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FIXED POINT OF SUM FOR CONCAVE AND CONVEX
OPERATORS WITH APPLICATIONS

L1 BINGYOU

In this paper we study fixed points of sums of a-concave and (—a)-convex operators in
Y -complete partially ordered linear spaces. As an application we obtain existence and
uniqueness theorems for solutions of a certain type of nonlinear integral equation.

I INTRODUCTION

The concept of a-concave and (—a)-convex operators was first introduced by
Potter [5]. Then Guo Dajun, [1] studied fixed points and intrinsic elements of the
two kinds of operators. Ortega [4] and Leggett [3] studied the fixed points of the sum
and product of operators. In this paper we extended the real partially ordered Banach
spaces in (5], {1] to T -complete partially ordered linear spaces, and we study the fixed
points of the sum of a-concave and (—a)-convex operators. We use the above result
to obtain an existence and uniqueness theorem for the solution of a kind of nonlinear
integral equation. Obviously the results in this paper are more general than those in
{3] and [5].

II MAIN RESULTS
DEFINITION 1: Let P be a positive cone in a T -complete partially ordered linear
space E (see [2]). @ is the set of interior points of P. An operator f: ® - & (0<
a < 1) is called a-concave (or (—a)-convez) if it satisfies the following condition:
f(tz) 2 t%fz (or f(tz) € t%f=z) Veed, 0<t<1

It is easy to see that f is a-concave (or (—a)-convex) if and only if

f(sz) € s%fx (or f(sz) 287 “fzx), Vee®, s>1
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THEOREM 1. Let P be a positive cone in a Y -complete partially ordered linear
space E. g,h : ® — & are the increasing a-concave and decreasing (—a)-convex

operators respectively, 0 < a < 1. Then the operator

(1) Az =gz +hz+C (z€®,CeP)
has a unique fixed point z* in ®, and for any z, € &, we have
2) 2* = V{za} = AMan},

where z,, = Az,,_,, and we have the estimate

(3) 0<z" -2z, < (1 —.S'o_m")Soa:g

where

So = ma.x{Sl, 52}

(4) S] = sup{S >1: Sa_lil}o < gy + hiBo}

Sy =inf{S > 1:gxe + hzo < $1 %20}

PROOF: First let ¢ = 0. Then it is clear that Sy > 1. For any zq € ¢, from (4]

we have
(5) %56'_1-’00 < gzo +hzo < %Sé“’wo
Let Uy = S(;'l:co , Vo = Sez¢ then Vjp >> Up. Put
(6) Up=gUn_1+hV,_1, Vao=gV,_1+hU,_;.
We may prove by induction that
(7) Uny,Va] ClUp-1,Vaa], (n=1,2,...).
Since E is Y-incomplete, there exists u*, v* € E such that
u* = V{u,}, v* =A{v.},
and #, < v* <v* € v,. Thus

Un_1 = gUn + hv, < gu* + hv” < gun + hu, = Vn+1-
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Hence
(8) Un S u* < gut + hv* vt < v
By induction it is easy to prove that
(9) un > 5,2 v, (n=0,1,2,...).
From (8) and (9) we have
0< v —u* <vp—up < (1— 572 ).

By the Archimedean property we deduce that v* = u*. So by (8) it follows that «* is
a fixed point of A.

Now we prove uniqueness. Suppose T,Z € ® are two distinct fixed points of A.
Then there exists g > 1, such that

We may prove by induction that

1" —_ "
prTLT U™ T

In the foregoing inequality we take the limit as n — oo and obtain Z < 7 < Z. So
T="%.

Next we prove that z*, defined by (2), is a fixed point of A. Hence it is a unique
fixed point. First, we may prove by induction that
(10) Up €T <V, (n=0,1,2,...).
Let z, = A{z,.}, * = V{z,}. From (10) and (7), we obtain
(11) Up SV <2, <2 <V K vy
Since u* = v*, s0 z. = z* = u*. Hence z* is a fixed point of 4. By {11) and (9),
we know that (3) is true. Finally, let ¢ £ 0. Since Gz = gz + %C, Hz = hz + %C

are increasing «-concave and decreasing (—a)-convex operators respectively, so the
theorem is still valid in the case ¢ #0. 1
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111 APPLICATIONS

From: Theorem 1 we obtain immediately:

THOEREM 2. Under the conditions of Theorem 1, the equation
Be=g(l)+h()+ 0=
z=g(- - =z

has a unique solution.

THEOREM 3. Under the conditions of Theorem 1, we use ) to dehote the unique
solution of the equation Az = gz +hz+C = Az. Then z is decreasing for A (that is,
0 < Ay < Az =z, > 2y, ), 0-continuous (that is, for A\g >0 , 0~limy_x,Zx = Tx, )
and

(12) 00— lim zx=0, 00— lim z) =400 (the infinite element in &.
A=r-00 A—0*

PROOF: For A > 0, by Theorem 1 we know that Az = Az has a unique solution
zo in ®. Let 0 < Ay < A3, if 2, £ z,,, put

M =inf{u:zy, < uzy}
(13) 2 1

m =sup{O : Oz, < z),}
It is easy to see that M > 1 and m >1 and

mzy, STy < Mzy, m<M

If m~* > M~ , then m < M~!. This contradicts m > 1. Hence, m~! < M, i.e.,
M~! < m. Thus we have
M™ 'z, < za, < Mz,

1 A
Ta, S /\—[g(M:z:,\l)+h(M~lm,\l) + C] < /\_lMam'\l'
2 2

By (13) we have M = %M" . Thus A; < A;. This contradicts the hypothesis of the
theorem. Hence z, < z,, . Since the fixed point of -}A is unique, so z,, < T, -

Now we prove o-continuity. We observe that 0 < Ay < A; = z,, < z,, . Put

(14) m = sup{@ : Oz, < xx,}

M =inf{p : za, <pzy}

It is easy to see that 0 < m < 1,

mzy, < Ta, $ Mz, m < M.
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If m' < M, then M >1, M~! <m. Hence

Mle\l < z,\z < M:C)\l,

1 A
Th, S T[Q(sz\l) + h(M_le) + C] < :\—:Mazh.
2

By (14) we have

Al /\1 1—
M< —M* —=2M"2>1
Az ’ Az

s0 A; > Az, which contradicts our hypothesis. Hence M < m~!. Then we have

1

mzy, < TH, STy
1 -1 >‘1 a
(15) Ty, 2/\—[g(mz,\l)+h(m :c,\l)-{-C]})‘—m Ty, .
2 2
By (14) we have
A A 1
/\_:ma < m, ()‘_: == <m
Hence
Al 1
Ty, = MTH, 2 (/\—)’-_"w;\1
2
)\1 1 Al 1

0<zr —2Za, STHA — (/\—z)mz,\l = [1 - (A_)I—_az,\l_
2

In this inequality, let A\; = Ag, A2 = A. Then z, is o-continuous with respect to .
As in (15) we have

A
. (A_I)M_az/\l < Za,-
2
Hence \ \
/\_:M-%A, < za, < )\—:M"le-
In this inequality, let A; = A, and we see that (12) holds. 1

THEOREM 4. Let E be a Y -complete Riesz space of Banach type and ® be a
non-empty positive cone of E. With operator A defined as in Theorem 1, we have
that A is a contraction on ®. That is, there exists r, R (0 < r < R). such that

Vee®, O0g|zll<r= Az £ 2,

Veec®, |z|>R=> Az %c.

https://doi.org/10.1017/50004972700004160 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700004160

86 Li Bingyou (6]

ProOOF: By Theorem 1 we deduce that A has a fixed point z*. Vz € ®, put
to = sup{t: tz* < z}

(16) .

so = inf{s:z < sz*}.
Obviously,
(17) toz* < x < soz*, to < s0.

First we prove that

(18) z € P, t>Az=>z >z,

By (17), s5' & to. Hence sy < t;'. By (17), we have
toz* <z < t7'lz".

If to < 1,then = > Az > t§z*. By (16), we have t§ < to, which is a contradiction.
So tg 2 1, and (18) holds.

Similarly, we have
(19) z€® € Az =z <zt

Since the interval in a T-complete Riesz space of Banach type is bounded, from (18),
(19) we see that the Theorem holds. ]

THEOREM 5. Consider the integral equation
(20)  at) = [ fra(tso) L w(oee)l® +a(ty o) 3 blo)le(o)] 5 b

where A > 0, R™ is an n-dimensional Euclidean space. If
(i) ai,B; >0 and sup;a; =sup;B; =a>1;
(ii) ki(¢,s) (i =1,2) are nonnegative measureable functions on R?™ and there exist
constants m, M (0 <m < M ) such that_

ms/ ki(¢,8)ds< M, i=1,2, Vte R
Rﬂ

(iii) ai(s), b;(s) are nonnegative measurable functions on R™ and there exist constants
Yi, ©; (1=1,2), 0<©; < YT; such that

Q<Y aifs) <Y, ©:< Y bifs) < Ty
i=1 =1

then equation (20) has a unique continuous solution zx(t) satisfying the condition

0 < inf z,(t) < sup z(t) < +oo.
tER™ teR™

PROOF: The proof is an easy application of Theorem 1. [ |
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