ON SOME DIVISIBILITY PROPERTIES OF ( 7‘:]
P. Erdds

(received March 13, 1964)

L. Moser [3] recently gave a very simple proof that
2n 2a Zb)
(1) ( n) —( a’ ( b

has no solutions. In the present note we shall first of all prove

2
that for a >— , (Za}ﬂ n) , which by the fact that there is a
2 a n
prime p- satisfying n < p<2n immediately implies that

2a \a.

2n T
(2) ( )= i Y, a,>1, n>a >1
n - a 1 1=

i=1 i

has no solutions. It is easy to see on the other hand that

2 2
1 [ %8 T2 [%Pi\Ps

r
(3) I = I a.>1, bi_>.i

b. R R

2 1 i

i=1 i i

has infinitely many non-trivial solutions. I do not know if (3)
is solvable if a = ﬂi =1. I will discuss some further divisibility

. 2n .
properties of ( n) and mention some unsolved problems.

THEOREM. Denote by g(m) the smallest integer n>m
2
for which (Zm) }( n) . For all m we have
m n »

(4) g{m) > 2m ,
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and for m> mo

(5) m € < gim) < (2m)

log m/log 2
for a certain absolute constant ¢ > 0 .
First we prove (4). Put n=m+k, 0 <k<m ; then

(2“) 2k " 2
- - q (2m+i)/ I (m+i)
1

2
m iz1 i=1
m

(6)

By a simple calculation we can show that for n < 11, (6) is never
an integer. Henceforth we can thus assume n > 12. It is well
known that for n > 12 there always is a prime p satisfying

2 2 .

3z <p<n. Thusif mf—;-l- , (6) cannot be an integer since
the denominator is divisible by p and the numerator only by p.
Thus we can assumne

2n
n>12, m>— .
- 3
) k
Miss Faulkner [2] recently proved that I (m+i) always has
i=1

a prime factor q> 2k if m+ kz P, where P is the least
prime > 2k, exceptif k=2, m=7 or k=3, m=7. Inour
case these exceptions cannot occur since n > 11,
2 2
m>§n> 7. Also, since n> 11 and m>f;, k<1—; or
2
2k < —;—1; hence m+k=n> P. Thus by the theorem of Miss
k
Faulkner there is a prime q > 2k which divides II (m+i) .
i=1
Let m+j, 0 < j <k be the unique value for which m+j = 0(mod q)

and assume q"||(m#j) (i.e., @°|(m+j), @ +(m+j). Since

q > 2k, 2m+2j is the only integer m of the sequence 2m+i,
2k

0 <i< 2k, which is a multiple of q. Hence q"|| I (2m+i),
i=1
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k
2 2
q a, I (m+i) , or (6) cannot be an integer, which proves (4).

i=1

It can easily be shown that g(m)>2m for m > 1,
(i.e., g(m)=2m holds only for m =1).

Now we prove the first inequality of (5). It is well known

2
and evident that if 2k + 1 < (Zn)u , then no prime p satisfying
2n n . . 2n .
<p<-=— . ,
)it P <% divides ( n) Further, it follows from the

classical theorem of Hoheisel [3] that if € > 0 is sufficiently
smalland k<n , n> no(s), then there always is a prime

satisfying

n
(7) <P<y-

n
2k+1
X . - 5 i+c
Now if ¢ =c(e) is sufficiently small and 3m <n<m then

there clearly isa k< n° for which

m < 2o <2<2m
2k+i  k !
or
2m 2n
p]( m) ’ P +{ n)’
. i+c . 5 .
which proves g(m)>m (if 2Zm < n ﬁzm then the interval

2 . . 2m (Zn
(-gn,Zm) contains a prime, thus ( m) T n) ) .

It seems very likely that for every k and m > mo(k),

k .
g{m) > m , but this is perhaps not easy to prove. It seems
likely that to every € > 0 there is an n, so that for every

€
m>n there is a prime p, m < p<2m, such that p‘f’(zn).
n

This would of course imply g(m)>m’ .
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Now we prove the second inequality of (5). L. Moser [4]

observed that (Zm) | (Z“) if n= (Z::) -1 (i.e.(n+1) l{zj) ),

but this only gives g{m) < Ci

We will only outline the proof of the upper bound for g(m).
In fact we shall show a stronger result than (5). Let m > mo(e)

log m/log 2

and x> m Then the number of integers n<x

2
for which (Zm) +( n) is less than £x .
m n

It is well known that if

k
n= Z ap, 0_<_ai<p,

2
is the p-ary expansion of n, then pr”( :) » Wwhere

(8) r = z 1.
ain/Z

In other wards p 1 ( :) if and only if all the a, are <p/2.
k+1

Thus by a simple calculation the number of integers n<p
k 1 2
for which p -f'( 2::) equals [g] +1_ Hence if x> (2m) og m/log

and p<2m then the number of integers n < x for which

2
P -{"( :) is less than

x x
(10) Zlog m/log2 m

Further, a simple combinatorial argument shows that the

k+1 '
number of integers n<p for which pr + ( 2:) equals

pk+1 © (k+1) < [p k+1

(11) [2] (k#1)" .

[y
1]
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Hence by (11) we obtain by a simple computation, the
details of which we suppress, that the number of integers

log m/log 2

n< x (x> (2m) )} for which

e 1 (). pem'T

is also less than = (as in {10)). Now it is well known and

2 1
easy to prove that if pr] ( ::) then p <2m (or p < (2m) /r)’

Hence from (10) the number of integers n < x for which
Zm) Zn)
( m T ( n

is less than

w(Zm)( £€x
m

X
for m>m(c), which completes the proof of (5).

I do not know to what extent our upper bound for g(m)
can be improved.

I have not been able to show that there is an infinite
2n. 2n

- - 1
sequence n, <mn, <... so that for every i<j, n +

j
. n |’
1 J
- but it seems certain that such a sequence exists [1].
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