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Subdirectly irreducible

Rees matrix semigroups

David E. Zitarelli

Minimal congruences on a Rees matrix semigroup S having at
least one proper congruence are described. Necessary and
sufficient conditions for S +to be subdirectly irreducible are
given in two cases according to whether the structure group of

S 1is trivial.

1. Introduction

Congruences on a Rees matrix semigroup (or a completely O-simple
semigroup) have been described in various ways. The aim of this paper is
to show that the recent characterization by Laliement [2] in terms of
admissible triples can be used to solve a problem which the other
descriptions did not seem to permit. Namely, we will give necessary and
sufficient conditions for a Rees matrix semigroup to be subdirectly

irreducible; that is, to have the least nontrivial congruence.

Section 2 contains several properties of admissible triples and a
restatement of Lallement's Theorem. Our results on subdirect
irreducibility are contained in Section 3. Obviously every congruence-free
semigroup is subdirectly irreducible, so congruence-free Rees matrix
semigroups are described first. Next we list the three possible forms of
minimal congruences on a Rees matrix semigroup S which is not congruence-
free. Then we determine when S 1is subdirectly irreducible in terms of
the sandwich matrix, when the structure group G is trivial, and in terms
of reductivity and the subdirect irreducibility of G when G is non-

trivial.
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A11 undefined terms and notation can be found in [4].

2. Admissibility

0
let S =MY(I, G, M; P) be a regular Rees matrix semigroup. We will
define an admissible triple on S and relate this concept to the

reductivity of S and the entries of P .

DEFINITION. Let r be an equivalence relationon I , N be a
normal subgroup of G , and 7T be an equivalence relation on ¥ . Then
(r, N, m) 1is called an admigsible triple on § 1if the following

conditions are satisfied:

(A1) if <Zrj then for all u € M , pui # 0 implies puj £ 0

(A2) if 4rj , p . # 0, and pw:;éo,then

ut

-1
puip\)ip\)jpuj €N

(A3) if umv then for all '11. €I, plli # 0 implies Py # 0,

(Ak) if pmv , p

ui;éo,a.nd p\)j;éo,then

-1 -1
PuiPuiPuiPui €V -

For any set A we will denote the identity relation by €y and the

universal relation by Where no ambiguity exists we will omit the

“a
subscripts. Also if a, b €4, a# b , we will let R(a, b) denote the

equivalence relation whose only nontrivial class is the set {a, b} .

Cur fi;’st two results will be fundamental to later considerations.

Their proofs follow immediately from the admissibility conditions.

LEMMA 1. Let (r, N, m) be an adnigssible triple on S . If
r'cr, NcWN' ,and n' cn then (r', N', n') is also admissible.

LEMMA 2. For each normal subgroup N of G the triple (e, N, €)
18 admissible.

Recall that the <th and Jth columns of the sandwich matrix P are
right proportional if there exists some element ¢ € G such that

pi=pujc for all u € M.

n

https://doi.org/10.1017/50004972700023455 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700023455

Rees matrix semigroups 353

LEMMA 3. If (r, e, €) 1is adnissible for some r ¢ €r then two

distinet columms of P are right proportional.
Proof. Since »r # € there exist © # j € I such that irj . We
will show that the <th and jth columns of P are right proportional.

Since P is regular, pvi # 0 for some v € M . Then pvj #0 by

(A1) so put e = p—%p Let w €M . If p.#0 then (A2) implies

vi©vg -’
that > 12 ¢ whence p i =pt =c On the other hand if
PuiPyiPyuiPuj PuiPvi = PuiPuj . e
. = .= . .=p . 1 ;
Py; 0 then p . =0 by (Al). Hence Pui = Puic for all y € M ; so

the Zth and jth columns have the desired property.

LEMMA 4. If the ith and Gth coluwms of P are right
proportional then (R(i, ), N, €) is an adnissible triple for each normal
subgroup N of G .

Proof. By hypothesis there exists some ¢ € ¢ such that pui = pujc
for all p € ¥ , so (Al) obviously holds. If p,; #0 and p . #0 then

-1 -1 -1 -1 o s

D LD D .= .c .cC .p. . = e , hence (A2) holds. The remainin
PuiPoiPyPui = B0 (B0 P (A2) g
admissibility conditions are easy to verify.

It is well-known (for example, [4, Theorem V.3.1k]) that § is left
reductive if and only if no two distinct columns of P are right

proportional. Hence
COROLLARY 5. The following conditions are equivalent on S ;
(i) S 1is not left reductive;
(i) (R(Z, §), e, € is admissible for some i # j ;

(ii1) the 1ith and jth colwms of P are right proportional

for some 1 # J .

Denote the lattice of congruences on a semigroup S by ¢(S) . A
congruence ¢ € C(S) 1is called proper if it is different from the

universal relation. Put
C'(8) ={c €C(8) : 0#€ and 0 # w} .

We will conclude this section by stating the very basic result of
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Lal lement [Z] linking congruences on S to admissible triples. The

notation introduced will be used throughout the remainder of this paper.

THEOREM 6 (Lallement). Let S =M1, G, My P) . If (r, N, ) is
an admissible triple on S then the relation © = 0(r, N, 7) defined on
S by

(2, a, WO{j, b, v) iff a#0, b#0, irj , urv , and
Py = po.jbp\)k (mod N) for some o €M, k €I such that

Pyg # 05 Py # 0. 080,

i8 a proper congruence on S . C(Conversely every proper congruence on S
can be written in the form 6(r, N, ) for some admissible triple
(r, N, M) .

It can easily be verified that 6(r, ¥, ) c 6(s, X, p) if and only
if rcs, NcK ,and 7TCp . Moreover, using Lemma 2 we see that

GN = 06(e, N, €) € ¢(S) for every normal subgroup N of G .

3. Subdirect irreducibility

In this section we make use of Lallement's Theorem to find all
subdirectly irreducible Rees matrix semigroups. Recall that a semigroup is
eongruence-free it C'(S) =@ . (The term h-simple was used in [5].) We
first dispose of those Rees matrix semigroups which are congruence-free
since they are always subdirectly irreducible. For those which are not
congruence-free we will consider two cases according to whether the
structure group is trivial. First we will use the above results to give an

alternative proof of a result due to Munn ([3, Theorem 2.1]; see also

{61).

THEOREM 7. A Rees matriz semigroup S = MO(I, G, M; P) is
congruence-free if and only if

(1) G <ie a simple group and S5 ~ G or

(2) G s the trivial group and no two distinet rows or colums

of P are identical.

Pfoof. Let S be congruence-free. It follows from Lemma 2 that

0 =06(e, G, e) €C(S) ,s0 8=w or 6 =¢ . The former case implies
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that |I| = J¥| = 1 . Since 6(e, ¥, €) € C(S) for every normal subgroup .
N of G it follows that (G 1is simple. From the latter case we see
immediately that G is the trivial group, and that P 1is of the desired

form follows from Lemma 3.
That such semigroups are congruence-free is obvious.

We will now proceed to describe those subdirectly irreducible Rees
matrix semigroups S which are not congruence-free. First we will

characterize their minimal congruences.
LEMMA 8. A proper congruemce o on S 1is minimal if and only if o©
has one of the following three forms:

(1) o=06(R(<, §), e, €) forsome i,4 €I, 1# 4 ;

(2) o=6(c, e, Ry, v)) for some u, v €M, p#v;

(3) ¢ eN for some minimal novmal subgroup N of G.

Proof. Let o = 68(r, N, ) be minimal on S . Since QN € C(S) and
SN C 0 we have either ¢ = ON or N =¢ . Thus all minimal congruences
on S are of the form 6(e, N, €) or 0(r, e, m) .

First we show that OH is minimal if and only if N is minimal.

Suppose BN be minimal. If K 1is a normal subgroup of G and X c N

then eK g_eN so minimality implies OK =gg or OK = ON . Thus K =e

or K =N , respectively, so N is minimal. Conversely if N is minimal

and o = 6(r, X, m) ggGN then » =7 =¢ and KC ¥ . The last inclusion
implies that K = e or K=N , so 0= ES or O = GN respectively.

Hence SN is minimal.

It remains to determine when o = 8(r, e, 7) is minimal. Let ¢ be
minimal and suppose that r # € . Then 8(r, e, €) € C'(S) by Lemma 1,
and 6(r, e, €) S0 y,s0 ww=¢ . Further, irj for some i # j € I , so
o(R(<, 4), e, €) € 8(r, e, €) = 0 . But then the minimality of ¢ implies
R(i, j) =r . Ths 0 = e(r(i, i), e, e) ; similarly w # ¢ implies
o =20(e, e, R(u, v)) for some pu#v €M . Since 0 # & we must have
either r# ¢ or W"# e, so O is of the desired form. That such

congruences are minimal is obvious.
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The standard way of introducing subdirectly irreducible semigroups is
via the direct product (see, for example, [5]). However it suits our
purposes here to adopt the definition that a semigroup is subdirectly
irreducible if the intersection of any set of nonidentical congruences is

nonidentical.
THEOREM 9. The following conditione are equivalent on a Rees matrizx
semigroup T = MO(I, e, M, P) over the trivial group:
(i) T <is subdirectly irreducible;

(i1) exactly two distinct rows or two distinet colwms of P

are identical;

(121) T has precisely one congruence different from € and

w .

Proof. (Z) implies (ZZ). If T is subdirectly irreducible with
least congruence ¢ , then according to Lemma 8 we can say without loss of
generality that o = G(R(i, J)s e, 6) for some 7 # § . It follows from
Corollary 5 that the <th and Jjth columns of P are identical. Suppose
two other columns of P , say the kth and Ith columns, are also
identical. Using Corollary 5 again, put p = 0(R(k, ), e, €) € C(T) . If

{i, Y # {k, 1} then onp-=c¢ But T is subdirectly irreducible and

7 .
» S0 P =€n . This means that k

o # € 1 . A similar approach shows

T
that no other column of P is equal to either the Zth or jth column,

hence these are the only distinct identical columns of P .

Now suppose that two rows, say the uth and vth rows, are equal.
Then Corollary 5 implies that T = 8(e, e, R(u, v)) € C(T) . But

oNT-=E¢ or T =0 . The first equality implies that

T T
U = v while the latter is impossible since R(Z, j) # € . Thus no two

, S0 T = €

distinct rows of P are identical.

(i1) implies (ZZZ). Suppose that the only distinct identical columns
are the 7th and jth , and that no two distinct rows are identical.
According to Corollary 5, o =0(R(Z, j), e, €) € C'(T) . Let
T=06(r,e, m) €C'(T) . If ©# € then it follows easily from Lemma 1
that (e, e, R(u, v)] is an admissible triple for some u # v . However

this implies that the uth and vth rows of P are identical,
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contradicting the hypothesis. Thus T = 6(», e, €), so r # € , which

b4
means krl for some k # L . But then (R(k, L), e, €] 1is an sdmissible
triple, so the kth and Ith columns are identical by Corollary S. By

hypothesis we conclude that {k, I} = {Z, j},s0 T =0 . Thus o is the

only congruence on T different from € and w .

That (7iZ) implies (Z) is obvious.

For the remainder of this paper let S = MO(I, G, M; P) where G is
a nontrivial group and e denotes the identity of G . Recall that
BN = 6(e, N, €) for each normal subgroup N of G .

PROPOSITION 10. If S is subdirectly irreducible then it is
reductive.

Proof. We know from Lemma 2 that GG € C'(S) . Since S is sub-
directly irreducible ¢ n BG # € for all ¢ € C'(S) . Thus no triple of

the form (R(i, J)s e, E) or (e, e, R(u, v)) can be admissible since

each induced congruence intersects eG nontrivially. That S is

reductive now follows from Corollary 5 and its dual.

PROPOSITION 11. If S <is subdirectly irreducible then G 1i& a

subdirectly irreducible group.

Proof. Let o = 6(r, N, ) be the least congruence on S . It
suffices to show that o = SN . For in such a case if K # e 1is a normal
subgroup of G then SK € C'(S) by Lemma 2. But the minimality of o

implies that GN E.GK , whence Nc K . Thus N 1is the least normal
subgroup of G , so G 1is subdirectly irreducible.

Now we will show that o = eN . First, suppose that N = e ; that

is, o=0(r, e, m) . If r# € then R(i, j) Cr for some <1 # j , so
(R(Z, ), e, €) is an admissible triple by Lemma 1. It follows from
Corollary 5 that S 1is not left reductive and from Proposition 10 that §
is not subdirectly irreducible, contradicting the hypothesis. The
assumption m # € will lead analogously to the same contradiction. Since

O # € it follows that N # ¢ , so that © = GN .

S

THEOREM 12. A Rees matrix semigroup S over a nontrivial group G
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18 subdirectly irreducible if and only if S 1is reductive and G 1is
subdirectly irreducible.

Proof. 1In view of Propositions 10 and 11 it suffices to prove the
necessity. So let § be reductive and G be subdirectly irreducible with

least normal subgroup X . We will show that OK is the least non-
identical congruence on S .

Suppose that (r, e, m) is an admissible triple. If r # eI then
R(i, j)cr for some i # 4 ,so (R(Z,J), e, SA) is admissible by Lemma

1. But Corollary 5 indicates that S is not right reductive, which

contradicts the hypothesis. Hence r =¢ similarly w =€

I’ M
Therefore no nonidentical congruence on S has the trivial subgroup for

its middle entry.

Now let o € C'(S) , o =0(r, N, T) . We have seen above that
N # e , so the minimality of X implies that Kc ¥ . It is clear that
GK € 0 . Finally, Lemma 2 insures that QK # €g » SO BK is a non-

identical congruence which is contained in every such congruence.
We might point out that the proofs of the last two results indicate

that the least congruence on § is eK where KX 1is the least normal

subgroup of G . Moreover if 6(r, N, m) € C'(S) then N # e .
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