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Abstract. The equations for a rotating convective spherical shell are solved in the Herring approxi­
mation as an initial value problem. The main results are 

(1) The most unstable modes (those that maximize the heat flux) correspond to convective cells 
stretching from pole to pole. 

(2) The calculations of the Reynolds stresses show transport of angular momentum towards the 
equator. That is, differential rotation sets in with equatorial acceleration. 

(3) The convective heat transport is maximum at the equator. This would give rise to an equator-
pole flux difference. 

(4) If convection is non-axisymmetric (as in the most unstable modes) there are no time independ­
ent solutions. The time dependence is oscillatory and of the form cot + m<j>. 

1. Theory 

In a system of coordinates rotating with an angular velocity Q, the basic equations 
can be written: 

- - V x.U - V x V2U = - - V x (U-V) U 
a dl a 

- l - ^ V xg(r)rT + J T , ( C & - V ) U (la) 

divU = 0 (lb) 

i - V 2 J r = -V-(UT). (lc) 

In Equations (1) all quantities are dimensionless, a is the Prandtl number, 3%Y = 
0t\(\—r\f where ^ is the Rayleigh number and // = 0.8 is the internal radius of the 
spherical shell in units of R0, the external radius; 

•Tx = IQRljv = ^ j / 2 / ( l - n)
2 

where ,Ta is the Taylor number; and a> is a unit vector in the direction of the 
angular velocity. The unit of distance is R0, and not, d, the thickness of the spherical 
shell, this explains the factors (1 — J/)3 and (1— r\)2 in 01 x and ,TU respectively. The 
factor g(r) takes into account the variation of gravity with radial distance. 

We expand the velocity field in basic poloidal and toroidal vectors: 

U = I [P(pZ(r, 0 Y?{0, cp)) + T(/Z(r, t) Yf (0, <p))] . (2a) 
L, m 
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In spherical coordinates the components of P(/?™ Y™) and T(/™ Y™) are given by 

( L + 1 ) L 
r — 2 PL IL 

r dr 30 

and 

p(q>) _ 

T<r) = 

T(B) = 

1 SplBYl 

r s in# or d<p 

= 0 

r sinO d(p 

tm
L8Y? 

(3b) 

r 80 ' 

The poloidal and toroidal vectors defined by (3) form a complete orthogonal set for 

solenoidal vector fields. 

For the temperature we take 

T=.— (n ~ 1 J + 4>{r, t) + 0 ( r , f), (2b) 
1 -ri\r J 

with 
0 ( r , r ) = X 0 r ( r , O y t " ( 0 . v ) . (2c) 

We take the spherical harmonics appearing in (2) and (3) as defined by Condon and 
Shortley (1951). 

In Herring's approximation (1963, 1964) the fluctuating self interactions, that is, 
the terms (1 jo) (U • VU - t/-VU) and (U- V0 - U-V0) are neglected. The main effect of 
the small scale part of these terms is to give rise to a turbulent viscosity and conductiv­
ity; the Rayleigh and Taylor number should then be defined in terms of these last 
quantities. 

The equations for 01 (r, t) and \j/(r, t) (the fluctuating and average parts of the 
distortion in temperature from its purely conductive value) and the equations for the 
poloidal and toroidal components of the velocity field are found to be: 

\m\iL 

d (L+\)L\ I V , , 5 
— 3>L-- '— U = , ) ( L + 1 ) L -

dt L r2 V 4nr2 [j K ' dr 

d \ (L+\)L 

dt L L r L 

L, m 

(1 — rj) r dr 
(4b) 
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where 

1 8 m imST. 

adt L L ( L + 1 ) L L L L L 

= - £ig(r) @l + STV {A(L, m)(L - 1)(L - 2) 7T-,/L 

-A(L+l,m)(L + 2)(L + 3) T?+ ,/(L + 1) 

- ^ (L , m)(L - l)rT[1JL -A(L+\, m){L + 2)rT[m
+il(L + 1)} 

(4c) 
1 d m im.T, 

rpm 1 rr>m F-V rpm 
3 * L n , <\ , ' 1 ~ UL1L (T Of (L + \)L 

= -&!. {A(L, m){L - l)2PZ_JLr2 - A(L + 1, TO) 

x (L + 2)2 Ft
m

+1/(L + 1) r2 - A(L, TO) (L - 1) P - ^ L 

-A(L+l,m)(L + 2)Pr+Jr(L+\)} (4d) 

d2 2 d ( L + 1 ) L 
- * i - —i + - -: J 

dr r dr r 

d2 4 d 2-(L+ \)L 

ar r ar r 

dTm dPm 

ar ar 

A(L, TO) = [(L + m)(L- m)/(2L + 1) (2L - 1)]1/2 . 

Equations (4) are the fundamental equations of the problem. We assume free surface 
boundary conditions at r = r\, 1. It is easily seen that they imply P™ = P™=T[m =0 at 
r = r\, 1. The boundary conditions for the temperature are as usual 0 = ^ = O a t r = f/, 1. 

We neglect the time derivatives in Equations (4c) and (4d). In the absence of rotation 
modes with different L's do not interact. The integration in time of Equations (4) 
shows then that after a sufficiently long time only the mode with L = 10 remains differ­
ent from zero (Durney, 1968a). Another value of L for the non-zero mode would have 
been found for a different thickness of the spherical shell (in the present case, the 
thickness is 0.2 R0). 

Rotation couples, through the Taylor number, modes with different L's. For m = 0, 
there exist time-independent solutions (Durney, 1968b). For m # 0 no time-independ­
ent solutions were found. This was attributed to the fact for m^O the convective 
modes of polytropes show overstability (Durney and Skumanich, 1968). It was then 
decided to integrate in time Equations (4) for a given value of m by keeping only the 
L = 8, 10, 12 modes for P? and 6>£and the L = 9, 11 modes for T?. This should be a 
good approximation for small Taylor numbers. 

To perform the time integration P™, 01, \]/(r, t) and T™ were expanded in terms of a 
complete set of functions of r satisfying the boundary conditions. The coefficients in 
these expansions are time-dependent, and from Equations (4) it is possible to obtain 
ordinary differential equations for these coefficients. 
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2. Numerical Results 

The values of the Rayleigh number and Taylor number were chosen to be equal to 
1500 and 4, respectively. 

A. THE MOST UNSTABLE MODE 

Table I gives the value of the heat flux as function of m. 

TABLE I 

Heat Flux x 1 0 2 0.99919 0.99924 0.99941 

m 0 1 2 

0.99968 1.00007 1.00056 

3 4 5 

1.00116 1.00188 1.0027 

6 7 8 

1.003 57 1.00459 

9 10 

The most unstable mode is thus the one with m=10. This is in agreement with 
Busse's (1969) results who finds that the Rayleigh number for the onset of convection 
is a minimum for m = L. 

B. DIFFERENTIAL ROTATION 

The average of the azimuthal velocity Uv over cp is zero. Differential rotation, as 
observed in the sun, should, however, be a property of a rotating convective spherical 
shell. Once the velocities are known in the Herring approximation, it is possible to 
evaluate the torque T(9) d9, exerted by the Reynolds stresses on an annulus of 
thickness d (the thickness of the spherical shell). The polar angle of the annulus is 9. 
This torque is given in Figure 1 and shows equatorial acceleration. 

C. EQUATOR-POLE FLUX DIFFERENCE 

Figure 2 shows the convective flux Ur0 (the average is over cp) as function of 9 for 
r = 0.9 which is the surface halfway between the inner (r = 0.8) and outer (r = 1) surfaces. 
The convective flux is larger at the equator. This could give rise to an equator-pole 
flux difference as observed by Dicke and Goldenberg (1967). A possible interpretation 
of this effect is based on the interaction of rotation and convection (Roxburgh, 
1967a, b, 1969; Durney and Roxburgh, 1969). 

D. GRAVITATIONAL-GYROSCOPIC WAVES 

The velocity field U and the fluctuation in temperature 0 are time-dependent. The 

https://doi.org/10.1017/S0252921100027019 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100027019


34 BERNARD R. DURNEY 

z o 

a: 
UJ 

o 

8 0 0 

600 -

^ 4 0 0 

F- 200 -

O 
z 
o 
3 
o o cc a. 
3 
O 
(T 
O 

-200 -

- 4 0 0 
2.5 3.0 3.5 1.5 2.0 

e 
Torque exerted by the Reynolds stresses on an annulus of polar angle 6. This torque 

produces differential rotation. 

55 

50 

^* 
°>- 45 O * ° 
i t 

^ 40 
X 
3 
_l 35 
u_ 
^ 30 
UJ 
X 
UJ 25 
> 
£ 20 
UJ 
> Z 15 
O 
o 

10 

5 

A 
/ \ 
/ I 

/ 1 
/ l 

- / 1 
/ I 
i l 

— i i 
J 1 

- J 1 
• i 
i I 

— / i 
/ i 
/ \ 
i 1 
/ i 

— 1 1 
/ \ 
/ I 

/ \ 

\ ^ i i v i i 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 

e 
Fig. 2. Convective heat flux at a surface halfway between the inner and outer surfaces. 
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torque and the convective heat flux as given by Figures 1 and 2 are nevertheless time-
independent. More generally if A and B stand for any of the quantities U and 0 then 
the average of AB over <p (AB) is constant in time for sufficiently large values of the 
time. As/I or .Bare of the form ,4 = ,4 ̂ r , 9, t)cosm(p+A2(r, 9, t) sinmcp the constancy 
of AB suggests the following time-dependence: 

A = A) (r, 6) cos(cot + imp) + A2(r, 9)sin(wt + mq>). 

The value of a> was found to be equal to © = 3.153. 
This time dependence is identical to that of the states of marginal stability of the 

convective modes of a rotating poly trope (Durney and Skumanich, 1968). These 
'gravitational-gyroscopic' waves have some similarities with Rossby waves as intro­
duced by Ward (1965, 1966), Starr and Gilman (1965) and Gilman (1967) to explain 
the differential rotation of the sun. If giant convective cells exist in the sun, the use 
of the Herring approximation can be justified to explain qualitatively certain features 
of the convective zone of the sun. On theoretical grounds Simon and Weiss (1969) 
have suggested the existence of giant convective cells and Howard (1969) has ob­
served upward and downward motions extending from pole to pole. 
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Discussion 

Roxburgh: It is important to emphasize that giant cells have been observed by Howard and that 
these have the same banana-mode shape. 

Ruben: Generally a rotating star should be hotter at the pole than at the equator. Does your 
effect of mainly equatorial heat transport compensate this? 

Durney: The effect of rotation on convection should be much larger than the von Zeipel effect. 
Fricke: I would mention that Fritz Busse in a recent paper concerning the equatorial acceleration 

of the sun came to similar results with such an analysis. 
Durney: Yes. Busse's treatment is based on a double expansion: one, in the convective amplitudes 

and the other in the Taylor number. 
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