iff ® is free and for each
BeA, =31, mye; where the coefficients m; are integers which are either all >0
or all <0. As is well known the root system A of a semi-simple Lie algebra admits
at least one fundamental subset and moreover the number of roots in any such
fundamental subset of A is an invariant called the rank of L. Any fundamental
subset @ of A induces a partial order on A. In fact, if «, B€A we say that «>f
relative to @ iff «—B=>7_; m;o; Where the m; are all nonnegative integers, at least
one being greater than zero.

DEerINITION 1. A subset I' of A is said to be closed in A iff

(i) 0Ty

(ii) cel'=> —ael'; and

(i) o, e, a+BeA = a+BeT.

DEFINITION 2. A subset I' of A is said to be complete in A iff T is closed in A and

in addition there exists a fundamental subset ® of A such that if «+B €T with
o, BeA and o, B> 0 relative to @ then o, B e T.

Received by the editors June 15, 1969.
() For basic facts concerning the system of roots of a semi-simple Lie algebra see [4].
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ReMARK. The concepts of closed and complete subsystems in a system of roots
A are adaptations of “sous-systémes fermés” and ““sous-systémes saturés” utilized
by J. de Siebenthal in [5].

We now list a few relevant properties of closed and complete subsystems of A.

LemMA 1. Every closed subsystem T of A is contained in a complete subsystem of
minimal rank.

Proof. This follows since A is complete in itself.

LeMMA 2. A closed subsystem I" of A is complete in A iff T admits a fundamental
subset @, contained in a fundamental subset ® of A.

Proof. Assume first that ®; ={a,, ..., o} is a fundamental subset of " contained
in a fundamental subset ®={e;, ..., &, ..., o} of A. Then if «, B € A with &, >0
relative to ® we have a=>7_, mye; and B=>7_; ki; where my, k;>0. Since @, is
a fundamental subset of I' if «+B € I' we have m;=k;=0 for i=r+1,...,n and
hence «, Be I

Conversely, if I' is complete in A relative to the fundamental subset ® of A
then ® N I' is a fundamental subset of T'.

DEFINITION 3. A pair of complete subsystems I'; and I'; of A are said to be
disconnected iff I'; U T, is a complete subsystem of A and

(T+T5) N A = {0},

ReEMARK. In terms of the Dynkin diagram of A relative to a fundamental subset
® the disconnectedness of I'; and I'; can be translated into the property that there
exists no direct line joining a simple root of I'; and a simple root of T',.

2. Subalgebras of % associated with complete subsystems of A. Let T" be a
complete subsystem of A and let @ be a fundamental subset of A such that ® N T
is a fundamental subset of I'. If A* denotes the ®-positive roots of A then, as
is well known, the underlying linear space of L admits a basis B(A, @)
={Y;, Xp, H, | BEA*, « € O} called the Cartan basis with the usual Lie product.

In terms of the basis B(A, @) of L the Birkhoff-Witt theorem provides a basis of
U consisting of all monomials of the form
) T yp® [1 X3 [] HE®

BeA+ BeA+ aed
where the exponents m(B), n(B) and k(c) are nonnegative integers and each product
preserves a predetermined order on its index set. We observe that €, the centralizer
of the Cartan subalgebra 5 in U, is generated as a linear subspace of U by the
set of all basis elements of U of the form

2 Yo T xpo ] He@
@ [T %% [ X T]

BeA+ ae®
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where

BE% (n(B)—m(B)B = 0.

DEerINITION 4. With T" and @ as above we define €(T’) to be the linear subspace
of ¥ generated by all basis elements of € of the form
(3) I“_[ Y,{{‘(ﬂ) I_I XI;L(B) 1‘1 Hol‘c«x).
per+ Ber+ aed

LemMa 3. €(T) is a subalgebra of €.

Proof. It suffices to observe that since I' is closed in A the commutant of any
two elements from the set B(T, ®)={Y;, X, H, | BeT't; « € ®} is either z ro or
can be expressed as a linear combination of elements from B(T', ®).

LemMaA 4. The complementary linear subspace €(T') of €(T') in € determined by
the basis (2) of € is an ideal in €.

Proof. Again it suffices to note that for any element ze B(I', ®) and any
we{Yy, X, | B € AT’} the commutant [z, w] is either zero or is a linear combina-
tion of elements from {¥;., X, | B’ € A—TY}.

THEOREM 5. If I is a complete subsystem of A then every algebra homomorphism
y: €(T) — K can be trivially extended to a mass function y: € — K.

Proof. Since (') is an ideal of ¥ it is clear that an algebra homomorphism
y: €(T) — K can be extended to a mass function y: % — K simply by setting ¥

equal to zero on elements of Z(T).

This theorem permits the construction of mass functions on € by extending
algebra homomorphism on suitable subalgebras ¢(I') of €. The next theorem
provides sufficient conditions for combining algebra homomorphisms on different
subalgebras of € to obtain a mass function on %.

THEOREM 6. If T’y and Ty are two disconnected complete subsystems of A and
y:: €(T)) — K are algebra homomorphisms for i=1, 2 with y, =y, on €({0}) then y,
and y, admit a common extension to a mass function on €.

Proof. Since by assumption I'; U I'y is a complete subsystem of A, it suffices
to find a common extension of y; and y, to €(I'; U I'y). To this end we note that
since [Xj, Xp1=[Xs, Yp]=[Ys, Yp]=0 for all BeT'f and all '€ we can
express any basis element ¢ € €(I'; U T',) of the form (3) as a commuting product
of a basis element ¢; € €(I';) and a basis element ¢, € €(I';) both of the form (3).
Since this representation is unique up to factors from % ({0}) we can define a map
y: (T U T'y) — K by setting for any basis element ¢ of €(I"; U T')y(c)=71(c1)ya(c2)
where ¢, € €(I';) as above and extending linearly to all of €(I'; U I,). It is clear
that y is the required extension of y; and y,.

3. Examples. (A) It is clear that I'={0} is a complete subsystem of A and
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moreover ({0}) is a commutative subalgebra of %. Since ®({0}) is generated as
an algebra by {H,|o € ®} for some fundamental subset ® of A, the algebra homo-
morphisms y: €({0}) — K are in one-one correspondence with the linear func-
tionals on . In fact it is easily seen that the irreducible representations of L
determined by the trivial extensions of such y’s to a mass function on % is simply
the irreducible representation of L having ‘““highest weight function” A=the restric-
tion of y to .

(B) If By e ® a fixed fundamental subset of A, then I'={0, +B,} is a complete
subsystem of A. In this case ({0, +B,}) is a commutative subalgebra of € generated
by {H,| « € ®} U {Y};,X;,}. All algebra homomorphisms y: €({0, +B,}) — K are
obtained by setting y(1)=1; y(H,) =arbitrary scalar for each « € ®; and (¥}, X5,)
=arbitrary scalar and extending linearly and multiplicatively to all of €({0, +S,}).
It is interesting to note here that for appropriate values of ¥(Y,,X5,) the irreducible
representation determined by the trivial extension of y does not admit a highest
weight function (cf. [1] or [3]).

(C) Let B4, B2 € @ a fixed fundamental subset of A, such that

" I'= {Oa iﬁl’ iIBZ, i(/gl+ﬁ2)}

forms a complete subset of A. (In terms of the Dynkin diagram of L relative to @,
this requires only that the simple roots 8; and B, are directly connected by a single
line.) In this case #(I") is a noncommutative subalgebra of ¢ generated by

{Hal aE CD} U {YB1Xﬁ1’ Y52X132’ YB1+32X/31+52’ Yﬁ1+B2Xﬁ1XI329 YBz YB1X51+32}'

Using some calculations of Bouwer [1] related to the mass functions of 4, we obtain
all mass functions of #(I') by setting y(1)=1; y(H,)=arbitrary scalar for each
a€ ®; and
V(Y5 Xp,) = s(s—1—y(Hj,))
(Y, Xp,) = (s—1)(s+y(Hj,)
SY( Y3y +2 Xy +82) = V(¥ + 52X, X5)
= Y( Y5, Y, X5, +5,)
= s(s—1—y(Hpy))(s+y(Hy,)

and extending linearly and multiplicatively to all of €(I") where s is an arbitrary
scalar.

(D) Using Theorem 6 we observe that we can combine any two disconnected
complete subsystems I'; and I'; of A and again give an explicit means of obtaining
all algebra homomorphisms y: €(I'; U I';) — K provided we know all algebra
homomorphisms on €(I';) and €(I'y) respectively.
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