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Abstract . We consider initial determination of asteroid orbits in the case of 
small numbers of observations and short observational arcs. For asteroids having 
long arcs, we can assess the orbital uncertainties with the help of the covariance 
matrix that, in the phase space of the orbital elements, defines a set of probability 
ellipsoids. In initial orbit determination, because of the nonlinear characteristics 
and multiple solutions of the inversion problem, we cannot readily use the cova­
riance matrix to estimate the orbital uncertainties. However, by computing the 
eigenvalues and eigenvectors of the formal correlation matrix (that is, by deriving 
the eigenorbits), we can discern the most indeterminate orbital elements. Here we 
solve the eigenproblem for 17 single-apparition asteroids. 

1. Introduct ion 

We consider initial determination of asteroid orbits, and solve for the eigen­
values and eigenvectors of the formal correlation matrix. Similar methods 
have earlier been applied to comet P/Hale-Bopp and asteroid (719) Albert 
(Muinonen, 1996; Bailey et al, 1996). 

We make use of two different methods for orbit determination before 
differential correction: one is the Gaussian method for three observations 
(e.g., Dubyago, 1961), whereas the other is a systematic search through the 
topocentric distances of two observations. Occasionally, to obtain a first 
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orbit, we need to add random noise to the observations. We improve all or 
a subset of orbital elements by means of differential correction (e.g., Mui-
nonen and Bowell, 1993). Accordingly, the correction is either complete or 
incomplete. Our present orbit determination software derives from Muino-
nen and Bowell (1993), Milani et al. (1995), and Carpino and Knezevic 
(1996). 

Dubyago (1961) gave a concise history of orbit determination — one 
of the oldest inversion problems in astronomy. The problem involves six 
nonlinear parameters, rendering it a challenging inversion even for modern 
computational methods. As pointed out by, for example, Marsden (1991), 
initial orbit determination from three observations can be quite indetermi­
nate: there are often multiple solutions, among which it is impossible to 
choose the right one. 

Vaisala (1939) provided methods for orbit determination from, for ex­
ample, two or three observations. In the latter case, Vaisala iterated toward 
an orbit solution by making hypotheses of the topocentric distance and 
comparing the 2-components of a normalized velocity vector. In the former 
case, he assumed tha t the asteroid is at perihelion or aphelion. Bowell et 
al. (1989) and Jedicke (1996) have considered orbit determination from one 
position and one motion vector, and obtained promising results close to 
opposition. 

In Section 2, we outline the computation of eigenorbits and, in Sec­
tion 3, derive initial orbits for 17 short-arc single-apparition asteroids: 
1077 T- l , 2738 P-L, 2872 P-L, 2838 P-L, 1986 PSi , 1987 AN, 1990 HD6, 
1990 HL6, 1990 RBi 8 , 1990 RMi 8 , 1990 RV17, 1992 DW1 0 ) 1992 EY4, 
1992 LO, 1993 P T 6 , 1995 B U n , and 1995 DM 6 . In Section 4, we ana­
lyze the eigenvalues and eigenvectors of their formal correlation matrices, 
and draw conclusions in Section 5. 

2. Definit ion of Eigenorbi ts 

We denote the orbital elements at a given epoch by P = (a, e, i, Q,u, MQ)T 

(T is transpose). The elements are, respectively, the semimajor axis, ec­
centricity, inclination, longitude of ascending node, argument of perihelion, 
and the mean anomaly. The three angular elements t, £2, and u are cur­
rently referred to the ecliptic at equinox J2000.0. The determination of the 
final orbital elements by means of complete differential correction yields the 
covariance matrix S (Muinonen and Bowell, 1993). In the case of incom­
plete differential correction, we obtain E by running, at the end, complete 
correction without introducing changes in the elements. 

In the phase space of the orbital elements, the real, symmetric, and 
positive definite covariance matrix £ defines a set of ellipsoids centered at 
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the least-squares orbit Pu , 

A X
2 ( P ) = A P ^ A P = A X o , A P = P - P l s , (1) 

where AXQ is a constant. We express the differences A P in terms of the 
standard deviations Oj = y/'Ejj (j = 1 , . . . ,6 ) and use the dimensionless 
correlation matrix C; with the help of the diagonal standard deviation 
matrix 5 , 

A Q = S ^ A P , Sjk = aj8jk, 

C = 5 " 1 E 5 " 1 , j , f c = l , . . . , 6 , (2) 

where Sjk is the Kronecker symbol. We thus define the ellipsoids by 

A Q T C " 1 A Q = AXg, (3) 

in which all the parameters are dimensionless. 
Implicit in making use of the correlation matrix is the idea that , proba­

bilistically, the orbital elements contribute uniformly to the eigenproblem. 
The eigenvalues A i , . . . , Ae for the correlation matrix are normalized varian­
ces along the principal axes of the ellipsoid, the directions of the axes being 
given by the orthonormal eigenvectors X i , . . . , X6, 

CXj = XjXj, j = l , . . . , 6 . (4) 

An eigenorbit is one that lies on a principal axis of the ellipsoid. 
In what follows, the orbital uncertainties cannot be readily inferred 

from the covariance matrices computed here in the linear approximation. 
Instead of covariances, correlations, and standard deviations, we thus dis­
cuss pseudo-covariances, pseudo-correlations, and pseudo-deviations. 

3. Orbit D e t e r m i n a t i o n 

In Table 1, we show the numbers of observations and nights, the obser­
vational arcs, the R.A. and Dec. residuals, and sample sets of orbital ele­
ments. All observations were obtained from the Minor Planet Center in 
May 1996. In orbit determination, we gave preference to convergent rat­
her than realistic solutions. For four asteroids, the differentially corrected 
orbital elements reproduced the observed positions with practically zero 
residuals. 

Gaussian orbit determination yielded solutions for the eleven asteroids 
1077 T-1, 2738 P-L, 2782 P-L, 2838 P-L, 1987 AN, 1990 HD6, 1990 HL6, 
1992 DWio, 1992 EY 4 , 1992 LO, and 1995 DM 6 . From these, complete 
differential correction converged for all but 1077 T-1 and 1995 DM6. For 
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TABLE 1. We summarize the number of observations N, number of nights ATn, 
observational arc T (d), standard deviations of the R.A. and Dec. residuals <ra and 
crs (arcsec), and the orbital elements (semimajor axis in AU, angular elements in 
degrees). The epochs are the following (TDT): 1077 T-l, 1971-03-26.0; 2738 P-L, 
2782 P-L, and 2838 P-L, 1960-09-26.0; 1986 PSi, 1986-08-03.0; 1987 AN, 1987-01-03.0; 
1990 HD6 and 1990 HL6, 1990-05-01.0; 1990 RBig, 1990 RMi8, and 1990 RVi7, 
1990-09-10.0; 1992 DWio and 1992 EY4, 1992-03-03.0; 1992 LO, 1992-06-05.0; 
1993 PT6, 1993-08-16.0; 1995 BUn, 1995-02-02.0; 1995 DM6, 1995-02-27.0. 

Name 

1077 T-l 
2738 P-L 
2782 P-L 
2838 P-L 
1986 PSi 
1987 AN 
1990 HD6 

1990 HL6 

1990 RBis 
1990 RMis 
1990 RVi7 
1992 DW10 

1992 EY4 

1992 LO 
1993 PT6 

1995 BUn 
1995 DM6 

N, 

5, 
6, 
7, 
6, 
6, 
5, 
3, 
3, 
3, 
3, 
3, 
3, 
3, 
5, 

10, 
8, 

12, 

Nr 

3, 
3, 
4, 
3, 
3, 
5, 
3, 
3, 
3, 
3, 
3, 
3, 
3, 
3, 
4, 
3, 
5, 

J 

3.0 
3.0 
5.0 
4.0 
3.1 
5.1 
3.0 
3.0 
2.0 
2.0 
2.0 
4.9 
5.0 
3.1 
4.0 
9.0 
6.0 

Ca, 

0.46, 
0.25, 
0.32, 
0.48, 
0.68, 
0.90, 

0.37, 
1.53, 
1.72, 

0.45, 
2.12, 
0.38, 
0.29, 

as 

0.62 
0.25 
0.33 
0.43 
0.74 
0.86 
0, 0 
0, 0 
0.72 
0.62 
1.62 
0, 0 
0, 0 
0.49 
2.25 
0.26 
0.45 

a 

2.83 
3.13 
3.03 
3.53 
2.45 
2.45 
2.67 
2.08 
3.96 
2.47 
2.80 
2.32 
3.47 
2.44 
2.70 
2.41 
3.15 

e 

.256 

.182 

.058 

.690 

.377 

.426 

.424 

.631 

.318 

.190 

.079 

.286 

.530 

.301 

.335 

.246 

.048 

i 

24.24 
10.66 
3.88 
4.64 
4.99 
1.10 
5.47 
3.39 

14.56 
1.68 
5.43 
3.57 

23.01 
7.21 
4.71 
3.08 

23.78 

n 

353.60 
185.23 
118.30 
20.79 

350.87 
161.71 
91.44 
94.06 

292.90 
159.17 
297.49 
314.12 
149.52 
208.99 
316.37 
346.97 
349.21 

U! 

37.04 
137.87 
75.67 

124.62 
111.37 
246.00 
301.20 
312.88 
271.75 
235.14 
101.15 
284.97 
228.21 
319.03 
315.15 
240.68 
325.36 

Mo 

138.42 
33.51 

176.95 
304.72 
254.74 
24.65 

276.84 
279.40 
55.26 

292.65 
269.94 
311.07 
80.06 
45.69 
32.16 

304.72 
215.21 

1077 T- l , fixing the argument of perihelion and carrying out incomplete 
differential correction took us close to a more probable orbit solution tha t 
was also convergent in complete differential correction. For 1995 DM6, fi­
xing the eccentricity, incomplete differential correction converged well. For 
2738 P-L, 2782 P-L, 2838 P-L, 1990 HD6, 1990 HL6, 1992 DWi 0 , 1992 LO, 
and 1995 DM6, systematic searches yielded orbit solutions nonlinearly in­
terrelated to those adopted here. 

It was difficult to obtain orbits for 1986 PSi , 1990 RBi 8 , 1990 RMi 8 , 
1990 R V I T , 1993 P T 6 , and 1995 B U n via Gaussian orbit determination, 
whereas systematic searches produced good first orbits for all these astero­
ids. For 1990 RBi 8 , 1990 RMi 8 , and 1990 RV17, we had to add uniformly 
distributed random noise to both R.A. and Dec. and repeat the systematic 
search numerous times before finding realistic orbit solutions. In these three 
cases, we did not obtain fully satisfactory fits: the residuals show systematic 
shifts and high rms values. 
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TABLE 2. Examples of orbit solutions for 2738 P-L (I), 2782 P-L (II), and 
2838 P-L (III) with maximum sky-plane residuals less than 10". We give 
the semimajor axis in AU, the inclination in degrees, and note the persistent 
high-eccentricity solutions. 

I II III 

a 

2.817 
3.053 
7.349 
3.955 
7.838 

e 

0.213 
0.139 
0.799 
0.646 
0.834 

i 

6.751 
10.760 
11.864 
48.737 
64.258 

a 

3.376 
3.074 
3.067 
3.240 
4.122 

e 

0.361 
0.155 
0.027 
0.223 
0.490 

i 

3.609 
3.713 
3.827 
4.020 
4.327 

a 

2.740 
2.701 
2.716 

10.297 
77.335 

e 

0.098 
0.070 
0.266 
0.951 
0.997 

i 

1.900 
2.010 
2.673 
9.031 

16.652 

Generally, the elements were far from determinate: to illustrate the com­
plicated structure of the a posteriori probability density of the orbital ele­
ments, Table 2 gives examples of multiple solutions for the asteroids 2738 P-
L, 2782 P-L, and 2838 P-L in the order of increasing inclination. 

4. P s e u d o - D e v i a t i o n s , Eigenvalues , and Eigenvectors 

When computing the pseudo-covariances, we assumed R.A. and Dec. resi­
dual standard deviations of precisely l'.'O for all 17 sample asteroids, inde­
pendently of the a posteriori standard deviations in Table 1. We made use 
of biased estimators, replacing the denominator 2iV — 6 in Muinonen and 
Bowell (1993) by 2N (N is the number of observations). 

We divided the sample asteroids into three broad categories based on 
the first eigenvector of the pseudo-correlation matrix. In the first category, 
the first eigenvector projects practically equally onto the normalized orbital 
element axes. In the second category, the eigenvector projects slightly less 
onto one or more of the element axes and, without exception, the second 
eigenvector projects maximally onto the same axes. In the third category, 
the first eigenvector is almost perpendicular to one or more of the axes. 

There are seven members in the first category: 2838 P-L, 1990 HL6, 
1990 RMis, 1990 RV17, 1992 EY4, 1992 LO, and 1995 B U n . The corre­
sponding eigenvalues are the largest in the entire set of sample asteroids, 
approaching the maximum possible value of 6.0. Furthermore, the smallest 
eigenvalues and eigenvectors relate to orbital elements tha t show the stron­
gest mutual pseudo-correlations, whereas the second eigenvalue and eigen­
vector relate to elements that show the weakest (but usually still strong) 
pseudo-correlations with the other elements. 
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TABLE 3. The pseudo-deviations o\,..., er6 of a (AU), e, t (°), Q (°), w (°), and 
Mo (°), and the sorted eigenvalues Ai,...,Ag (e.g., 3.54(—4) means 3.54 • 10~4) 
and orthonormal eigenvectors X i , . . . , X6 for the asteroids 2738 P-L, 2782 P-L, and 
2838 P-L. 

Name, {5j} Ai, Xi A2, X2 A3, X3 A4, X4 A5, X5 Ae, Xs 

2738 P-L 

.093866 

.118804 
2.270519 
1.260186 

8.722276 

8.459413 

2782 P-L 

.083878 

.103279 

.166644 
2.232021 

107.005366 

118.172692 

2838 P-L 

3.972712 

1.028924 

9.621028 

22.082941 
62.988257 

116.301043 

4.24 

.388998 

.475851 
-.480240 
-.480245 

-.040425 

-.399184 

5.38 

.429256 

-.430529 
-.420563 
-.354114 

.406380 

-.403695 

5.98 

.408136 

.408829 

.408681 

-.408692 
.407394 

.407755 

1.76 

-.451314 

-.149112 
-.109875 

-.109825 

.752042 

-.429395 

6.23(-l) 

.122545 

.071829 

.280721 

.722771 

.424177 

-.445753 

1.73(-2) 

-.445341 
-.054831 

.211405 

-.203827 

.637876 
-.552758 

3.54(-4) 

.746783 
-.099017 

.335381 

.333359 

.392277 

-.234567 

1.48(-3) 

-.268124 

.548230 

.295910 
-.544163 

.351676 
-.346700 

9.02(-6) 

-.111254 
-.410765 

.439625 

-.616921 
-.493131 

-.043062 

1.34(-5) 

.295124 

-.590112 

-.413729 
-.345335 

.220448 

.475020 

1.22(-4) 

.831950 

.233001 

.429272 
-.142532 

-.153679 

.159255 

4.70(-8) 

-.761490 
.296271 

-.172799 

-.174907 

-.055500 

.518483 

5.06(-8) 

-.012886 

-.001755 

-.688219 
.722701 

-.033226 

-.052778 

9.82(-8) 

-.191547 

-.674269 
.687375 
-.188566 

.019989 

-.015156 

9.37(-10) 

-.206611 
.101547 

.751770 

.600044 
-.125264 

.078088 

1.56(-11) 

-.006894 

.627130 
-.000012 
.067990 

.478765 

.610592 

2.30(-13) 

-.000628 
.001370 

-.000002 
.014822 

.712205 

.701813 

2.90(-13) 

-.012810 
-.750357 

.000068 

.142084 

.406442 

.501415 

There are five members in the second and third categories: 2782 P-L, 

1987 AN, 1990 HD6, 1993 P T 6 , and 1995 DM 6 belong to the former, whe­

reas 1077 T-1 , 2738 P-L, 1986 PSi , 1990 RBi 8 , and 1992 DW10 belong 

to the latter category. The elements improved are most often a, e, and 

LJ. Again, the fifth and sixth eigenvectors relate to elements that are eit­

her strongly pseudo-correlated or whose pseudo-deviations are remarkably 

large. 

For example, Table 3 lists the pseudo-deviations, and the sorted eigen­

values and eigenvectors for the asteroids 2738 P-L, 2782 P-L, and 2838 P-L, 

representing the three aforementioned categories. To find the direction of a 

principal axis in the phase space of the orbital elements, one needs to mul-
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tiply the eigenvector components by the pseudo-deviations. For example, 
the first eigenvector for 2838 P-L provides a principal axis that , among the 
angular elements, lies close to the u;-Mo-plane. 

The condition numbers — the ratios of the largest and smallest eigenva­
lues of the pseudo-correlation matrix — were high for all sample asteroids, 
varying from 2.72 • 1011 for 2738 P-L to 2.77 • 1015 for 1990 RV17, and 
signalled the ill-posedness of the orbit-determination problem. It is, ho­
wever, notable tha t all the eigenvalues were positive, indicating tha t the 
pseudo-correlation matrices were positive definite. 

Among the angular orbital elements, the pseudo-deviations of w and 
Mo were larger than the deviations of the other angular elements. For 
1990 RVi7, the pseudo-deviation of MQ formally extended more than six 
times around a full circle. In general, the orbital elements with the largest 
pseudo-deviations were usually the strongest pseudo-correlators. 

We computed the R.A. and Dec. residuals for formal eigenorbits of se­
veral asteroids. The residuals were large, signalling the inapplicability of 
the linear approximation. Thereafter, we measured the phase space distance 
between two orbit solutions by using the A x 2 metric in Eq. (1): using the 
formal covariance matrix, the orbits were usually far from each other. For 
2782 P-L, though, the multiple orbit solutions are in line with the second 
eigenvector (Tables 1-3): the pseudo-covariances thus appear to give local 
information about a curve of variation in the phase space. 

In conclusion, the 17 sample asteroids can be divided into four overlap­
ping subgroups: inner-main-belt asteroids 1986 PSi , 1987 AN, 1990 HL6, 
1990 RMia, 1992 DW 1 0 , 1992 LO, and 1995 B U n ; mid-main-belt asteroids 
1077 T- l , 1990 HD 6 , 1990 RV17, and 1993 P T 6 ; outer-main-bel t asteroids 
2738 P-L, 2782 P-L, and 1995 DM6; and the remaining asteroids 2838 P-L, 
1990 RBis, 1992 EY4 tha t have even larger semimajor axes. 

5. Conclus ion 

For most of our sample asteroids, Gaussian orbit determination yielded ac­
ceptable first orbits, which we improved by means of differential correction. 
In many cases, the complete differential correction procedure diverged, but 
we were always able to find acceptable fits via incomplete differential cor­
rection, a powerful tool in initial orbit determination. 

Because of the highly nonlinear nature of the initial orbit determination 
problem, the orbital uncertainties cannot be estimated with the help of the 
linear approximation. Instead, one will have to study the non-Gaussian a 
posteriori probability density for the orbital elements by using, e.g., Monte 
Carlo methods (Muinonen and Bowell, 1993). It is thus evident tha t , prima­
rily as a function of the observational arc and the number of observations, 
there exists a boundary regime outside which the covariance analysis works 
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well, but inside which the nonlinear nature of the inversion problem plays a 
dominant role. To find the precise validity regime of the covariance analysis 
is a future research goal. 

We will solve the orbital covariance eigenproblem for all single-apparit­
ion asteroids, revisiting the work by Muinonen et al. (1994). However, 
multi-apparition asteroids play a key role in studies of initial orbit deter­
mination: by making use of subsets of observations, we can gain conclusive 
insight on how the initial orbital elements and eigenorbits relate to the final 
orbital elements. 

In initial determination of asteroid orbits, a systematic search for so­
lutions through the phase space of the orbital elements is by far the sa­
fest strategy. We will supplement tha t by computing, based on all known 
asteroids, the Bayesian a priori probability density of the orbital elements 
and assign a quantitative measure of reality to all orbit solutions obtained. 
Thus, we will replace the human reality measure, used extensively in in­
itial orbit determination, by a rigorous mathematical measure. In the era of 
ever improving computational capabilities, the Bayesian approach appears 
attractive. 
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