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ON 2-GROUPS AS GALOIS GROUPS 

ARNE LEDET 

ABSTRACT. Let L/K be a finite Galois extension in characteristic ^ 2, and con­
sider a non-split Galois theoretical embedding problem over L/K with cyclic kernel of 
order 2. In this paper, we prove that if the Galois group of L/K is the direct product 
of two subgroups, the obstruction to solving the embedding problem can be expressed 
as the product of the obstructions to related embedding problems over the correspond­
ing subextensions of L/K and certain quaternion algebra factors in the Brauer group of 
K. In connection with this, the obstructions to realising non-abelian groups of order 8 
and 16 as Galois groups over fields of characteristic ^ 2 are calculated, and these ob­
structions are used to consider automatic realisations between groups of order 4, 8 and 
16. 

1. Introduction. Let L/K be a Galois extension of fields, and let 

( 1 ) 1 - » N -> E -> G2Ù(L/K) - • 1 

be an extension of pro-finite groups. (GdX(L/K) denotes the Galois group of the field ex­

tension L/K.) The corresponding (Galois theoretical) embedding problem then consists 

in determining whether or not there exists a Galois extension M/K with L CM and an 

isomorphism <p:E —> Ga\(M/K) making the diagram 

E —> Ga\(L/K) 

4 II 
Gal(M//f) —> Gal(L/K) 

commutative. A pair (M/K, (p) satisfying these conditions is called a solution to the 

embedding problem. Also, a Galois extension M/K is called a solution to the embedding 

problem, if there exists a <p, such that (M/K, ip) is a solution. 

In this paper we shall consider a special (and important) kind of embedding problems 

(1), namely the case where N is finite of order 2 and the characteristic of K is ^ 2. The 

group extension then has the form 

(2) 1 - * /i2 -> E - » Ga\(L/K) -> 1, 

where \ii = {±1} is the group of second roots of unity in the multiplicative group L* of 

the field L. 

The solvability of an embedding problem (2) depends on the 2-torsion of the Brauer 

group Br(K) of the ground field, as the following well known result shows: 
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THEOREM 1.1. Let L/K be a finite Galois extension in characteristic ^ 2, and let 

(2) 1 -+ p2 -> E -> Gal(L/£) -> 1 

6e a non-split group extension with characteristic class 7 G H2{GdX{L/K), p2j. (I-e-, 

7 represents the extension (2) in the usual way.) Then the embedding problem given by 

L/K and (2) is solvable, if and only ifi(l) = 1 in 7/2(Gal(L/AT),L*), where the map 

i:H2(Ga\(L/K),p2) -» //2(Gal(I/AT),L*) is induced by the inclusion p2 Q L*. 

Furthermore, if M/K — L(y/uJ)/K is one solution, then all the solutions are 

L(y/ïiï)/K, r e K*. 

A proof of Theorem 1.1 can be found for instance in [Sc, Lemma 1 ] or in [Ki, pp. 826-
827]. 

The cohomology group //2(Gal(L/AT),L*) is canonically isomorphic to the relative 
Brauer group Br(L/K) of the extension L/K by [c] \—» [L, G, c], where [L, G, c] denotes 
the equivalence class of the crossed product algebra (L, G, c), cf. [Ja, Theorem 8.11] or 
[Lo, Section 30 Satz 2]. Hence, we may consider z(7) as an element of Bv(L/K). This 
element is called the obstruction to the embedding problem. 

The result that the solvability of an embedding problem might depend on the splitting 
of a crossed product algebra is classical: It is essentially the content of [Br, Satz 7]. 

To us, the advantage of representing the obstruction to an embedding problem by a 
crossed product algebra instead of a factor system lies in the following theorem: 

THEOREM 1.2 [JA, THEOREM 4.7], [LA, COROLLARY 1.7]. Let 11/K be a finite-
dimensional central simple algebra, and let *&/K be a central simple subalgebra. Then 
the centraliser 

Ctt(B) - {x G « | Vy £ » : yx = xy} 

is a central simple subalgebra ofH, and 

H - » ®K C«(»). 

In particular, [ÎI] = [K][C^(K)] in the Brauer group Br(K). 

The obstruction [L, G, c], where c G Z2(G, p2) represents 7, is of order < 2 in Br(AT), 
since c2 = 1. Hence, by Merkurjevs Theorem in [Me], [L, G,c] can be written as a 
product of quaternion algebras. In reasonably simple cases, such as the ones we will 
consider, this decomposition can be obtained as follows: Find a quaternion subalgebra Q 
of r = (I, G, c). Then r ~ Q®K Cr(Q) by Theorem 1.2, and T = Cr(Q) is a new finite-
dimensional central simple algebra. In Br(£), we have [r] = [(?][r'], and so [r7] is again 
of order < 2. Thus, the process can (perhaps) be continued, ending in a decomposition of 
T as a tensor product of quaternion algebras. (Of course, if the degree of F is not a power 
of 2, T is not a tensor product of quaternion algebras. But in that case it might be possible 
to write T as a tensor product of quaternion algebras and an odd-dimensional algebra, 
which is then automatically split and may be disregarded, since all algebras obtained 
have order < 2 in Br(/Q.) 
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All relevant facts about Brauer groups and crossed product algebras can be found in 
[Ja, 4.6-4.7 and 8.4-8.5], [Lo, Sections 29-30] or [La, Chapter 4]. The necessary results 
about quaternion algebras can be found in [Lo, Section 30] or [La, Chapter 3]. We will 
use the standard notation for quaternion algebras: For a,b G K* the quaternion algebra 
(^r) is the K-algobra generated by elements / and y with relations i2 = a J2 — b and 
ji = —ij. The equivalence class of ( ^ ) in Br(K) will be denoted by (a, b). 

EXAMPLE 1.3. Let K(y/a)/K be a quadratic extension, and consider the embedding 
problem given by 

1 -* & -> Z/4Z -> Gài(K(y/â)/K) -> 1. 

The obstruction is then clearly the quaternion algebra (a,—I) = {a,a), and we get an­
other well known result: A quadratic extension K(^)/K can be embedded in a cyclic 
extension of degree 4, if and only if a is a sum of two squares in K. 

And if a = x2 + y2, K(yJa+Xy/a)/K is a cyclic extension of degree 4, hence all 
solutions are of the form K(yJr(a+Xy/â))/K, r G K*. 

The purpose of this paper is to determine the decomposition of the obstruction to an 
embedding problem as a product of quaternion algebras (in the Brauer group) in a number 
of cases, primarily when G is a 2-group, i.e., a group of 2-power order. In Section 2 we 
consider the case where Ga\(L/K) is a direct product of finite groups. It is then possible 
to 'reduce' the problem of determining the obstruction in the general case to that of 
determining obstructions to the embedding problems obtained by restriction to the direct 
factors. This is the content of Theorem 2.4 and Corollary 2.5. In Section 3 we determine 
the obstruction to embedding a Z/4Z-extension in a Z/8Z-extension, and the resulting 
special case of Corollary 2.5 is then used to give an exact criterion for the existence of 
Mi6 -extensions, where M\6 is the modular group of order 16. In Section 4 we determine 
the obstruction to any embedding problem (2), in which Gal(Z/AT) is the dihedral group 
of order 8. As a result, we get criteria for the readability of several non-abelian groups of 
order 16 as Galois groups. These criteria are then used in Section 5 to consider questions 
of automatic readability. 

2. A reduction theorem. In the Sections 2-4, all fields are assumed to have char­
acteristic ^ 2. 

If G is a finite group, (^{G) is defined as the intersection of all normal subgroups in 
G of 2-power index. (^(G) is then the minimal normal subgroup in G of 2-power index. 
It is clear that (^(G) is the composite of all odd-order Sylow subgroups of G, and hence 
that ^ ( G ) is the subgroup of G generated by all elements of odd order. 

LEMMA 2.1. Let G and H be finite groups, and let 

l - > / i 2 - > £ — > G x H - + 1 
p 
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be a group extension. Let a G 0^(G), r G H, and let s and t in E be pre-images of 
a = (cr, 1) andr = (l,r). Then ts = st. 

PROOF. By the above remarks we may assume a to be of odd order. Hence, the two 
pre-images s and —s of a have different orders. Since s and tst~x have the same order, 
tst~x — —s is impossible. • 

LEMMA 2.2. Let G and H be finite groups, and let o\, ...,am G Gandr\9... ,r„ EH 
represent minimal generating sets for the 2-groups G/Cr2(G) and Hj &{H). (i.e., the 
groups GI CP-(G) and H/ CP(H) are minimally generated by the co-sets a\ 01{G),..., 
(Jm&iG) andrx &(H),... 9Tn&(H).) Letk G { 1 , . . . 9m} andl G { 1 , . . . ,/i}. Then there 
exists an extension 

(3) 1 -> & -> Ett —> G x / / - > 1 
p 

with the following properties: 
(1) The restrictions of (3) to G and H are both split exact. 
(2) Let s\9...9sm9t\9...9tn G Eu be pre-images ofo\,..., om9r\,..., rn. Then 

tjSi = Sitj9 (ij) ^ (k, / ) , 

tisk = -skt[. 

PROOF. By going via G/ (^(G) and Hj (^(H) we see that there exists homomor-
phisms (f.G —> Z/2Z and I/J:H —> Z/2Z, such that tp(<Ji) = £# and I/;(TJ) = fy. (8 
denotes the Kronecker delta.) We then get a homomorphism <p x ty\ G x H —> V4 = 
Z/2Z x Z/2Z. 

We consider the extension 

(*) \-*p2->D4—+V4-+l9 
q 

where D4 is the dihedral group of order 8, generated by elements a andr with a4 = T2 = 
1 and TO- = CT'T, and g is given by q(o) = (1,1) and q{r) = (0,1). Inflating this extension 
to an extension ofGxH via <p x ip gives 

1—>/z2—>£*/ — • G x / f - » l , 
Cw:>-»0>,z) 

where 

Ekl = {(*,j>,z) G D 4 x G x / / | ^ ) = ((^(y),^(z))}. 

Since the restrictions of (*) to Z/2Z x 0 and 0 x Z/2Z are both split exact, this extension 
has property (1). As pre-images s \9... 9sm9t\9... 9tn G Ek\ we may choose sf = (1,07,1), 
/ 7̂  k9 Sk — (err, o>, 1), tj• = (1, l,Ty),y 7̂  /, and // = (r, 1,T/), and (2) is then obvious. • 
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REMARK. If H is a subgroup of the group G, and 7 G H2 (G, \ii) is the characteristic 
class of an extension 

l - + / / 2 - + F — > G - > 1 , 
p 

the element resG_+//7 G //2(// , /i2) is the characteristic class of the extension 

l->H2^p-\H)—+H^l. 
p 

If K:F —• G is a surjective homomorphism, infG_»/r7 is the characteristic class of the 
extension 

1—>/i2—>^X(pf«)F —-> F - + 1 , 
(e,cr)i—>tf 

where E x ^ F = {(e, a) e E x F\ p(e) — /c(o")} is the pull-back. 

PROPOSITION 2.3. Zef G a«d / / be finite groups, and let 

(4) l ^ / i 2 ^ F — > G x H - + l 
p 

be a group extension with characteristic class 7 G //2(G x //,/i2). Let a\,...,crm G 
G a«J r\,... ,rn G H represent minimal generating sets for the groups Gj &(G) and 
H/Û2(G), and let s\,. ..,sm,t\,...,tn G Ebepre-imagesofa\,... ,am,T\9. ..,T„. Define 
dtj G {0,1} by tjSf = ( - 1 ) ^ . Then 

7 = (infc-Gxtf resGxtf—G7) • (inf//_,Gx//resGx//_+//7) 'Hrf, 

w/zere 7# w //ze characteristic class of the extension (3) in Lemma 2.2. 

PROOF. Let A = 7 • (infG^Gx//resGx//_,G7) • (inf//_,Gx//resGx//_^/7) • Ihjlf and 
consider the corresponding extension 

(*) l ^ / z 2 - > F — > G x H - ^ \ . 
q 

Since resGx//-^G infG__Gx// and resGx//_^// inf//_Gx// are the identity maps on //2(G, //2) 
and H2(H9 //2) (and in fact on Z2(G, /i2) and Z2(H, //2)), the restrictions of this extension 
to G and / / are both split exact. Also, if u\,..., um, v\,..., vn G F are pre-images of 
o\,..., <7m,r\,...,T„9 we have vyW; = M/Vy for all / and j : If //sv = Sjtj, we have Jy = 0, 
and À 'inherits' the relation from 7. If tjSt = —Sitj, we have dy = 1, and À 'inherits' the 
relation from 7 • 7/,. 

Hence, we may choose homomorphisms s:G —* F and t\H —> F with qs = 1G 

and #/ = 1//, and get t(Tj)s(ai) = s(pi)t{Tj) for all / and j . By Lemma 2.1, /(T)S(<7) = 
s{o)t{r) if a G Ô1 (G) or r G O^//). Since G (//) is generated by (^(G), ^ , . . . , am 

(OtÇffïtTu... ,T„), we get t(r)s(a) = s(a)t(r) for all a G G and r e H. Thus, 0 , r ) h-> 
^(cr)/(r) is a homomorphism G x H —> F, and (*) is split exact, /.e., A = 1. • 

In particular, the properties (1) and (2) of Lemma 2.2 determines 7*/ uniquely. 
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THEOREM 2.4. Let L/K be a G x H-extension, where G and H are finite groups, 
and let 

(4) 1 -> /i2 -* E —• G x i / - > 1 

£e « nonsplit group extension with characteristic class 7 G H2(G, 1^2). Let L' /K and 
L" J K be the subextensions corresponding to the factors G and H. (I.e., V' /K is a G-
extension, L" jK is an H-extension, and L = L'L".) Let cr\,..., am G G and T\9...9rn G 
H represent minimal generating sets for the groups Gj (^(G) andH/ (^(H), and choose 
au...9am9bu...,bn e K*, such that y/âi e (L'f, y ^ G (L"f, ak(y/â~) = (-lf'ky/â~ 
and Ti(Jbj) = (—ifj'Jbj. (8 denotes the Kronecker delta.) Finally, let s\,...,sm, 
t\,...,t„ G Ebepre-imagesofa\,...,am,T\,...,Tn,andletdij G {0,1} be given by 

tjSi = (-l)dvSitj. 

Then the obstruction to the embedding problem given by L/K and (4) is 

[L',G,resGx/ /_G7] • [L,f
9H9rQsGxH^Hl] • llfabjf» G Br(iQ. 

REMARK. It is possible to choose a i , . . . , am, b\,..., bn as described, since a\,...,am 

and T\ , . . . , rn represent minimal generating sets for the maximal elementary abelian fac­
tor groups of G J(^{G) and H/ Cil(H)9 and hence for the maximal elementary abelian 
2-factor groups of G and H. 

PROOF. By Proposition 2.3 we have 

7 = (infGL_Gx//resGx//-*G7) • (inf//_Gx//resGx//_^//7) • I I V ' 
ij 

Hence, the obstruction is 

[L, GxH, infG->GXH resGx//_G 7] 

• [L9 G x H9mfH^GxHresGxH^Hl] • f[[L9 G x H9ltj\
d*. 

ij 

Obviously, the first two terms are [Lf
9 G, resGx//_^G 7] and [L / /,//,resGx//^//7], as the 

inflation corresponds to the inclusion between the relative Brauer groups, cf [Ja, Theo­
rem 8.13] or [Lo, Section 30 Fl]. Thus, it remains to prove 

[L9GxH9lkl] = (ak9bl). 

In the proof of Lemma 2.2, 7*/ was constructed as the inflation from //2(F4,/i2) of the 
characteristic class of the extension 

q 

where q(a) = (1,1) and q(r) = (0,1), through a homomorphism O: G x H —* F4, 
such that 0(07,1) = (5ik,0) and 0(l,7y) = (096ji). In this case, this inflation can obvi­
ously be obtained from the restriction map G x H —• Gal^'/AT) instead, where K' = 
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K(y/âTk9 </%), since <M(K'/K) ~ V4, a^y/aj) = (-1)^y/a~k andry(V^) = (-l^'y/b,. 
Replacing V4 by Gal(Kf /K), the extension becomes 

(*) 1 -> /x2 - • I>4 —> Gal(£'/K) -> *> 

where q(o) = p\p2, q{r) = pi9 and p\9p2e Gn\(Kf/K) are given by p\(y/ô£) = - y ^ , 

Pi(\/*/) = >/*/> P2(y/ôk) = y/^k and p2(y/bi) = - A / * / -
Since inflation corresponds to inclusion, [L, G x H, 7*/] equals the obstruction to the 

embedding problem given by A7 /A' and (*). This obstruction is represented by an algebra 
T = K[y/ôk, \fb\9u\, u2], where 

u\ = u\ = 1, u2u\ = —u\U2, u\x = p\(x)u\, u2x = p2(x)u2, VJC G K'. 

Obviously, K[u9 v] ~ (^-), and 

CT(K[U, V]) - ^ [ ^ V , y/b,u] -( — ) • 

Hence, [L, G x H, lk{\ = [T] = (1,1)0*, è7) = (a*, 67) by Theorem 1.2. • 

A straightforward induction argument gives 

COROLLARY 2.5. Let G = G\ x • • • x Gn, where G\,..., Gn are finite groups. Let 
L/K be a G-extension, and let 

(5) 1 - > J I 2 - > £ - » G - * 1 

be a nonsplit extension with characteristic class 7 G H2(G, H2). Let L\jK be the subex­
tension of L/K corresponding to the factor G,-. (I.e., Lj/K is a Gt-extension, and L = 
L\— Ln.) Let <Ji9\,..., az,W/ G G/ represent a minimal generating set for G// (^(G,-), 
a«d choosepre-images Sit\9... ,s/,m/ G £. Furthermore, let a^\9..., a/jW. G AT*, swc/z f/zatf 
y ^ G Z,; andauk{ja~ï) = (-\fhk y/ïï~h. 

Then the obstruction to the embedding problem given by L/K and (5) is 

n t ^ G ^ r e s ^ , ^ ) ] - I ! fe^eW 

where I — {(/, h J, k) \ 1 < / < j < n9 1 < h < m,, 1 < k < mj}, and d(i, h J, k) G 
{0,1} is given bysuhSj,k = (-VfW*)SjJfs^ 

As an immediate corollary we get the following well known result (cf. [Fr, (7.6)] or 
[M&S, Theorem 1.2]): 

COROLLARY 2.6. Let L/K = K(y/â[9..., y/cQ/K be a (Z/2Z)n-extension, and let 
o\,..., on G Ga\(L/K) be given by 0/(^/5/) = (—lfiJ y/aj. Let 

(6) 1 -> /i2 -> £ -> Gal<X/£) -* 1 

fee a nonsplit extension, and choose pre-images s\,...,s„ G E to a\9...9cr„. Define dy, 
i <j> bys] = (—l)dii andstSj = (—YfvsjSu i <j. Then the obstruction to the embedding 
problem given by L/K and (6) is 

I l (a„a/*eBr(/0. 
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3. The modular group. Our goal is to obtain criteria for the readability of non-
abelian groups of order 16. There are nine such groups: 

(1) The direct product^ x Z/2Z, where Z)4 is the dihedral group of order 8, i.e., 
D4 = (cr,r), where a4 = r2 = 1 and T<T = O*T. 

(2) The direct product Q% x Z/2Z, where Qs is the quaternion group of order 8, i.e., 
Qs is the subgroup of HI* generated by / andy, where IH = (~1

[^~1). 
(3) The dihedral group D$ = (cr,r), where a8 = r2 = 1 andra = a7r. 
(4) The quasi-dihedral group QD% — (x9y)9 where x8 = y1 = 1 and yx = x3y. 
(5) The quaternion group Q\e = {x9y)9 where x8 = 1, y1 = x4 and >>x = x7y. 
(6) The modular group Mi 6 = (x9y)9 where x8 = y1 = 1 andjyxy-1 = x5. (The name 

'modular group' can be found in [As, pp. 106-107].) 
(7) The semidirect product Cx\C= Z/4Z X Z/4Z = (x9y)9 where x4 = / = 1 and 

yx = x?y. (CxC can also be considered as the pull-back of Q% and Z/4Z with respects to 
homomorphisms g8 , Z/4Z —» Z/2Z. This is the way it is described in [G&S], [GS&S] 
and[Jl].) 

(8) The pull-backZ)A C = D4 x^ g )Z/4Z, where the homomorphisms/: DA —» Z/2Z 
andg: Z/4Z—>Z/2Z have kernels (o2^) and 2Z/4Z respectively, i.e.9DX C = (x, y,z), 
where x4 = y1 = z2 = 1, yx = x3yz and z is central. 

(9) The central product D C - (D4 x Z/4Z)/((o2,2)) = (x,y,z), where x4 = / = 1, 
>>x = x3>>, x2 = z2 and z is central. 

Of these groups (1) and (2) are in a sense uninteresting: A field admits a Z)4 x Z/2Z-
extension if and only if it admits a £)4-extension and has at least eight square classes, 
and similarly for Q% x Z/2Z. And criteria for realising Z)4- and Q%-extensions are eas­
ily obtained from Corollary 2.6: Let L/K = K(y/a9 \J~b)/K be a ^-extension, and let 
pup2 e Ga\(L/K) = V4 be given by p\(y/a) = - ^ / S , Pi(V*) = v7^ P2(>/ô) = V<* 
and pi(\fb) — —\fb. Consider the extensions 

(7) 1 -> /i2 — £>4 —> F4 -> 1 

and 

(8) 1 — / i 2 ->e 8 — K 4 - > I . 
II—»P1 

By Corollary 2.6 the obstruction to the embedding problem given by L/K and (7) is 

(a9a)(a9b) = (a9ab)eBr(K)9 

and the obstruction to the embedding problem given by L/K and (8) is 

(a9a)(b9b)(a9b) = (a9ab)(b9b) G Br(K). 

Hence, a F4-extension L/K = K(y/a9 \fb)/K can be embedded in a Z)4-extension M/K9 

such that M/K(y/b) is cyclic, if and only if (a, ab) = 1, and it can be embedded in a 
Q$-extension, if and only if (a, ab) = (b9 b). 
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The group DC can be treated directly using Corollary 2.6 as well: Let L/K — 
K(y/a, y/b, yfc)/K be a (Z/2Z)3-extension, and let p, cr,r e Ga\(L/K) be given by 

p: y/a\-^ —yfa, \fb *-+ \fb, yfc \—» yfc, 

a\ yfa\-^ yfa, \fb »—> —\fb, yfc »—» yfc, 

T: yfa \-^ yfa, y/b \—+Vb, yfc~\—* —yfc. 

Then we have an extension 

(9) 1 -> H2 —> DC —> Ga\(L/K) -> 1, 

and by Corollary 2.6 the obstruction to the embedding problem given by L/K and (9) is 

(a,a)(c,c)(a,b) = (a,ab)(c,c) G Br(K). 

In particular, a field K admits a DC-extension, if and only if there exists quadratically 
independent elements a, b and c in K*, such that (a, ab) = (c, c). 

These results onZV, Q%- and DC-extensions can all be found in [M&S, Corollary 1.3], 
with exactly the same proof. 

The groups (3)-(5) and (7)-(8) all have D4 as an epimorphic image and will be treated 
in the next section. 

In this section we will consider the modular group M\(>. It has Z/4Z x Z/2Z as an 
epimorphic image, and it is therefore necessary to extend Corollary 2.6 to finite abelian 
groups of exponent 4, i.e., it is necessary to describe the map H2(Gal(Z/K),p,f) —• 
Br(L/K), when L/K is cyclic of degree 4: 

EXAMPLE 3.1. Consider a cyclic extension L/K of degree 4. We may assume L — 
K(y]r(a + y/a)), where a<EK*\ (AT*)2 has the form a = 1 + c2, c £ K, and r <E K*. The 
Galois group Ga\(L/K) is then generated by a, where 

yfr(a + yfa) 

For ease of notation we let 9 = r(a + yfa). 
The only non-split extension of Gal(L/AT) with /i2 is 

1 -* H2 —• Z/8Z —• GdXQL/K) -> 1, 
— 1 H - 4 11—40T 

and the obstruction to the corresponding embedding problem is represented by the cyclic 
algebra Y = (L, a, — 1) = I[w], where w4 = — 1 and wa = cr(a)w for a e L. We wish to 
write this algebra as a tensor product of two quaternion algebras. 

Obviously Q = K[yfa,u + w3] ~ ( ^ ^ ) is a quaternion subalgebra of T, and by 
Theorem 1.2 we have r ~ Q <S>K Cr(Q). CT(Q) is a four-dimensional central simple 
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algebra, and so necessarily a quaternion algebra {cf. [Lo, Section 30]). Since (u2)2 = — 1 
and u2 G C r ( 0 , we seek an u G F with 

uj\fa — yfaoj, UJ{U + u3) = {u + W3)CJ, o;w2 = —u2u), ui2 G ÀT\ 

Calculations show that we can let 

and that u? — ra. Hence, Cp(0 — A [̂w2, o;] ~ (~#^X a n ^ t n e obstruction is 

[H = (a , -2 ) ( - l ,™) = ( f l , -2)(- l , r ) ( - l ,<i) = (a ,2)(- l , r ) G Br(/f>. 

We conclude that L/A' can be embedded in a Z/8Z-extension, if and only if (a, 2) = 
(— 1, r). This is the same criterion obtained in [Ki, Theorem 3], since (a, 2) — (a, c). 

Another conclusion is the following: Let K{y/a)/K be a quadratic extension. Then 
K(y/a)/K can be embedded in a cyclic extension of degree 8, if and only if 

(a,a)=l and 3r G K* : (a,2) = ( - l , r ) . 

We can now extend Corollary 2.6 in the desired way: 

PROPOSITION 3.2. Let L/K be an (Z/2Z)r x (Z/4Z)5-extension. We can write 

w/*ere#i,... j ^ G A* arequadratically independent, a, = \+c2fori > r, andqi G A*. 
Le/ a i , . . . ,07^ G Gal(L/A), SWC/Ï / t o a^^/a]) = {—if^y/âj. Let 

(10) 1 —>/x2—>£—^ Gal(L/£) -> 1 

Z>e « non-split extension, and choose pre-images t\,..., ^ £ E to a\,..., a^. Then the 
obstruction to the embedding problem given by L/K and (10) is 

r r+s 

Ufaa,?1 • I I [ ( a / , 2X- l , r f • I I fa>«A 
Ï = 1 i=rf l /'</' 

wAere /? - (-if1 for i <r,tA
t= {-\)di for i > r, andtttj = {-l)d'Jtjtj. 

EXAMPLE 3.3. Let M/K = K(yjr\a + y/a), \fb)/K be a Z/4Z x Z/2Z-extension, 
where a and b in K* are quadratically independent, a — 1 + c2 and r G AT\ Let a, r G 
Gal(M/JT) be given by 

a: >Jr(a + ^)\^ . _ , \[b\-*\fb> 
yjr{a + V5) 

r: y r(a + v^) >—> y Ka + V^X V^ •—• —\/&. 
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By Proposition 3.2, the obstruction to the embedding problem given by M/K and 

(11) 1 —>/x2 —> Mxe —> Ga\(M/K) -> 1, 

is 
[(a,2)(-l,r)](fl,6) = (a,26)(-1,r) G Br(K). 

In particular, we see that a field Â  has an Mi 6-extension, if and only if there exists quadrat-
ically independent elements a, b G K*, such that 

(a, a) = 1 and 3r € £* : {a, 2b) = ( - 1 , r). 

For instance, if — 1 and 2 are quadratically independent in K*, K admits an M\ e -extension. 
More generally: If there exists b eK*, such that a = 1 + b2 and b are ^ 0 and quadrati­
cally independent, £ admits an Mi 6-extension. 

An equivalent result on Mi6-extensions, obtained independently, is given in [GS&S]. 

REMARK. Let M/K = K[yfr^a + ^/a^,y/b)/K be a Z/4Z x Z/2Z-extension as 
above. Let L/K = K(y[r{a + y/aty/K be the 'canonical' Z/4Z-subextension. By 
Example 3.3, the obstruction to the embedding problem given by M/K and (11) is 
(a,2)(—\,r)(a,b). By Example 3.1, (a,2)(—l,r) = [L,cr, —1]. (Where a is considered 
as an element of Ga\(L/K).) Also, (a, b) = [L, cr, b2] by [Ja, Theorem 8.15]. Hence, the 
obstruction is [L, a, —b2], and the embedding problem is solvable, if and only if — b2 is 
a norm in L /K. 

Furthermore, if — b2 — NLjK(x) for some x £ L*,x2 jb has norm 1 in L/K, and by 
Hilberts 'Theorem 90' there exists UJ G L*9 such that G{UJ)/UJ = x2 /b. An easy calculation 
now shows that M(yfuj)/K is a solution to the embedding problem. 

4. The dihedral group. In this section we will describe the map //2(Z)4,/i2) —> 
BT(L/K)9 where L/K is a D4-extension. This will enable us to obtain criteria for the 
realisation of all groups of order 16 having D4 as an epimorphic image, i.e., for the 
groupsD8, Ô16, QD*, C* CandDAC. 

First of all we must describe D4-extensions. In Section 3 we got the following: A 
biquadratic extension K(y/a, y/b)/K can be embedded in a D4-extension L/K, such that 
L/K{\fb) is cyclic, if and only if (a,ab) = 1 in Br(K). (a,ab) = 1 is equivalent to the 
existence of a, (3 G K with a2 — a/32 = ab, and since K(y a + fiyfâ, yfb)/K is then easily 
seen to be a D4-extension of the desired kind, we see that any such extension is of the 
form L/K = K[^r{a + /3y/a), y/Fj /K, r G K*. Also, o and r in D4 may be identified 
with the automorphisms a and r in GdX{L/K) given by 

^Jr(a + fry/a) 

T(y/r(a + Py/â)) = \/r(a +fly/a), T{sfb) = -y/b. 
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The cohomology group H2{D^,ii2) is isomorphic to y?2 in the following way: Let 
7 € H2(D4, /i2), and consider the corresponding extension 

(12) l - > / i 2 - > £ - > Z > 4 - > 1. 

Let s and t be pre-images of a and r respectively. Then we assign to 7 the element 
(ei,£2,£3)€/i^ given by 

S4 = £ i , f" = £2, to = £ 3 ^ . 

This is an isomorphism: It is clear that the triple (e:\, £2,£3) and the extension (12) are 
determined uniquely by each other, and that the map is an injective homomorphism 
//2(D4,/i2) —> ii\- Also, the triples (—1,1,1), (1,-1,1) and (1,1,-1) are in the im­
age of H2(D4, ii2\ as the extensions (13), (14) and (17) of D4 to QD$, C x C and DX C 
below shows, and so the map is surjective. 

Thus, in order to describe the map H2{D4, ^2) —> Br(L/K), it is enough to describe 
the images of the 2-cocycles corresponding to (—1,1,1), (1, —1,1) and (1,1,-1). 

The 2-cocycle corresponding to (1, —1,1) is obviously the characteristic class of the 
extension 

(13) 1^M2 —> C x ' C — > D 4 - > 1 . 
1 ^ y—yr 

This extension is the inflation of the extension 

1 - * M2 - • Z/4Z -* Z/2Z - • 1 

with respect to the homomorphism D4 —> Z/2Z with kernel (<J). In our interpreta­
tion of D4 as a Galois group, this homomorphism corresponds to the restriction map 
Ga\(L/K) -> Gal(^(V^)/^) . As the diagram 

/ / 2 ( G a l ( ^ ( ^ ) / ^ ) , / x 2 ) —+ Br(tf(>/ft)/tf) 

- I 1 
H\DA^2) —> Br(L/£) 

is commutative, the obstruction to the embedding problem given by L/K and (13) equals 
the obstruction to the embedding problem given by K(y/b)/K and 

1 -> /i2 -> Z/4Z -> Gal(^(>/6)/^) - • 1. 

By Example 1.3, this second obstruction is (6, — 1) = (6, b). 
Similarly, the 2-cocycle corresponding to (1,1, — 1) is the inflation of the characteristic 

class of the extension 

1 -» M2 - * Z/4Z -+ Gel(K(y/â)/K) -> 1, 

and the image in Br(L/K) is therefore (a, —1). 
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The last 2-cocycle corresponds to the quasi-dihedral group, and we will determine the 
obstruction to the associated embedding problem by brute force in the following 

EXAMPLE 4.1. Consider the extension 

(14) 1—/x2 —+ QDS—-D4->1. 

The obstruction to the embedding problem given by this extension and our D4-extension 
L/K is represented by the algebra T = L[ua, uT], where 

u4
a = - 1 , u2

T = 1, uTua = w^wr, 

wax = a(x)U(j, uTx = T(X)UT, Vx G £. 

Q = K[y/a,ua+ul] ~ ( ^ ^ ) is a quaternion subalgebraofr, and hence T ~ (?®A:Cr(0. 
C r ( 0 is a 16-dimensional central simple algebra. Obviously, R = K[y/b, uT] ~ (^-) is a 
quaternionsubalgebraof C r ( 0 . Thus, T ~ Q®KR®KCCT{Q)(R)- CCT{Q)(R) = Cr(QR) is 
a four-dimensional central simple algebra, and hence a quaternion algebra. Since \fbu2

a G 
CT(Q • R% we seek a; G C r(g • tf ) with 

ujy/bul = -y/bu2
aLJ, u2 eK*. 

Calculations show that we can let 

{y/ria + Py/a) J 

and that UJ2 = 2arZ>. Hence, C r (ô • 7?) = K[y/bu2
a,uj] ~ ( ^ f ^ ) , and T - ( ^ ) (g)* 

(^-) 0A: (^f^y The obstruction is then 

[T] = (a,-2)(Z>, l)(-6,2ar6) = (a, -2 ) ( -6 ,2ar ) G Br(/Q. 

(If a = 0, — & is a square in K*, and (—6,2or) is simply the neutral element of Br(K).) 
In particular, K admits a QD% -extension, if and only if there exists quadratically in­

dependent elements a, b G K*9 such that 

(a, ab)=\ and 3x G K* : (a, - 2 ) = (-6,*). 

We now have the following 

PROPOSITION 4.2. Let L/K be a D^-extension as described above, and let 

(12) l - ^ / i 2 - + £ ^ D 4 - > l 

be a non-split extension. Choose pre-images s and t in E of o andr respectively. Then 
the obstruction to the embedding problem given by L/K and (12) is 

[(a,-2X-6,2ar)f(b,-iy(a,-\f G Br(K), 
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where s4 = (-1)', t2 = ( - i y andts = (-\fs3t. 

We are now able to extend Proposition 3.2 to the case, where G is an direct product 
of copies of Z/2Z, Z/4Z andA*. We will not state this result explicitly. Instead we use 
Proposition 4.2 to write down criteria for the realisability of the groups Z)g, Q\6, C x C 
and D AC: 

EXAMPLE 4.3. Let L/K be a ^-extension as before, and look at the extension 

(15) l - > / i 2 _ > fl8 — D 4 — 1 . 

By Proposition 4.2 the obstruction to the embedding problem given by L/K and (15) is 

[(f l , -2)(-6,2ar)](a,- l) = (a, 2)(-Z>, 2)(-6, ar) = (a, 2)(6, 2)(-6, err) 

= (a6,2)(-&,ar)GBr(£). 

In particular, AT admits a Dg-extension, if and only if there exists quadratically indepen­
dent elements a,b £K*, such that 

(a, ab)=\ and 3x G À* : (06, 2) = ( -6 , JC). 

EXAMPLE 4.4. Consider instead the extension 

(16) l ->/x2 — - Q16—+DA->1. 

Proposition 4.2 gives us the obstruction 

[ ( f l , -2)( -é ,2ar)] (6 , - lXfl , - l ) = (*M)(* , - lX-* ,« r ) G Br(/Q. 

Hence, the field K admits a Q\6 -extension, if and only if there exists quadratically inde­
pendent elements a,b G K*9 such that 

(a,ab)=l and 3x G K* : (a6,2)(6,-l) = (—fe,x). 

REMARK. If L/K is a Q2» -extension for some n > 3 and ^(^/â, y/b)/K9 a,b G £*, 
is the maximal elementary abelian subextension, a, b and #6 are sums of squares in K 
by [Jl, Theorem 1.2]. Also, by the remark following Theorem 1.2 in [Jl], there exists 
a limit, independent of K, to the number of squares necessary. In the case n — 3 it is 
well known that a, b and ab are all sums of three squares. We will now use the result of 
Example 4.4 to obtain limits in the case n = 4: 

Let L/K be a (^-extension and let K(^/a, \fb)/K be as above. We may assume 
L/K{\fb) to be cyclic. Hence, (a9ab) — 1 and (ab,2)(b, — 1) = (—b,x) for some x G 
K*. If 2 is a square in K, we have (b, — 1) = (—£,x). This means that the quadratic 
forms (b9b9 — l) and (—b,x,bx) are equivalent. Hence, (b9b9—l) represents —b9 i.e., 
(b9 b, b, — 1 ) is isotropic, and b is a sum of three squares in K. If 2 is not a square in K, b 
is a sum of three squares in K(y/2) by the preceding argument: 

b = I > +yiy/2? = j:tf + 2j? + 2x^V2) = J>? + 2^) 
i=i i=i i=i 
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for Xj,yt G K. Hence, b is a sum of nine squares in K. 
Now, (a,—b) = (a,ab) = 1 means that (l,—a,b) is isotropic, i.e., that (1,6) repre­

sents a: a = bx2 +J2 for some x,y G K. Since b is a sum of nine squares, a is a sum of 
ten squares in K. By symmetry, so is ab. 

We therefore have the following result: If L/K is a (^-extension with maximal el­
ementary abelian subextension K(y/â, \fb)/K and L/K{y/b) cyclic, b is a sum of nine 
squares in K, and a and #6 are both sums often squares in K. 

EXAMPLE 4.5. The obstruction to the embedding problem given by L/K and the 
extension 

(13) 1 —>u2 — > CxC—>D4-*l 

is 
(b,-l) = (b,b)eBi(K). 

Therefore, the field K admits a C x C-extension, if and only if there exists quadratically 
independent elements a,b eK*, such that 

(a,ab) = (b,b)= 1. 

This criterion is not surprising, since a Cx C-extension is the composite of a Z)4-extension 
and a Z/4Z-extension. 

EXAMPLE 4.6. The embedding problem given by L/K and the extension 

(17) 1-+M2 — > £ > A C — > D 4 ^ 1 

has the obstruction 
(a,-l) = (a,a)eBi(K). 

Hence, the field K admits a D A C-extension, if and only if there exists quadratically 
independent elements a,b £K*, such that 

(a, a) — {a,b)— 1. 

Again, a Dk C-extension is the composite of a D4-extension and a Z/4Z-extension, and 
so the result is no surprise. 

The groups C x C andZ)À C also have Z/4Z x Z/2Z as an epimorphic images and 
could be handled with Proposition 3.2. The results would be the same, however. It is also 
possible to obtain the obstructions by using the considerations about inflations preceding 
Example 4.1. This is the way it is done in [GS&S]. Again: The results are the same. 

The criteria for the existence of ZV, QD%- and ^-extensions given above can be 
found also in [Ki, Theorems 6-8], as well as in [GS&S] (without proofs). 

REMARK. Using Corollary 2.5, Proposition 3.2 and Proposition 4.2, it is of course 
possible to find criteria for the realisability of many other 2-groups beside those treated 
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above. For instance, any group of order 32 having Z/4Z x Z/4Z, Z/4Z x (Z/2Z)2, 
(Z/2Z)4 or Z/2Z x D4 as a factor. Of these, the case (Z/2Z)4 is considered in [Sm]. 
Also, the map H2{Q%, /x2) —* Bv(L/K), where L/K is a g8-extension, is easily described, 
since all elements in H2{Q$, /12) are inflations from //2(Z/2Z, ^2) via the different epi-
morphisms gg —+> Z/2Z. (In fact, it is not even necessary to know what a g8-extension 
looks like. Only the biquadratic subextension is needed.) Hence, groups of order 32 hav­
ing Z/2Z x Q% as a factor can be treated as well. 

5. Automatic realisations. Let G\ and G2 be finite groups. If any field K admitting 
a G\ -extension also admits an G2-extension, we will write G\ => G2. A statement G\ => 
G2 is called an automatic realisation. For instance, it is well known {cf. [Wh] or [K&L]) 
that Z/4Z ^ Z/2"Z for all n G N. And of course G =» G/A/' whenever N< G. Also, since 
any finite abelian group can be realised as a Galois group over a field C{{X\)) • • • {{Xn)) 
admitting only abelian extension, no automatic realisation of the form A => G, where A 
is abelian and G is not, can be valid. And if the automatic realisation G\ => G2 is valid, 
the minimum number of generators for G2 is less than or equal to the minimum number 
of generators for Gi : 

Let n be the minimum number of generators for G\, and let L/K be a G\ -extension. 
Then there exists n elements <j\,. ..,an in the absolute Galois group Gal(AT) of K, such 
that Gd\{L/K) is generated by the restrictions of these elements to L. Let K! be the fixed 
field of a\,..., on in the separable closure of K. Then the absolute Galois group of K' 
is generated by n elements, and hence the Galois group of any Galois extension of K' is 
generated by n elements. Since K' obviously admits a G\ -extension (namely LK'/Kf), 
the existence of a G\ -extension cannot imply the existence of a G2-extension, unless G2 
is generated by n elements. 

These remarks concern only 'general' automatic realisations, in which the ground 
field is an arbitrary field. If attention is restricted to fields with special properties, such 
as Hilbertian fields or fields with a given level, further automatic realisations may be 
valid. For instance: If — 1 is a square in K, the obstructions to embedding a D4-extension 
in Z>8-, QD%- and 216-extensions coincide, and so we get automatic realisations D% <=> 
QDs & Q\6- In fact, an argument similar to the one preceding Proposition 4.2 shows 
that in this case the obstructions to embedding a D2"-extension in £>2«+i-, QD2n+\- and 
Q2n+i -extensions are equal for all n > 2, and so D2n+\ & QD2n+\ & Qi^-

Several non-trivial automatic realisations are known, cf. [Jl], [J2], [J&Y] and [Sm]. 
In this section, we will consider automatic realisations between groups of order 4, 8 and 
16, using the criteria obtained in the previous sections. (Of course, these criteria work 
only in characteristic ^ 2. But by a theorem of Witt, see [Wi, Satz p. 237] or [Ho, 2.2 
and 3.1], automatic realisations between 2-groups in characteristic 2 depends only on the 
minimum number of generators for the groups involved, and so the results below will 
all be trivial. For the same reason, we will assume all fields to have characteristic ^ 2.) 
Many of the results of this section can be found in [G&S] as well. 
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PROPOSITION 5.1. g2» => C x C/or a// « > 3. 

PROOF. We write 02» = (x,y), where JC2"1 = l,^2 = JC2"-2 and jay"1 = JC_1. Let 
L/K be a (^"-extension. If n = 3 we have quadratically independent a,fc G AT*, such 
that (a, aè) = (Z>, b), by the result in Section 3. If n > 3 we have a group extension 

(18) l - ( x 4 ) ^ f o —• A — 1 , 
>T >7-

and hence quadratically independent a,b G K*, such that (a, ab) — 1, K(y/â, \fb) Ç Z, 
and L/K(y/b) is cyclic. By the remark following Example 4.4, 6 is a sum of squares in 
# . If b is a sum of two squares, (a,ab) = (b,b) = 1, and £ admits a C >3 C-extension 
by Example 4.5. If b is not a sum of two squares, there exists x9y,z G K, such that 
c — x2 +y2+z2 is not a sum of two squares. But then c and d — x2 +y2 are quadratically 
independent, and since (c, cd) — {d,d) = l,K admits aCxi C-extension. • 

For n — 3 this is [Jl, Proposition 1.1]. 
From the trivial automatic realisations Cx C => gs, Cxi C => D4 and CXJ C => Z/4Z, 

we get 

COROLLARY 5.2. g2« =* ft/^ 0# /i > 4. 

COROLLARY 5.3 [J&Y, THEOREM III.3.6]. g 8 => A . 

Of course, we get Qin => D4 for all n > 3, but for « > 3 this is trivial by (18). 

COROLLARY 5.4. Qln =» TjMfor all n>3. 

Also, we notice that the groups Q% and C x C are in a sense equivalent, as far as real-
isability is concerned: Any field admitting one of them as a Galois group automatically 
admits the other as well. 

As for the opposite implications: C x\ C ^> Qj? is not valid for n > 4, since the field 
Q3 of 3-adic numbers admits a C x C-extension, but no Dg- or gi6-extensions, and hence 
no (^«-extension for n > 4. (If/? is an odd prime, the field Q^ of/?-adic numbers has only 
four square classes, cf. [Se, Corollary p. 18], and so it is easy to check the existence or 
non-existence of (/-extensions, whenever G is one of the groups treated in the preceding 
sections.) Since C x C & Q% the implications gg => Qin, n > 4, are not valid either. 
The field R((X)) shows that D4 does not imply Qin for any n > 3. The implications 
Z/4Z => (?2" are obviously not valid, since Z/4Z can imply nothing but cyclic groups. 

LEMMA 5.5. If 2 £ (K*)2, the existence of a D^-extension implies the existence of 
an M ^-extension. 

PROOF. Let a,b G K* be quadratically independent, such that (a, ab) = 1. If — 1 and 
2 are quadratically independent in K, K admits an Mi6-extension by Example 3.3. We 
may therefore assume — 1 and 2 to be quadratically dependent: 

If—1 is a square, (a, a) = 1. If 2a is a square as well, (a, 2b) = (a, ab) = 1. Otherwise, 
2 and a are quadratically independent, and we can take 'b = 2': (a, 2 • 2) = 1. In both 
cases we get an Mi6-extension. 
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If —2 is a square, — 1 is a sum of two squares. We may assume that — 1 is not a square, 
and if we choose b' G K*, such that a' = — 1 and b1 are quadratically independent, we 
have (a\d) = 1 and (a',2b') = (-1,200 = (-1,*) for x = 2b'. Hence, we get an 
Mi6-extension. • 

PROPOSITION5.6. CxC=> M{6. 

PROOF. We have quadratically independents, b G K*, such that (a, ab) — (b,b)= 1. 
By Lemma 5.5 we may assume 2 to be a square in K. But then (6,6) = 1 and (b, Id) — 
(b, a) — (a, a) = (— 1, a), and we get an Mi6-extension. • 

COROLLARY 5.7. Q2n => MX6for all n>3. 

As the field Q5 shows, the opposite implications are not valid. In fact, Q5 admits no 
non-abelian group of order 8 or 16, except Mi6, as a Galois group. 

PROPOSITION 5.8. Q{6 => D$. 

PROOF. We have quadratically independent a,b G K*9 such that (a,ab) = 1 and 
(ab, 2)(b, — 1 ) = (—b, x) for some x G K*. If — 1 is a square in K*, the criteria for realising 
Qie and D8 are identical. We may therefore assume that —1 fi (K*)2. If 2 is a square, 
any /^-extension can be embedded in a D%-extension. Hence, we can assume 2 ^ (K*)2. 
If —2 is a square: Let a' = ab. Then (a',a'b) = (ab,a) = 1 and (a'6,2) = (#,2) = 
(ab,2)(b,2) = (ab,2)(b,—\) = (—b,x), and we get a Dg-extension. If —1 and 2 are 
quadratically independent, we get a Dg-extension by letting 'a = 2 and 6 = — 1'. • 

The opposite implication is not valid, as the field lft((X)) shows. In fact, R((X)) admits 
only dihedral groups (including Z/2Z and V4) as Galois groups, and so the only implica­
tions Ds =ï G, where G is a group of order 2", n < 4, are the trivial ones. Similarly, the 
only possible implications D4 => G, G as before, are the trivial ones andD4 =» Dg. Since 
Q3 admits a D4-, but no Dg-extension, only the trivial implications are valid. However, 
we do have 

PROPOSITION 5.9. D4 => Dg VMi6. (T/wf w, any field admitting a D4-extension also 
admits either a D%- or an M ^-extension.) 

PROOF. We have quadratically independent a,b G K*, such that {a, ah) — 1, and 
may assume 2 to be a square by Lemma 5.5. But then (29ab) = 1, and we get a Dg-
extension. • 

This result is an improvement of [Jl, Theorem 1.7]. 
The implication Q% => Dg is not valid, as Q3 shows. The implications Q2» => G, 

G = Dg, DX C or DC, n = 3,4, are not valid, as Q7 shows. 

PROPOSITION 5.10. QDs => Mi6. 

PROOF. We have quadratically independent a,b G K*9 such that (a,ab) — 1 and 
(a, —2) = (—b,x) for some x G A?\ By Lemma 5.5 we may assume 2 to be a square in 
K: (a, —1) = (—6,JC), and the quadratic form (—l9a,a) represents —b. This means that 
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the quadratic form (—\,a,a,b) is isotropic, and by multiplying with a we get that the 
quadratic form (1,1, — a, ab) is isotropic. Hence, a{\ — b) G K* is a sum of two squares. 
If a{\ — b) is a square, (a, a) = (a,b) = {\ — b,b) — 1 and («,2ft) = (a,b) = 1. If 
#(1 — è) and è are quadratically equivalent, we get 

1 - (a(l - b),a(\ - b)) = (a(l - b),b) = (a,b) = (a,a), 

hence (a,a) = 1 and (a,2b) = 1. Otherwise, a' — a{\ — b) and b are quadratically 
independent, (a', a') = 1 and (a', 26) = [a{\ - b),2b) = (a(l - b),b) = (a,b) = 
(a, a) = (— 1, a). In all cases, we get an M\e-extension. • 

M\e => Z/4Z is trivial, and we get 

COROLLARY 5.11. QDS => Z/4Z. 

Corollaries 5.4 and 5.11 are both special cases of [Jl, Corollary 1.3]. 
The implications QD$ => G,G = Dg, gi6, Dk C or DC, are not valid, as Q3 shows. A 

counterexample to the implications QD$ => Q$ and gDg => C xi C can be constructed as 
follows: Let K be a subfield of R maximal with respect to not containing y/2. The square 
classes of K are then represented by ± 1 , ±2. In particular, —1 and 2 are quadratically 
independent, so K admits a QD%-extension. But an easy calculation shows that K admits 
no Qs-extensions. 

Since K also admits an D X C-extension, but no Q 16-extensions, we get a counter­
example to the implications DkC^> Q%,DkC^ Q\e and D A C = > C x C a s well. 

PROPOSITION 5.12. Dk C => M\6. 

PROOF. We have quadratically independent a,b G K*, such that (a, a) = (a,b) — 1, 
and may again assume 2 to be a square: (a, a) = 1 and (a, 2b) = (a,b) = 1. Hence, we 
get an Mi6-extension. • 

The implication D kC =» DC is obviously not valid, since DC is not generated by 
two elements. 

PROPOSITION 5.13. DC=> D4. 

PROOF. By the result in Section 3, we have quadratically independent elements 
a,b,c E K*, such that (a, b) — (c, c). By [M&S, Proposition A. 1 ] there exists an x G K*, 
such that (a,bx) = (c,cx) = (ac,x) = 1. It follows that there exists quadratically inde­
pendent/?, q EK*, such that (p,q) = 1, and hence that K admits a ̂ -extension. • 

Let K be the pythagorean closure of the field R(X), i.e., the maximal totally positive 
2-extension of R(X), cf. [Wa, Lemma 1.4]. Any ordering of R(X) can then be extended 
to K, and since the signs of XandX— 1 in R(X) can be assigned arbitrarily, — 1, Xand 
X — 1 are quadratically independent in K*. The quadratic forms (X, X, — 1) and (X,X — 
1, —X(X— 1)) are obviously equivalent, and so we have (X,X) = (X— l,—X(X— 1)). 
Hence, K admits a DC-extension. But K is pythagorean, admitting no Z/4Z-extensions. 
It follows that the implications DC => G, G = Z/4Z, Qs, Q\6, QDS, M{6, C x C and 
DkC, are not valid. 
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PROPOSITION5.14. DXC^> D8 VDCandDXC => QDS VDC 

PROOF. We have quadratically independent elements a, b e K*, such that (a, a) — 

( f l , 6 ) = l . 
If — 1 and 2 are quadratically independent, we get D8- and gD8-extensions by letting 

a ' = 2 and 6 ' = - 1 . 
If — 1,2 ^ (A?*)2, —2 G (AT*)2: Any D4-extension can be embedded in a g^Vexten-

sion. If a and 2 are quadratically independent, we get a Dg-extension by letting a' — a 
and &' = 2, since (a'6',2) = (2a, 2) = (a, 2) = (« , -1) = 1. Otherwise, a and 2 are 
quadratically equivalent, and we get a Dg-extension, since (ab, 2) = (26,2) = (b, 2) = 
(-6,2). 

If — 1,2 G (K*)2, any D4-extension can be embedded in D%- and QD%-extensions. 
If —1 G (AT*)2, 2 ^ (AT*)2, a Z)4-extension can be embedded in a D8-extension, if 

and only if it can be embedded in a QD% -extension, and so we need only consider D%\ 
If 2, a and b are quadratically independent, we get a DC-extension by letting c — 2. 
Otherwise, 2 is quadratically equivalent to a, b or ab: If 2 = a, (ab, 2) = (ab, a) — 1. If 

2 = 6, (ab, 2) - (ai, 6) = (-b, ab). If 2 = aft, (afc, 2) = (2,2) = 1. In all cases, we get a 

Z)8 -extension. • 

The only nontrivial automatic realisations between the groups Z/4Z, D4, g8 , D8, 
(?i6, 2^8, Mi6, C xi C, DXC and DC not covered by the above results are D À C => 
Ds, DXC => gD8 and DC => D8. It is clear from the proof of Proposition 5.14 that 
the automatic realisations D A C => D8 and D AC => £)D8 are equivalent, and from 
Proposition 5.14 itself that the automatic realisation DC => D8 would imply the other 
two. However, the author has not succeeded in giving proofs or counterexamples of any 
of these three realisations. 
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