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3Max-Planck-Institut für Astronomie, Köningstuhl 17, D-69117, Heidelberg, Germany
4Astronomy Department, University of Illinois, Urbana, IL 61801, USA
5Email: ethilliez@astro.swin.edu.au

(Received August 9, 2013; Accepted October 23, 2013)

Abstract

Star formation does not occur until the onset of gravitational collapse inside giant molecular clouds. However, the
conditions that initiate cloud collapse and regulate the star formation process remain poorly understood. Local processes
such as turbulence and magnetic fields can act to promote or prevent collapse. On larger scales, the galactic potential can
also influence cloud stability and is traditionally assessed by the tidal and shear effects.
In this paper, we examine the stability of giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC) against
shear and the galactic tide using CO data from the Magellanic Mopra Assessment (MAGMA) and rotation curve data
from the literature. We calculate the tidal acceleration experienced by individual GMCs and determine the minimum
cloud mass required for tidal stability. We also calculate the shear parameter, which is a measure of a cloud’s susceptibility
to disruption via shearing forces in the galactic disk. We examine whether there are correlations between the properties
and star forming activity of GMCs and their stability against shear and tidal disruption.
We find that the GMCs are in approximate tidal balance in the LMC, and that shear is unlikely to affect their further
evolution. GMCs with masses close to the minimal stable mass against tidal disruption are not unusual in terms of their
mass, location, or CO brightness, but we note that GMCs with large velocity dispersion tend to be more sensitive to tidal
instability. We also note that GMCs with smaller radii, which represent the majority of our sample, tend to more strongly
resist tidal and shear disruption. Our results demonstrate that star formation in the LMC is not inhibited by to tidal or
shear instability.
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1 INTRODUCTION

Star formation occurs in the densest regions of molecu-
lar clouds which undergo gravitational collapse. Therefore,
studying the evolution and stability of giant molecular clouds
(GMCs) allows us to investigate which processes lead to star
formation. There are many theories on how a GMC can col-
lapse and form stars, but this topic remains poorly under-
stood. To address this question we have to look at the forces
acting on clouds, such as turbulence, magnetic fields, and ro-
tation. Zuckerman & Evans (1974) and Fleck (1980) propose
that turbulence inside GMCs is important and stabilises the
cloud against gravitational collapse, and thus star formation is
indirectly related to the turbulence (Hennebelle & Chabrier
2011). However, Ballesteros-Paredes et al. (2007) suggest
that on smaller scales turbulence can also promote local col-
lapse. Magnetic fields inside the cloud can delay collapse

until ambipolar diffusion removes magnetic support (Shu
1985), and thus magnetic fields are also important in regulat-
ing star formation (Mouschovias, Ciolek, & Morton 2011).

The Large Magellanic Cloud (LMC) is one of the closest
galaxies to the Milky Way, at a distance 50.1 kpc (Alves
2004). The irregular shape of the LMC is commonly at-
tributed to the tidal force exerted on it by the Milky Way
(Lin, Jones, & Klemola 1995), and this interaction is as-
sumed to be the main reason for the LMC’s episodic high
star formation rate (Indu & Subramaniam 2011). Its metal-
licity is lower than the Milky Way (Westerlund 1997), and
it thus represents a good analogy to high redshift galaxies.
Its nearby location and near face-on orientation make it an
ideal galaxy to study star formation, as we can accurately
map and resolve the GMCs. Previous studies have focused
on local effects such as turbulence or magnetic fields inside
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the interstellar medium in studying cloud stability and star
formation. Since the LMC’s irregular shape suggests that it is
tidally stressed and deformed on a galactic scale, we propose
to look for potential large-scale influences on star formation:
the galactic tide and shear due to differential galactic rotation.

Given their mass and size, the GMCs of the Milky Way
only exceed the minimum mass for tidal stability by a factor
of 3. Stark & Blitz (1978) thus proposed that tidal forces
can have an influence on GMC morphology. Similar con-
clusions were found by Blitz (1985) for the GMCs in M31.
Rosolowsky & Blitz (2005) evaluated the tidal stability of
GMCs in M64 and found them globally stable, except in the
very inner part of the galaxy. Blitz & Glassgold (1982) found
that whereas atomic clouds are in tidal balance in M101, the
atomic clouds in the LMC are five times less massive than
necessary to resist tidal disruption, and hence their resulting
lifetime could be very short, of order 107 years. Similarly, the
study by Ballesteros-Paredes et al. (2009) concluded that the
Taurus molecular cloud in the Milky Way is also suffering
significant galactic tidal disruption since its tidal energy is at
least three times larger than its gravitational energy.

GMCs can also be disrupted by galactic rotational shear
which can tear clouds apart. Large-scale numerical simula-
tions by Dobbs & Pringle (2013) suggest that clouds which
are very filamentary can easily be torn apart. Using a multi-
component Toomre parameter to assess large-scale effects on
GMCs stability, Yang et al. (2007) recently concluded that
gravitational instability of the disk drives most large-scale
star formation in the LMC. However, it has been demon-
strated by Hunter, Elmegreen, & Baker (1998) and Elson,
de Blok, & Kraan-Korteweg (2012) that a shear parameter
based on the time available for perturbations to grow in-
side the GMCs is a more efficient way to identify regions of
nearby galactic disks that are actively star-forming.

The main purpose of this paper is to investigate if galactic
tidal and shear effects in the LMC can influence GMC sta-
bility and star formation. We use the Magellanic Mopra As-
sessment dataset, which was a high angular resolution 12CO
(J = 1-0) mapping survey of the Magellanic Clouds using
the 22-m Mopra Telescope1. This survey (Hughes et al. 2010;
Wong et al. 2011) targeted initially the brightest clouds of
the NANTEN survey (Fukui et al. 2008) to study the basic
properties of giant molecular clouds. One of the main results
of this survey is that most massive GMCs are associated with
luminous young stars, but the limited sensitivity of the survey
and lack of knowledge about stellar ages have prevented the
determination of a characteristic GMC lifetime. Moreover,
Wong et al. (2011) found no correlation between the virial
parameter—the ratio of a cloud’s kinetic to self-gravitational
energy—of LMC GMCs and the presence of young stellar
objects, suggesting there may not be a connection between
the global stability of a GMC and its level of star-formation
activity. In this work, we start by defining the shear parame-

1 The Mopra Telescope is operated by the Australia Telescope National
Facility (ATNF) which is a division of CSIRO.

ter and tidal stability, and then calculate their effects on the
GMCs for a range of possible LMC rotation curves. Then
we investigate the stability state of the GMCs and search
for correlations between cloud properties such as velocity
dispersion, morphology, position in the galaxy, and their sta-
bility state. Finally, we discuss the potential link between
shear, the galactic tide, and star formation in the LMC.

2 GMC STABILITY IN THE GALACTIC
POTENTIAL

In this section, we describe the two methods that we use to
assess the stability of GMCs. Both are large-scale dynamical
effects describing the interaction between GMCs and the
overall galactic potential.

2.1 The effect of shear

2.1.1 Physical interpretation

To characterise the impact of differential rotation on the sta-
bility of GMCs against gravitational collapse, the Toomre
parameter is commonly used. It quantifies the competition
between self-gravity, pressure, and coriolis forces experi-
enced by a cloud. However, to correctly trace the stability
against shear and compare it with star formation activity,
one must often derive a multicomponent Toomre parameter
which includes the effects of the stellar potential (Yang et al.
2007) or even the dark matter potential (Elson et al. 2012),
plus the gas potential.

Hunter et al. (1998) point out that the coriolis force assum-
ing angular momentum conservation can be overestimated
since angular momentum is expected to be carried away by
the magnetic field. They instead propose to use another quan-
tity called the shear parameter: the idea is to evaluate the time
available for perturbations to collapse in the presence of local
rotational shear due to the global rotation of the galaxy. The
shear parameter value can differ from the Toomre parameter
from −12% for a flat rotation curve to −50% for a slow ris-
ing rotation curve. Elson et al. (2012) recently showed that
using the shear parameter can better trace the star formation
activity in the inner part of the dwarf galaxies NGC 2915
and NGC 1705 than a more complex multicomponent gas +
star Toomre criterion.

2.1.2 Shear parameter Sg

Following the work of Dib et al. (2012) and Hunter et al.
(1998), we derive the shear parameter. The timescale over
which a density perturbation can grow effectively against
galactic rotational shear is of order 1/A, where A is the Oort
constant. With dimension t−1, the Oort constant A measures
the local shear level and is defined by:

A = 0.5

(
V

R
− dV

dR

)
, (1)

where V is the galactic rotation velocity and R the galactic
distance. For a cloud of radius r, with a rotational velocity V
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at a galactic distance R, A becomes:

A = 0.5

(
V

R
− | V (R + r

2 (1 + g)) − V (R − r
2 (1 + g)) |

2r

)
,

(2)
where g is a gaussian distributed random number between
−0.5 and 0.5, with the mean value of zero. The addition of
the ±gr/2 terms represents the non-sphericity of the GMC,
thereby modelling the extension of a filamentary cloud to-
ward the inner centre and outer part of the galaxy. This for-
mula is similar to that derived in Dib et al. (2012). Thus,
using a perturbation growth rate of πG�/σ , the amplitude of
the growth from an initial density perturbation δ�0 against
shear is given by:

δ�peak = δ�0 exp

(
2πG�

σA

)
, (3)

where � and σ are the local gas surface density and ve-
locity dispersion, and G the gravitational constant. Accord-
ing to Dib et al. (2012), for a perturbation to be significant
in terms of instability, it must grow by a factor of at least
C = 1 000. Thus C represents the density contrast between
of average cloud (�102 cm−3) and a strongly gravitationally
bound cloud (�105 cm−3), which in our case is given by:

C = δ�peak

δ�0

= exp

(
2πG�sh

σA

)
. (4)

With that in mind, we can easily derive the critical surface
density, �sh, which represents the minimal surface density
needed to resist the shear, given by:

�sh = Aσ ln(C)

2πG
. (5)

Finally, we can define the shear parameter, Sg, which is the
ratio between the critical surface density and the actual gas
surface density:

Sg = �sh

�
= AσαA

πG�
, (6)

with αA = ln (C)/2� 3.45. Shear will therefore be effective
at tearing apart the cloud if Sg>1 and be ineffective if Sg <

1. We will use this equation to evaluate the stability state of
our GMC sample against galactic shear.

2.2 The effect of tides

2.2.1 The tidal acceleration T

To study the tidal stability of GMCs in the LMC, we begin by
considering the local gravitational stability and then add the
influence of the galaxy. To evaluate the stability state of the
GMCs, we use the Roche criterion which defines the region
where tidal forces dominate over gravity.

We initially consider clouds which are self-gravitating, or
‘bound clouds’ as defined by Blitz & Glassgold (1982). A
cloud will be bound if its gravitational energy is greater than

its kinetic energy, which is traced by the velocity dispersion,
σ , via: ∣∣∣∣−GM

r

∣∣∣∣ ≥ 1

2
σ 2 , (7)

where M is the mass of the cloud and r the radius of the
cloud. When this criterion is met, internal turbulence will not
disrupt an isolated cloud, which is said to be gravitationally
stable.

Next we add the influence of the galaxy, which can con-
tribute to the cloud stability in two ways: (i) it can act like
gravity and help confine the cloud, and (ii) it can act against
gravity and disrupt the cloud. The expression for the tidal
acceleration T given by Stark & Blitz (1978) is

T = V 2

R2
− ∂

∂R

(
V 2

R

)
, (8)

which can be understood by considering two particles in a
molecular cloud: one at the centre of the cloud at a distance
R from the galactic centre and the second at the edge of the
cloud at a distance of R + r from the galactic centre. As these
two particles belong to the same molecular cloud, they orbit
around the galactic centre with the same angular frequency (if
not the cloud will become elongated during the orbit around
the galactic centre). The acceleration of the first particle on
the second required to maintain the cohesion of the cloud is
Tr.

If now we ignore the internal velocity of the cloud and
integrate the cloud radius times the tidal acceleration Tr along
its radius, our bound cloud must obey the following energy
equation in order to resist the galactic tide:

∣∣∣∣−GM

r

∣∣∣∣ ≥ 1

2
Tr2 with σ = 0 . (9)

We will use various rotation curves of the LMC from the
literature to obtain V(R) and hence determine the tidal accel-
eration T.

2.2.2 Roche criterion

The Roche limit of a body orbiting around a more massive
object is the minimal distance where this body is held to-
gether by its own gravity in the rotating frame. Below this
limit, the orbiting body can be torn apart by the tidal force of
the more massive object. The Roche criteria for our GMCs
is an equilibrium between the self-gravity of the cloud, its
internal pressure, and the galactic tide. To derive this expres-
sion, Stark & Blitz (1978) used the fact that the total energy
(the sum of the kinetic, gravitational, and tidal energy) of
the cloud must always be less than the energy at the inner
Lagrange point, a stationary position where the gravitational
attraction of the galactic centre cancels the self-gravity of the
cloud. If the total energy is higher than the energy at the inner
Lagrange point, the cloud will migrate from its actual posi-
tion to the inner Lagrange point and be torn apart around this
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point. Evaluating the potential at the inner Lagrange point,
the Roche criterion is given by:

1

2
σ 2 − GM

r
− 1

2
Tr2 + 3

2
(GM)2/3T 1/3 < 0 . (10)

We will use this expression to determine the tidal stability of
our sample of GMCs.

3 DATA

In this section, we introduce the MAGMA survey and the
catalogue of the LMC GMCs used in this study and discuss
how we evaluate the star formation activity in these clouds.
We also describe the rotation curves used to estimate the
galactic influence on the stability of GMCs.

3.1 The MAGMA survey

The Magellanic Mopra Assessment (MAGMA) consists of
CO (J = 1-0) mapping survey of both the LMC and the
Small Magellanic Cloud. Observations for the LMC were
performed with the ATNF Mopra 22-m telescope from 2005
to 2010 and initially targeted the 114 brightest clouds of the
NANTEN surveys by Fukui et al. (2008). The survey covered
a total area of 3.6 deg2, where the known CO complexes from
the NANTEN survey were located, but with an improved an-
gular resolution by a factor 4 to resolve the largest GMCs.
The observed MAGMA fields cover a large fraction (80%) of
the total CO emission from the LMC traced by the NANTEN
data. The angular resolution of the MAGMA data is about
45′′, corresponding to a linear scale of �11 pc. In this work,
only clouds with a radius greater than 11 pc were included
in our analysis. The RMS of the noise fluctuations ranges
from 0.2 to 0.5 K per 0.5 km/s channel, with a mean value of
0.3 K. For a typical GMC linewidth of 3 km/s, the 3σ sen-
sitivity limit is 5 M� pc−2, assuming XCO = 2 × 1020 cm−2

(K km s−1)−1.
To identify significant CO structures in the MAGMA

data cubes, the automated CPROPS package (Rosolowsky
& Leroy 2006) was used to identify ‘emitting islands’, de-
fined as isolated regions of significant emission (greater than
3σ ) expanded in all directions in the data cube to a 2σ edge.
Those emitting regions were then decomposed into 450 in-
dividual clouds, of which 260 have r > 11 pc. The catalogue
derived by Wong et al. (2011) provides a range of informa-
tion about the 260 resolved clouds in terms of their structure
and properties. For this work, we use the GMCs’ radius r,
major-to-minor axes ratio a/b, galactocentric radius R, total
integrated CO mass MCO, velocity dispersion σ , and peak
CO brightness temperature TCO. The GMCs identified by
MAGMA have typical radii between 5 and 71 pc, masses
between 3 × 103 and 2 × 106 M�, and velocity dispersion
between 2 and 32 km/s, with average values of 28 pc, 1.5 ×
105 M�, and 2.8 km/s respectively. All the GMCs used in

our study are located in the inner part of the LMC with R <

3 500 pc.

3.2 24 μm flux density

It has recently been shown by Relaño & Kennicutt (2009)
that there is a good spatial correlation between 24 μm and
Hα emission in M33, suggesting that the dust emitting at 24
μm is predominantly heated by the emission coming from
OB stars within the H II regions. Emission at 24 μm is thus
an efficient signature of ionised photons inside an H II region.
Therefore, we will use the 24 μm surface brightness derived
for each GMC of the MAGMA survey as a proxy for their
star formation activity.

To trace the emission at 24 μm in the LMC, we use the
Spitzer mosaic obtained by the Surveying Agents of Galaxy
Evolution (SAGE) Legacy Program (Meixner et al. 2006), us-
ing the Multiband Imaging Photometer (Rieke et al. 2004).
The native angular resolution of this map is 6

′′
, and the surface

brightness sensitivity to diffuse emission is 1 MJy sr−1. We
use the full enhanced LMC mosaic that is publicly available
through the Spitzer Science Centre archive2. Spitzer obser-
vations for the SAGE project were scheduled at two different
epochs, separated by an interval of three months, in order to
minimise striping artefacts and to constrain source variabil-
ity. We use the image that was produced by combining both
epochs of observations. Processing of the SAGE Legacy data
includes steps to remove residual instrumental signatures and
to subtract background emission at 24 μm. To estimate the
average 24 μm surface brightness associated with a GMC in
the MAGMA catalogue, we use the mean value of all pixels
within the projected area of cloud.

3.3 Galactic rotation curves

In order to evaluate the tidal acceleration T and the Oort
constant A for the shear parameter Sg, we need data from the
rotation curve of the LMC which provides the radial velocity
V(R). Once the radial velocity is known, we can derive values
for T(R) and A(R) throughout the LMC. Since both the tidal
acceleration and the shear parameter are strongly dependent
on the galactocentric radius R (and by extension the radial
velocity V) for small galactocentric radii, we evaluate the
stability by using three different determinations of the LMC
rotation curve:

1. The first rotation curve is from Feitzinger (1979), which
uses data from the HI survey of the LMC by McGee
& Milton (1966). The beam size of the survey using
was about 14.5′ and the velocity resolution 7 km/s for
a sample of 330 objects. This dataset was also used
by Blitz & Glassgold (1982) to determine the tidal

2 http://ssc.spitzer.caltech.edu/spitzermission/observingprograms/legacy/
sage/. The data delivery documentation, authored by M. Sewilo, is also
available at this URL.
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stability of atomic clouds in the LMC. The LMC param-
eters deduced by McGee & Milton (1966) and adopted
by Feitzinger (1979) include distance (52 kpc), rota-
tion centre coordinates (α= 5:20:00, δ= −69:00:00),
inclination (27°), and position angle (170°).

2. The second rotation curve is from Wong et al. (2009),
who use the HI survey of Kim et al. (1998) with im-
proved proper motion measurements. The radial ve-
locity map was corrected for the LMC’s proper mo-
tion as determined by Kallivayalil, van der Marel, &
Alcock (2006) using the expressions given by van der
Marel et al. (2002). The GIPSY programme ROTCUR
was used to fit a rotation curve with best fit values
for the receding major axis position angle (341°), the
systemic velocity (277 km/s), and the centre position
(α = 5:19:30, δ = −68:59:00) determined by Wong
et al. (2009). The disk inclination, which is not well-
constrained by the gas kinematics, was fixed at 35°,
based on the photometric study by van der Marel &
Cioni (2001).

3. The third rotation curve is that derived for carbon
stars from Alves & Nelson (2000). Their procedure
was as follows: positions and galactocentric radial ve-
locities for Magellanic Cloud carbon stars were taken
from Kunkel, Irwin, & Demers (1997), discarding all
Small Magellanic Cloud stars, intercloud carbon stars,
and carbon stars located near the centre of the LMC
(Kunkel et al. 1997), resulting in homogeneous dataset
of 422 carbon stars. Then the carbon star velocities were
corrected for the projected radial velocity gradient by
adopting the LMC space motion calculated by Kroupa
& Bastian (1997). Assuming the centre of the LMC is
at α = 05:17:06 and δ = −69:02:00 and an inclination
of 33°, they convert each carbon stars right ascension
and declination into spherical coordinates, then derive
the galactocentric radius R and the velocity function V.

A common parametrisation of the radial velocity V as a
function of galactocentric radius R is given by Binney &
Tremaine (1987):

V = V0

1 +
(

R
R0

)−γ
, (11)

where V0, R0, and γ are free parameters. We used the method
of least squares to determine these free parameters for the
three rotation curves. We examined 340 values of V0 ranging
from 10 to 180 km/s in even steps; 540 values of R0 between
300 and 3000 pc for each V0; and a range of γ values between
0.2 and 5 in steps of 0.05 for each R0 value. Thus more than
17 × 106 rotation curve models were generated, and each
model was compared to the observational dataset. To find
the best fit, we minimised the dispersion of the difference
between the observed values and model values around an
average. This was done by evaluating the χ2 value, which is
the sum over all the N data points of the difference between

Table 1. Rotation curve parameters from χ2 best fit
to the three datasets.

Rotation curve R0 (pc) V0 (km s−1) γ

Feitzinger (1979) 835.0 82.0 1.30
Alves & Nelson (2000) 592.0 72.5 1.92
Wong et al. (2009) 845.0 54.0 2.10

the observed velocity Vobs(i), and modelled velocity Vmod(i)
divided by the observational uncertainty εV :

χ 2 =
N∑
i

(
Vobs(i) − Vmod (i)

εV

)2

, (12)

where εV is taken to be 7 km/s for fitting the curve of
Feitzinger (1979), 2 km/s for Wong et al. (2009), and we
used the errors provided by Alves & Nelson (2000) in their
Table 2 for εV. We report the minimal values for V0, R0,
and γ in Table 1 and the corresponding rotation curves in
Figure 1. We use these values to evaluate the tidal accelera-
tion T and the Oort constant A.

4 RESULTS

Here we report the results from our analysis using the shear
parameter and the tidal acceleration to investigate the stabil-
ity of the LMC’s GMCs. In addition, potential relationships
between these instability quantities and cloud properties, as
well as star formation activity, are investigated.

We use the rotation curve from Feitzinger (1979) to de-
rive the values for the Oort constant values A (equation (2))
and tidal acceleration T (equation (8)). (Using the other two
rotation curves does not strongly change our conclusions,
but a qualitative discussion of their impact is presented in
Section 5.) We assume a XCO factor equal to 3 × 1020 cm−2

(K km s−1)−1 to derive the mass and surface density of the
MAGMA GMCs from measurements of their CO luminosity
and surface brightness, and then derive the ratio between the
actual CO mass and the minimal mass, MCO/Mmin, required
for tidal stability. Ideally when calculating the GMC mass
we would like to use the H2 mass, since it is the major con-
stituent of the GMCs. We discuss our choice of XCO factor,
and its potential impact on our results, in Section 5.

4.1 The shear parameter

Figure 2 shows the distribution of the shear parameter, Sg, for
all our GMCs. We can immediately see that the distribution
ranges between 0.03 and 0.48 and peaks around Sg � 0.12.
Since Sg < 1, shear is not the dominant mechanism support-
ing the clouds against gravitational collapse. Similar conclu-
sions were derived for the Milky Way by Dib et al. (2012).
Note that we obtain an average value of the Oort constant
A = 13 km/s/kpc, which is consistent with the local value for
the Milky Way of 15 km/s/kpc (Feast & Whitelock 1997).
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Figure 1. Least squares fit to the three LMC rotation curves, V(R), used in this work from (a) Feitzinger (1979), (b) Wong et al. (2009), and (c) Alves &
Nelson (2000). The symbols are the observations from those works and the curves are our best fit to the data.
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Figure 2. Distribution of the shear parameter Sg for our selected sample of
260 GMCs.

Moreover, as can be seen in Figure 3, the shear parameter Sg
remains almost constant (with a median value � 0.12) across
the galaxy for gravitationally bound and unbound GMCs as
defined by the virial parameter αvir, and thus no specific lo-
cation with high values of the shear parameter Sg could be
identified. This result further supports the findings of Dib
et al. (2012) for the Milky Way. We also investigated the im-
portance of shear in the very high star forming region 30 Do-
radus (Torres-Flores et al. 2013), by selecting all the clouds
in a 0.5° radius around the centre of 30 Dor (RA: 84.658° and
Dec: –69.095°). We found eight clouds inside this radius with
shear parameter, Sg, ranging between 0.09 and 0.32 with a
mean value of 0.18, which is consistent with the mean value
over the complete sample Sg � 0.12. The virial parameter
taken here as αvir = 5rσ 2/GMCO distinguishes the unbound
clouds for which the kinetic energy dominates over the grav-
itational energy (αvir > 1), from the gravitationally bound
clouds which have less kinetic energy than gravitational en-
ergy (αvir < 1). We notice that the sub-sample for unbound
clouds (αvir > 1) in Figure 3 tends to have higher Sg than the
gravitationally bound clouds (αvir < 1). While it is physically
intuitive that less strongly bound clouds are more liable to
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Figure 3. Variation of the shear parameter, Sg, for our selected sample of
260 resolved GMCs as a function of the galactocentric radius, R. The blue
triangles are the gravitationally bound clouds (αvir < 1) and the red dots are
the unbound clouds (αvir >1). The dotted line shows the median value of Sg
for the entire sample of clouds in radial bins of 0.5 kpc.

disruption by external effects, we note that this correlation
may be partially algebraically imposed, since σ and r both
appear in the numerator of our expressions for αvir and Sg.

We next compare the importance of shear for each cloud
with its intrinsic properties such as mass, radius, velocity
dispersion, and major-to-minor axes ratio in Figure 4. No
strong correlations between GMC properties and shear have
been found. Figure 4b shows a weak trend for the largest
clouds to have higher Sg, suggesting that large clouds are
more influenced by shear, although their Sg values are all
a factor of >2 less than unity and hence well below the
threshold for disruption by shear (see Figure 2). However,
Figure 4 a shows no correlation between mass MCO and
Sg values. Figure 4c suggests that the shear parameter, Sg,
increases with increasing values of the velocity dispersion σ

but, as noted previously, this trend may reflect the covariance
of Sg with σ .

Dobbs & Pringle (2013) ran numerical simulations to test
cloud evolution on large galactic scales. From their study of
one particular cloud, they found that shear plays a key role
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in the dispersal of the cloud through its morphology, find-
ing that filamentary clouds are more easily torn apart than
round clouds, and that the filamentary morphology of GMCs
is partially the result of shearing forces. The galaxy sim-
ulated by Dobbs & Pringle (2013) is a massive spiral disk
galaxy with a 2-armed spiral perturbation. Its stellar potential
is deeper and the shear strength is correspondingly higher
than in the LMC, which is a low-mass, irregular system.
Figure 4d shows that there is no correlation between the
major-to-minor axis ratio of the LMC GMCs and the shear
parameter, and the elongated clouds exhibit a broad range
of shear parameter values. One possibility is that local dy-
namical events play a more important role in shaping GMC
morphology in the LMC than in disk galaxies, where shear
is more dominant.

Figure 5 shows the 24 μm flux density versus the shear
parameter for each cloud. As previously discussed, the
24 μm flux can be used to infer star formation activity. Shear
instability resulting in cloud disruption is expected to be an
obstacle for star formation. We find no correlation between

 0.1

 1

 10

 100

 1000

 10000

 0.05  0.1  0.15  0.25  0.35  0.5 0.1

F
2
4
 (

M
Jy

 s
r−1

)

Sg

αvirial < 1
αvirial > 1
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F24, used as a star formation tracer. The blue triangles are the gravita-
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the shear parameter of the clouds and their star formation ac-
tivity, which is not surprising given the low absolute values
of Sg for LMC GMCs and suggests that local and/or internal
physical processes such as magnetic fields, turbulence, and
stellar feedback are more important for regulating the onset
and progress of SF in LMC molecular clouds.

4.2 The tidal acceleration

We plot the tidal acceleration T as a function of the galacto-
centric radius R for each rotation curve discussed in Section
3.3 in Figure 6. If we first consider the region of interest be-
tween 1000 and 3500 pc, the tidal acceleration is in the range
500 − 2000 km s−2 kpc−2, which are similar to the values
derived by Blitz & Glassgold (1982) for the LMC. Logically,
one expects that the tidal acceleration will decrease as we
move away from the centre of the galaxy. However, we can
see from Figure 6 that the tidal acceleration can take nega-
tive values in the inner 300 pc for the rotation curve from
Feitzinger (1979), 500 pc for the rotation curve from Alves
& Nelson (2000), and 1000 pc for Wong et al. (2009). Those
surprising values can be attributed to the fact that the galac-
tic bulge remains poorly constrained, and indeed there are
few data points in the inner part of the LMC (Figure 1) to
accurately constrain the rotation curve. Moreover, the exact
location of the kinematic galactic centre remains unknown.
Beyond the inner few 100 pc the T curves are more typical of
the expected shape, so we need to be cautious of the results
for the GMCs close to the galactic centre. As a precaution,
while using the rotation curve from Feitzinger (1979), we
discard all the clouds located interior to a galactocentric ra-
dius of 300 pc, reducing our sample from 260 to 224 resolved
clouds.
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mal mass, MCO/Mmin, required for tidal stability for our selected sample of
224 resolved GMCs exterior to 300 pc.

4.3 Evaluation of the minimal mass from the Roche
criteria

With the T values and the geometric and physical parameters
of the GMCs, such as velocity dispersion σ , radius r, and CO
mass MCO from the catalogue of Wong et al. (2011), we can
now evaluate the Roche criteria using equation (10) for the
224 resolved GMCs exterior to 300 pc.

Once the Roche criteria is evaluated for each GMC, two
pieces of information can be extracted. Firstly, the sign of
the Roche criteria tells us whether the GMC is tidally stable
or not: if the expression corresponding to equation (10) is
negative, then the total energy of the GMC is not sufficient
to make the GMC reach the inner Lagrange point and the
GMC is tidally stable. Secondly, by setting equation (10) to
zero, the minimal mass, Mmin, of a tidally stable GMC can
be calculated.

Figure 7 shows the distribution of the ratio of observed
cloud mass to the minimal mass, MCO/Mmin, for our sample.
The distribution ranges widely between 0.5 and 7, peaking
around 2. However, very few of the GMCs appear to be
tidally unstable, i.e. with MCO/Mmin < 1, and 80% of our
GMCs have MCO/Mmin between 1.5 and 4. We thus conclude
that the GMCs in the LMC are globally stable or at the edge
of instability.

Stark & Blitz (1978) suggested that because the tidal ac-
celeration T is supposed to be stronger in the inner region
of the galaxy, GMCs closer to the galactic centre have to
be denser in order to resist the stronger tidal stress. While
the tidal acceleration T takes negative values interior 300 pc
(see Figure 6), we can investigate a link between the position
of the GMCs in the LMC and their MCO/Mmin ratio beyond
300 pc. Figure 8 presents the variation of the mass ratio as
a function of galactocentric radius. There is no specific lo-
cation with higher or lower tidal stability levels, and indeed
the mass ratio ranges widely across all galactocentric radii.
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However, we can remark that the sub-sample of unbound
clouds (αvir>1) tends to have lower MCO/Mmin (<4) than
the gravitationally bound clouds (αvir < 1), suggesting that
velocity dispersion may be one of the most significant fac-
tors affecting the stability. One may wonder if the Mmin for
tidal stability has any variation with galactocentric radius. If
it does, then the lack of dependence of MCO/Mmin on radius
would be quite interesting, and might support the idea that
cloud mass is limited by tides. However, we also find no
dependence of Mmin on galactic radius. In the 30 Doradus
region, clouds exhibit a mass ratio MCO/Mmin ranging from
1.2 to 3.75 with a mean value of 2.17, which is consistent
with the mean value over the entire sample MCO/Mmin�2.
Thus both stability parameters (MCO/Mmin and Sg) for clouds
around 30 Doradus do not show any significant difference
compared to the values obtained for the complete sample of
clouds.

We next compare the values of MCO/Mmin of each cloud
with its intrinsic properties such as major-to-minor axes ra-
tio, radius, and value of the peak CO brightness temperature
in Figure 9. Regarding the link between morphology and
level of tidal stability, it may be worth noting in Figure 9 a
that if a/b is > 3.5, corresponding to an elongated cloud, then
MCO/Mmin < 3. Even if this trend between cloud morphology
and mass ratio is not strong, it does suggest that filamentary
clouds may be easier to tidally disrupt. Similarly, Figure
9 b also suggests that the most tidally stable clouds with
MCO/Mmin > 3 tend to have smaller radii (< 30 pc), whereas
larger radii clouds (> 40 pc) tend to have lower MCO/Mmin <

3. Even if the trend between small cloud radii and stability
was noted in the shear parameter study, we stress the fact
that, regarding the tidal stability, this trend involves a rela-
tively small number of clouds (< 27%) in our sample. On

the other hand, Figure 9 c shows that the MCO/Mmin ratio de-
creases with increasing velocity dispersion, σ . This suggests
that, as the velocity dispersion increases, the GMCs become
more susceptible to disruption by tides. However, if GMCs
follow a size-linewidth relation, then similar trends of r and
σ with MCO/Mmin should be expected. It is not clear from the
correlation plots alone as to which is fundamental (i.e. from
these plots, we cannot distinguish whether large clouds tend
to be closer to the tidal stability limit due to their size or their
internal motions).

Finally, we check if the tidal interaction between the LMC
and the GMCs affects the star formation activity. To test
this hypothesis, we investigate whether clouds with lower
MCO/Mmin ratio (and hence more sensitive to tidal disruption)
are the least active in terms of star formation. Figure 10
shows the 24 μm flux density versus the mass ratio for each
cloud, and shows no correlation. Hence, there appears to be
no relationship between a cloud’s tidal stability and its star
formation activity as determined by the 24 μm flux density.

5 DISCUSSION

Galactic disk simulations run by Dobbs & Pringle (2013)
demonstrate that shear is a dominant mechanism for cloud
disruption (stellar feedback and the general unbound state of
GMCs also contribute), and that the influence of shear on
GMCs is evident in their morphology, which become more
elongated as the cloud is sheared and stretched. We examined
whether there is evidence for this effect in the LMC by plot-
ting the shear parameter versus the major-to-minor axis ratio
for the clouds (Figure 4d), but found no strong trends. We did,
however, find that GMCs with larger radii have higher shear
parameters. Indeed, larger GMCs have larger line widths (for
which the velocity dispersion σ is a proxy), which naturally
causes the shear parameter to increase (since the velocity dis-
persion appears in the numerator of the shear parameter, see
equation (6)). Overall, the discrepancy between our results
and the predictions of Dobbs & Pringle (2013) tends to sup-
port the idea that different physical processes are responsible
for cloud disruption in different galactic environments and,
as a corollary, that GMCs may have characteristic lifetimes
that also vary with environments. We note, however, that Dib
et al. (2012) also found that shear plays only a minor role in
the evolution and star formation activity of molecular clouds
in the Milky Way [which should be more akin to the system
simulated by Dobbs & Pringle (2013) than the LMC].

Yang et al. (2007) derived a multicomponent Toomre
criterion for the LMC, finding that 85% of their massive
YSO candidates lie in gravitationally unstable regions, im-
plying that star formation occurs predominantly in these re-
gions. They conclude that large-scale gravitational instabil-
ity is the ultimate driver of star formation. Our finding that
shear and galactic tides do not exert a strong influence on
the star-forming activity within GMCs is not necessarily
in contradiction to this, since large-scale gravitational in-
stability may regulate the formation of GMCs, even if star
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formation on cloud-scales is independent of large-scale dy-
namical effects once a GMC has been assembled. We further
note that Hunter et al. (1998) used the Toomre criterion and
the shear parameter to study the gravitational state of GMCs
in 15 irregular galaxies and suggested that the Toomre crite-
rion was overestimating the instability. Using A to quantify
the gas kinematics instead of the traditional epicyclic fre-
quency κ for the Toomre criterion may produce a difference in
the instability threshold, especially for rising rotation curves
and low shear environments like the LMC. As a result, the
estimated shear parameter Sg can be significantly lower than
the Toomre parameter Qg. Hunter et al. (1998) concluded
that even if the shear model was better able to reproduce
the observations than the Toomre model, both models fail to
probe star formation activity, suggesting that other processes
are important in irregular galaxies.

Consider now the stability of GMCs against galactic tidal
forces, an idea first introduced by Stark & Blitz (1978), which
assesses the balance between cloud’s self-gravity, internal

(thermal + turbulent) pressure, and the large-scale galactic
tide. They found that the Milky Way’s GMCs are only three
times more massive than the tidal disruption limit, suggesting
that tidal forces can have an influence on GMC morphology.
In our study of the LMC, we indeed found that �70% of
our sample have MCO/Mmin< 3, and found a weak trend for
highly elongated clouds to have a lower mass ratio. How-
ever, the weakness of this trend forces us to remain cautious
with regards to the link between tidal effects and cloud’s
morphology.

Blitz (1985) studied a GMC sample in M31. Since tidal
acceleration values and average masses of that sample are
comparable to those of Stark & Blitz (1978), Blitz concluded
that GMCs in M31 may also have their mass, size, and mor-
phology tidally limited. In our study of the LMC using the
shear and tidal effects, we also noticed a tendency for clouds
with larger radii (>35 pc) to be more susceptible to tidal
disruption. Indeed, larger GMCs are spatially more extended
and thus are likely closer to filling their Roche lobes, which
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causes them to be more sensitive to tidal effects. Since �90%
of our clouds have a radius below that limit, one might sug-
gest that there are not many clouds above that size because
of stronger tidal effect.

Rosolowsky & Blitz (2005) evaluated the tidal stability
of GMCs in M64, and found significant shear in the inner
part of the galaxy (R < 400 pc), where clouds are marginally
stable against tides. The shear parameter evaluation of the
inner region of the dwarf galaxies NGC 2915 and NGC
1705 performed by Elson et al. (2012) shows a clear relation
between instability and absence of star formation activity in
that zone. A general result is that shear and tidal instabil-
ity seem to play a more significant role in regulating GMC
evolution and star formation in the inner regions of galactic
disks. Recently, Colombo et al. (2013) have shown that the
GMC mass spectrum is strongly truncated in the nuclear bar
region of M51 (at R < 1 kpc), and propose that this trunca-
tion is evidence for shear limiting the growth of high-mass
GMCs in this zone. In the LMC, by contrast, Wong et al.
(2011) found no evidence for a truncation in the GMC mass
spectrum—though we note that the characteristic mass of
GMCs in the LMC is already much lower than in M51—and
our analysis in this paper indicates no systematic radial vari-
ation in the shear parameter or tidal stability of LMC clouds.
In M33, the existence of a truncation in the GMC mass spec-
trum for R < 2.1kpc is still debated [cf. Rosolowsky et al.
(2007) and Gratier et al. (2012)]. M33’s rotation curve at
these radii has a similar shape to that of the LMC, although
the characteristic surface densities of gas and stars are some-
what greater. Taken together, these results again point to the
importance of the galactic environment on GMC evolution.
A more detailed study of the connection between the shape
of the GMC mass spectrum and the dynamical environments
within galactic disks is clearly merited, and a topic that will

benefit from ALMA’s ability to survey the molecular gas in
nearby galaxies across a range of Hubble types at cloud scale
resolution.

While shear and tidal forces may be important for the
formation of GMCs in the LMC, we conclude from our in-
vestigations that once a GMC is formed, both shear and tidal
effects have a very little impact on GMC’s stability. We find
that both the shear parameter and the tidal acceleration main-
tain an almost constant mean value across the LMC. More-
over, GMCs potentially tidally unstable do not have lower
star formation activity than the average, neither do GMCs
subject to higher shear parameter value. Since we remark
that clouds with large radii seem more affected by both tidal
and shear effects, we suspect that either these effects may
be noticeable only on larger scales than a typical resolved
GMC, or tides may have limited the GMC sizes. Further-
more, tidally unstable clouds have lower virial parameter
(with high velocity dispersions) than tidally stable clouds,
suggesting that internal physical processes of the clouds may
be key to their stability state.

Dib et al. (2012) evaluated the shear for a large sample of
resolved GMCs in the Milky Way and found similar conclu-
sions for almost all the molecular clouds: there is no evidence
that shear is playing a significant role in instability or in star
formation activity, and moreover the shear parameter of the
clouds does not depend on their position in the Galaxy. These
conclusions may be extended beyond the case of the LMC
and the Milky Way in future studies.

5.1 The effect of XCO

The value of the CO-to-H2 conversion factor XCO is sup-
posed to be an inverse function of the metallicity (Narayanan
et al. 2012), but remains poorly constrained. In this work,
we used XCO = 3.0 × 1020 cm−2 (K km s−1)−1 derived by
Leroy et al. (2008) for the LMC. Many studies (Rosolowsky
& Leroy 2006; Wong et al. 2011) adopt the well established
value for the Milky Way of 2.0 × 1020 cm−2 (K km s−1)−1,
however, since the metallicity of the LMC is slightly lower
than the Milky Way’s, the LMC’s XCO is likely higher by a
factor of two, which corresponds to XCO = 4.0 × 1020 cm−2

(K km s−1)−1 taken by Hughes et al. (2010) when they
derived their GMC catalogue. Thus the proposed value of
Leroy et al. (2008) seems to be a good compromise for our
study.

To assess the impact of the conversion factor on our results,
we performed the tidal stability study using three different
values of XCO. Adopting an XCO = 2 × 1020 cm−2(K km
s−1)−1 we find that �20% of the GMCs are tidally unstable,
whereas an XCO = 4 × 1020 cm−2(K km s−1)−1 resulted
in no unstable clouds. A summary is presented in Table 2.
Nevertheless, regardless of the choice of XCO, tidal instability
leading to disruption remains marginal through our GMCs
sample. A better handle on the value XCO in the LMC is
important, but is beyond the scope of this work.
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Table 2. Percentage of tidally unstable clouds using various
XCO factors and rotation curves.

XCO (cm−2 (K km s−1)−1)

Rotation curve 2.0 × 1020 3.0 × 1020 4.0 × 1020

Feitzinger (1979) 25% 5% 0.0%
Wong et al. (2009) 12% 1.8% 0.0%
Alves & Nelson (2000) 33% 8% 1%

5.2 Impact of rotation curve

The results presented in Section 4 used the rotation curve
of Feitzinger (1979). In Appendix (Figures A1 and A2)
we present results using different rotation curves. We plot
the distribution of the shear parameter for the three rotation
curves used in this study in Figure A1. The rotation curve
of Feitzinger (1979) results in shear parameter values from
0.03 to 0.48, with a peak at Sg� 0.12. Using the rotation
curve from Wong et al. (2009), the distribution ranges be-
tween 0.02–0.35 and peaks at 0.08, while the rotation curve
from Alves & Nelson (2000) results in Sg values between
0.02–0.5 and peaks at 0.12. Globally, the range and peak in
the shear parameter for our cloud sample are similar regard-
less of which rotation curve is chosen, and our conclusions
regarding cloud properties and stability remain unchanged.

Regarding the tidal acceleration, Figure A2 presents the
minimal mass Mmin of the GMCs plotted against the cloud
mass derived with XCO= 3.0 × 1020 cm−2 (K km s−1)−1 using
the rotation curve of Feitzinger (1979), Wong et al. (2009),
and Alves & Nelson (2000). These plots represent the tidal
state of the GMCs: if they are below the 1-to-1 line, their
mass is greater than the minimal mass and they are tidally
stable. Figure A2 also shows that the GMCs in the LMC
are globally tidally stable irrespective of the rotation curve
used. Table 2 summarises the limited impact of both rotation
curve and XCO on our results using the tidal acceleration as
instability factor.

6 CONCLUSIONS

We have studied the stability of a sample of more than 200
resolved GMCs located in the Large Magellanic Cloud us-
ing the MAGMA 12CO (J=1-0) survey (Wong et al. 2011).
We examined the gravitational stability of the GMCs against
galactic rotational shear and their tidal stability by evaluat-
ing the shear parameter following the method of Dib et al.
(2012), and the tidal effect of the LMC using the method
of Stark & Blitz (1978). We report the following results and
conclusions:

1. Galactic shear does not seem to be important regard-
ing the stability of our GMC sample in the LMC. The
distribution of the shear parameter Sg peaks around
0.12, which is far from the domain where shear causes

cloud disruption (Sg>1). This result holds regardless
of which rotation curve we use to calculate the Oort
constant value A.

2. The GMCs in the LMC seem to be globally tidally sta-
ble. The distribution of the ratio between their actual
mass and the minimum mass required for tidal stability,
MCO/Mmin, peaks around 2. This result holds regardless
of the XCO value we use when calculating MCO or which
rotation curve we use for calculating the tidal acceler-
ation T. This result is consistent with the absence of
truncation at the upper end of the cloud mass distribu-
tion.

3. Both the shear parameter Sg and ratio MCO/Mmin show
no systematic variation with distance from the centre
of the galaxy.

4. No correlation was found between the 24 μm flux den-
sity (chosen as a star formation tracer) and stability
against shear or tidal disruption. It appears that once
the GMCs are formed, their star formation efficiency
does not depend on the shear parameter or galactic tidal
effects.

5. We find no obvious correlation between cloud proper-
ties such as galactic position, mass, axis ratio and peak
CO brightness temperature, and the GMC’s stability
against galactic scale dynamical effects. Nevertheless,
a weak tendency for clouds with high velocity disper-
sion to be tidally unstable was found.

6. A weak trend was found in which GMCs with larger
radii (r > 40 pc) are less resistant against both shear
and tidal instability.

The fact that similar conclusions were found using three
different rotation curves covering a broad range of tidal ac-
celeration and shear parameter values strengthens our con-
clusions. Our study, based on the work of Stark & Blitz
(1978) and Dib et al. (2012) and applied to the GMC cata-
logue of Wong et al. (2011), does seem to exclude galactic
tides and shear as playing a key role in GMCs instability and
star formation processes in the LMC. This result supports the
conclusions of Dib et al. (2012). Thus, shear and tidal effects
may be important on large scales in the more diffuse ISM (so
therefore could be important for GMC formation), but that
once the GMCs form, they achieve a dynamical configura-
tion that is no longer susceptible to modifications by shear
or tides. Analysing the GMCs at smaller scales is necessary
to understand the evolution of the ISM and star formation
processes inside GMCs.

Finally, we must note the limitations of our approach. The
formula for the growth of a density perturbation against shear
involves surface density � and velocity dispersion σ , but it
is not clear that we should be using the observed values for
these quantities, since what we are observing may already be
the result of gravitational amplification. In fact, equation (4)
with three different �’s suggests that these analytic estimates
are only a first step. Similarly, it is not obvious we should use
observed values of velocity dispersion σ , mass M, and cloud

PASA, 31, e003 (2014)
doi:10.1017/pasa.2013.40

https://doi.org/10.1017/pasa.2013.40 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2013.40


Tidal Stability of Giant Molecular Clouds in the Large Magellanic Cloud 13

radius r in equation (10) to evaluate the Roche criterion, since
those observed values may be obtained under galactic tidal
influence.

Moreover, it must be noted that we have not included the
effects of magnetic fields in GMCs, which may help to tem-
porally stabilise the GMC by confinement (Shu, Adams, &
Lizano 1987). We also did not consider the internal cloud mo-
tion. The GMCs from the catalogue of Hughes et al. (2010)
clearly have a velocity gradient, with the velocity dispersion
varying by up to a factor of three from the cloud centre to
the cloud edge. A more elaborate investigation of this phe-
nomenon has been made by Ballesteros-Paredes, Vázquez-
Semadeni, & Scalo (1999) by studying the velocity and den-
sity structure inside molecular clouds. The LMC GMCs may
in fact be very inhomogeneous: they are likely composed
of many sub-structures which can be gravitationally unsta-
ble and enhance star formation, as suggested by Rodrı́guez
(2005).
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A The effect of rotation curve
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Figure A1. Distribution of the shear parameter Sg for our selected sample of 260 resolved GMCs using the rotation curve of (a) Feitzinger (1979), (b) Wong
et al. (2009), and (c) Alves & Nelson (2000).

 7

 8

 9

 10

 11

 12

 13

 14

 7  8  9  10  11  12  13  14

lo
g
(M

m
in

) 
(M

so
la

r)

log(MCO) (Msolar)

(a)

 7

 8

 9

 10

 11

 12

 13

 14

 7  8  9  10  11  12  13  14

lo
g
(M

m
in

) 
(M

so
la

r)

log(MCO) (Msolar)

(b)

 7

 8

 9

 10

 11

 12

 13

 14

 7  8  9  10  11  12  13  14

lo
g
(M

m
in

) 
(M

so
la

r)

log(MCO) (Msolar)

(c)

Figure A2. Observed cloud mass, MCO, calculated using XCO = 3.0 × 1020 cm−2 (K km s−1)−1 versus minimal mass, Mmin, required for tidal stability
using the rotation curve from: (a) Feitzinger (1979), (b) Wong et al. (2009), and (c) Alves & Nelson (2000). The black 1-to-1 line is the locus of tidal balance.
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