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Binary linear forms as sums of two squares

R. de la Bretèche and T. D. Browning

Abstract

We revisit recent work of Heath-Brown on the average order of the quantity
r(L1(x)) · · · r(L4(x)), for suitable binary linear forms L1, . . . , L4, as x = (x1, x2) ranges
over quite general regions in Z2. In addition to improving the error term in Heath-Brown’s
estimate, we generalise his result to cover a wider class of linear forms.

1. Introduction

Let L1, . . . , L4 ∈ Z[x1, x2] be binary linear forms, and let R ⊂ R2 be any bounded region. This
paper is motivated by the question of determining conditions on L1, . . . , L4 and R under which it
is possible to establish an asymptotic formula for the sum

S(X) :=
∑

x=(x1,x2)∈Z2∩XR
r(L1(x))r(L2(x))r(L3(x))r(L4(x)),

as X → ∞, where XR := {Xx : x ∈ R}. The problem of determining an upper bound for S(X)
is substantially easier. In fact our recent investigation [BB06] into the average order of arithmetic
functions over the values of binary forms easily gives S(X) � X2, provided that no two of L1, . . . , L4

are proportional. In trying to establish an asymptotic formula for S(X) there is no real loss in
generality in restricting one’s attention to the corresponding sum in which one of the variables
x1, x2 is odd. For j ∈ {∗, 0, 1}, let us write Sj(X) for the corresponding sum in which x1 is odd and
x2 ≡ j mod 2, where the case j = ∗ means that no 2-adic restriction is placed on x2.

Our point of departure is work of Heath-Brown [HB03], which establishes an asymptotic formula
for S∗(X) when L1, . . . , L4 and R satisfy the following normalisation hypotheses:

(i) R is an open, bounded and convex region, with a piecewise continuously differentiable bound-
ary;

(ii) no two of L1, . . . , L4 are proportional;

(iii) Li(x) > 0 for all x ∈ R; and

(iv) Li(x) ≡ x1 mod 4.

Here, as throughout our work, the index i denotes a generic element of the set {1, 2, 3, 4}. We will
henceforth say that L1, . . . , L4,R ‘satisfy NH0’ if these four conditions hold. The first three condi-
tions are all quite natural, and do not impose any serious constraint on L1, . . . , L4,R. The fourth
condition is more problematic however, especially when it comes to applying the result in other
contexts. We will return to this issue shortly. For the moment we concern ourselves with presenting
a refinement of Heath-Brown’s result. It will be necessary to introduce some more notation first.
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For given L1, . . . , L4,R, we will write

L∞ = L∞(L1, . . . , L4) := max
1�i�4

‖Li‖, (1.1)

where ‖Li‖ denotes the maximum modulus of the coefficients of Li, and

r∞ = r∞(R) := sup
x∈R

max{|x1|, |x2|}. (1.2)

Furthermore, let

r′ = r′(L1, . . . , L4,R) := sup
x∈R

max
1�i�4

|Li(x)|. (1.3)

Define the real number

η := 1 − 1 + log log 2
log 2

, (1.4)

with numerical value 0.086 071 . . ., and let χ be the non-principal character modulo 4 defined
multiplicatively by

χ(p) :=


+1, if p ≡ 1 mod 4,
−1, if p ≡ 3 mod 4,
0, if p = 2.

We are now ready to reveal our first result.

Theorem 1. Assume that L1, . . . , L4,R satisfy NH0, and let ε > 0. Suppose that r′X1−ε � 1. Then
we have

S∗(X) = 4π4 meas(R)X2
∏
p>2

σ∗
p + O

(
Lε∞r∞r′X2

(log X)η−ε

)
,

where

σ∗
p :=

(
1 − χ(p)

p

)4 ∞∑
a,b,c,d=0

χ(p)a+b+c+dρ∗(pa, pb, pc, pd)−1 (1.5)

and

ρ∗(h) := det{x ∈ Z2 : hi | Li(x)} (1.6)

as a sublattice of Z2. Moreover, the product
∏

σ∗
p is absolutely convergent.

The implied constant in this estimate is allowed to depend upon the choice of ε, a convention
that we will adopt for all of the implied constants in this paper. It would be straightforward to
replace the term (log X)ε by (log log X)A in the error term, for some explicit value of A. For the
purposes of comparison, we note that [HB03, Theorem 1] consists of an asymptotic formula for
S∗(X) with error

OL1...,L4,R
(

X2(log log X)15/4

(log X)η/2

)
.

Here there is an unspecified dependence on L1, . . . , L4,R, and η is given by (1.4). Thus Theorem 1
is stronger than [HB03, Theorem 1] in two essential aspects. Firstly, we have been able to obtain
complete uniformity in L1, . . . , L4,R in the error term, and secondly, our exponent of log X is almost
twice the size.

Our next result extends Theorem 1 to points running over vectors belonging to suitable sublat-
tices of Z2. The advantages of such a generalisation will be made clear shortly. For any D ∈ N4,
we let

ΓD = Γ(D;L1, . . . , L4) := {x ∈ Z2 : Di | Li(x)}. (1.7)
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Then ΓD ⊆ Z2 is an integer lattice of rank 2. Next, let d ∈ N4 and assume that di | Di. In particular
it follows that ΓD ⊆ Γd. Throughout this paper we will focus our attention on (d,D) ∈ D, where

D := {(d,D) ∈ N8 : 2 � diDi, di | Di}. (1.8)

For j ∈ {∗, 0, 1} the goal is to establish an asymptotic formula for

Sj(X;d,ΓD) :=
∑

x∈ΓD∩XR
2�x1

x2≡j mod 2

r

(
L1(x)

d1

)
r

(
L2(x)

d2

)
r

(
L3(x)

d3

)
r

(
L4(x)

d4

)
. (1.9)

It is clear that Sj(X) = Sj(X; (1, 1, 1, 1), Z2) for each j ∈ {∗, 0, 1}.
For given d ∈ N4 with odd components, let us say that L1, . . . , L4,R ‘satisfy NH0(d)’ if they

satisfy the conditions in NH0, but with (iv) replaced by

(iv)d Li(x) ≡ dix1 mod 4.

When di ≡ 1 mod 4 for each i, it is clear that (iv)d coincides with (iv). Let [a, b] denote the least
common multiple of any two positive integers a, b. The results that we obtain involve the quantity

ρ0(h) :=
detΓ

(
([D1, d1h1], . . . , [D4, d4h4]);L1, . . . , L4

)
det Γ(D;L1, . . . , L4)

, (1.10)

which we will occasionally denote by ρ0(h;D;L1, . . . , L4). Specifically, we have local factors

σp :=
(

1 − χ(p)
p

)4 ∞∑
a,b,c,d=0

χ(p)a+b+c+dρ0(pa, pb, pc, pd)−1, (1.11)

defined for any prime p > 2. In view of (1.5) and (1.6), we note that ρ0(h) = ρ∗(h) and σp = σ∗
p

when Di = 1, since then ΓD = Z2. Bearing all this notation in mind, we have the following result.

Theorem 2. Let (d,D) ∈ D and assume that L1, . . . , L4,R satisfy NH0(d). Let ε > 0 and suppose
that r′X1−ε � 1. Let j ∈ {∗, 0, 1}. Then we have

Sj(X;d,ΓD) =
δjπ

4 meas(R)
detΓD

X2
∏
p>2

σp + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
,

where D := D1D2D3D4 and

δj :=

{
2, if j = 0, 1,

4, if j = ∗, (1.12)

and L∞, r∞, r′ are given by (1.1), (1.2) and (1.3), respectively. Moreover, the product
∏

σp is
absolutely convergent.

Taking di = Di = 1 and j = ∗ in the statement of Theorem 2, we retrieve Theorem 1. In fact
the proof of Theorem 2 is a rather routine deduction from Theorem 1 and will be carried out in § 6.

We now return to the normalisation conditions (i)–(iv)d that form the basis of Theorem 2. As
indicated above, one of the main motivations behind writing this paper has been to weaken these
conditions somewhat. In fact we will be able to replace condition (iv)d by either of

(iv′)d the coefficients of L3, L4 are all non-zero and there exist integers k1, k2 � 0 such that

2−k1L1(x) ≡ d1x1(mod4), 2−k2L2(x) ≡ d2x1(mod4),

or

(iv′′)d the coefficients of L3, L4 are all non-zero and there exist integers k1, k2 � 0 such that

2−k1L1(x) ≡ d1x1(mod4), 2−k2L2(x) ≡ x2(mod4).
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Accordingly, we will say that L1, . . . , L4,R ‘satisfy NH1(d)’ if they satisfy conditions (i)–(iii) and
(iv′)d, and we will say that L1, . . . , L4,R ‘satisfy NH2(d)’ if together with (i)–(iii) they satisfy
condition (iv′′)d. The condition that none of the coefficients of L3, L4 are zero is equivalent to the
statement that neither L3 nor L4 is proportional to x1 or x2. Condition (ii) ensures that no two of
L1, . . . , L4 are proportional, and so if L3 or L4 is proportional to one of x1 or x2, then there are at
least two forms among L1, . . . , L4 that are not proportional to x1 or x2. After a possible relabelling,
therefore, one may always assume that the coefficients of L3, L4 are non-zero.

The asymptotic formula that we obtain under these new hypotheses is more complicated than
Theorem 2, and intimately depends on the coefficients of L3, L4. Suppose that

L3(x) = a3x1 + b3x2, L4(x) = a4x1 + b4x2, (1.13)

and write

A =
(

a3 b3

a4 b4

)
for the associated matrix. In particular for L1, . . . , L4 satisfying any of the normalisation conditions
above, we may assume that A is an integer-valued matrix with non-zero determinant and non-zero
entries.

Let (j, k) ∈ {∗, 0, 1} × {0, 1, 2}. We proceed to introduce a quantity δj,k(A,d) ∈ R, which will
correspond to the 2-adic density of vectors x ∈ Z2 with x1 ≡ 1 mod 4 and x2 ≡ j mod 2, for which
the corresponding summand in (1.9) is non-zero for L1, . . . , L4,R satisfying NHk(d). Let

En := {x ∈ Z/2nZ : ∃ ν ∈ Z�0, 2−νx ≡ 1 mod 4}, (1.14)

for any n ∈ N. Then we may set

δj,k(A,d) := lim
n→∞

1
22n−4

#

x ∈ (Z/2nZ)2 :
x1 ≡ 1 mod 4
x2 ≡ j mod 2
Li(x) ∈ diEn

 . (1.15)

This limit plainly always exists and is contained in the interval [0, 4]. It will ease notation if we
simply write δj,k(A) for δj,k(A,d) in all that follows. We will calculate this quantity explicitly
in § 3. We are now ready to reveal our main result.

Theorem 3. Let (d,D) ∈ D and assume that L1, . . . , L4,R satisfy NHk(d) for k ∈ {0, 1, 2}. Let
ε > 0 and suppose that r′X1−ε � 1. Let j ∈ {∗, 0, 1}. Then we have

Sj(X;d,ΓD) = cX2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
,

where

c = δj,k(A)
π4 meas(R)

detΓD

∏
p>2

σp.

It is rather trivial to check that δj,0(A) = δj , in the notation of (1.12). Hence the statement of
Theorem 3 reduces to Theorem 2 when k = 0. The proof of Theorem 3 for k = 1, 2 uses Theorem 2 as
a crucial ingredient, but it will be significantly more complicated than the corresponding deduction of
Theorem 2 from Theorem 1. This will be carried out in § 7. The underlying idea is to find appropriate
linear transformations that take the relevant linear forms into forms that satisfy the normalisation
conditions (i)–(iv)d, thereby bringing the problem in line for an application of Theorem 2. In
practice, the choice of transformation depends closely upon the coefficients of L3, L4, and a careful
case-by-case analysis is necessary.

While interesting in its own right, the study of sums like (1.9) is also related to problems involving
the distribution of integer and rational points on algebraic varieties. In fact estimating Sj(X;d,ΓD)
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boils down to counting integer points on the affine variety

Li(x1, x2) = di(s2
i + t2i ), 1 � i � 4, (1.16)

in A10, with x1, x2 restricted in some way. Viewed in this light it might be expected that the constant
c in Theorem 3 admits an interpretation as a product of local densities. Our next goal is to show
that this is indeed the case.

Let λ ∈ Z4
�0 and let µ ∈ Z4

�0. Given any prime p > 2, let

Nλ,µ(pn) := #
{

(x, s, t) ∈ (Z/pnZ)10 :
Li(x1, x2) ≡ pλi(s2

i + t2i ) mod pn

pµi | Li(x1, x2)

}
,

and define
ωλ,µ(p) := lim

n→∞ p−6n−λ1−···−λ4Nλ,µ(pn). (1.17)

This corresponds to the p-adic density on a variety of the form (1.16), in which the points are
restricted to lie on a certain sublattice of Z/pnZ.

Turning to the case p = 2, let

Nj,k,d(2n) := #
{

(x, s, t) ∈ (Z/2nZ)10 :
Li(x1, x2) ≡ di(s2

i + t2i ) mod 2n

x1 ≡ 1 mod 4, x2 ≡ j mod 2

}
,

for any (j, k) ∈ {∗, 0, 1} × {0, 1, 2} and any d ∈ N4 such that 2 � d1 · · · d4. Here the subscript k
indicates that L1, . . . , L4,R are assumed to satisfy NHk(d). The corresponding 2-adic density is
given by

ωj,k,d(2) := lim
n→∞ 2−6nNj,k,d(2n). (1.18)

Finally, we let ωR(∞) denote the archimedean density of solutions to the system of equations (1.16),
for which (x, s, t) ∈ R× R8. We will establish the following result in § 2.

Theorem 4. We have

c = ωR(∞)ωj,k,d(2)
∏
p>2

ωλ,µ(p)

in the statement of Theorem 3, with

λ = (νp(d1), . . . , νp(d4)), µ = (νp(D1), . . . , νp(D4)).

It turns out that the system of equations in (1.16) play the role of descent varieties for the pair
of equations

L1(x1, x2)L2(x1, x2) = x2
3 + x2

4, L3(x1, x2)L4(x1, x2) = x2
5 + x2

6,

for binary linear forms L1, . . . , L4 defined over Z. This defines a geometrically integral threefold
V ⊂ P5, and it is natural to try and estimate the number N(X) of rational points on V with height
at most X, as X → ∞. In fact there is a very precise conjecture due to Manin [FMT89] that relates
the growth of N(X) to the intrinsic geometry of V . It is easily checked that V is a singular variety
with finite singular locus consisting of double points. If Ṽ denotes the minimal desingularisation of
V , then the Picard group of Ṽ has rank 1. Moreover, KṼ +2H is effective, where KṼ is a canonical
divisor and H is a hyperplane section. Thus Manin’s conjecture predicts the asymptotic behaviour
N(X) = cV X2(1 + o(1)), as X → ∞, for a suitable constant cV � 0.

Building on his investigation [HB03, Theorem 1] into the sum S∗(X) defined above, Heath-Brown
provides considerable evidence for this conjecture when L1, . . . , L4,R satisfy a certain normalisation
hypothesis, which he labels NC2. This coincides with the conditions (i)–(iii) in NH0, but with (iv)
replaced by the condition that

L1(x) ≡ L2(x) ≡ νx1(mod4), L3(x) ≡ L4(x) ≡ ν ′x1(mod4),
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for appropriate ν, ν ′ = ±1. The outcome of Heath-Brown’s investigation is [HB03, Theorem 2].
Under NC2 this establishes the existence of a constant c � 0 and a function E(X) = o(X2),
such that ∑

x∈Z2∩XR
x1≡1 mod 2

r(L1(x)L2(x))r(L3(x)L4(x)) = cX2 + O(E(X)). (1.19)

The explicit value of c is rather complicated to state and will not be given here. One of the features
of Heath-Brown’s proof is that it does not lead to an explicit error function E(X). An examination
of the proof reveals that this can be traced back to an argument involving dominated convergence in
the proof of [HB03, Lemma 6.1], thereby allowing Heath-Brown to employ [HB03, Theorem 1], which
is not uniform in any of the relevant parameters. Rather than using [HB03, Theorem 1] to estimate
the sums S(d, d′) that occur in his analysis, however, it is possible to employ our Theorem 2. The
advantage in doing so is that the corresponding error term is completely uniform in the parameters
d, d′, thus circumventing the need for the argument involving dominated convergence. Rather than
labouring the details, we will content ourselves with merely recording the outcome of this observation
here.

Corollary. One has E(X) = X2(log X)−η/3+ε in (1.19), for any ε > 0.

In addition to the threefold V ⊂ P5 defined above, it transpires that the estimates in this
paper can play an important role in analysing the arithmetic of other rational varieties. Indeed, one
of the motivating factors behind writing this paper has been to prepare the way for a verification of
the Manin conjecture for certain surfaces of the shape

x1x2 = x2
3, x3(ax1 + bx2 + cx3) = x2

4 + x2
5,

in forthcoming joint work with Emmanuel Peyre. These equations define singular del Pezzo surfaces
of degree 4 in P4, of the type first considered by Iskovskikh. These are arguably the most inter-
esting examples of singular quartic del Pezzo surfaces since they are the only ones for which weak
approximation may fail. On solving the first equation in integers, and substituting into the second
equation, one is led to consider the family of equations

h2y1y2(ay2
1 + by2

2 + cy1y2) = s2 + t2,

for h running over a suitable range. Studying the distribution of integer solutions to this system of
equations therefore amounts to estimating sums of the shape∑

y1,y2

r(h2y1y2(ay2
1 + by2

2 + cy1y2)),

uniformly in h. By choosing a, b, c such that c2 − 4ab is a square, one can show that this sum is
related to sums of the sort (1.9), but for which Heath-Brown’s original normalisation conditions in
NH0 are no longer met. Thus we have found it desirable to generalise the work of [HB03] to the
extent enjoyed in the present paper.

As a final remark we note that further generalisations of our main results seem entirely feasible.
For example, one ought to be able to extend the work to deal with analogues of (1.9) in which
r is replaced by an r∆-function that counts representations as norms of elements belonging to an
arbitrary imaginary quadratic field of discriminant ∆.

Notation. Throughout our work N will denote the set of positive integers. Moreover, we will
follow common practice and allow the arbitrary small parameter ε > 0 to take different values at
different parts of the argument. All order constants are allowed to depend on ε.
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2. Interpretation of the constant

Our task in this section is to establish Theorem 4. We begin with some preliminary facts. Let A ∈ Z
and let α ∈ Z�0. For any prime power pn, we write

Sα(A; pn) := #{(x, y) ∈ (Z/pnZ)2 : pα(x2 + y2) ≡ A mod pn}. (2.1)

If α � n then it is not hard to see that

Sα(A; pn) = p2αS0(A/pα; pn−α), (2.2)

when α � νp(A) and Sα(A; pn) = 0 otherwise. In the case α = 0 we have

S0(A; pn) =

{
pn + npn(1 − 1/p), if νp(A) � n,

(1 + νp(A))pn(1 − 1/p), if νp(A) < n,
(2.3)

when p ≡ 1 mod 4. This formula has been employed by Heath-Brown [HB03, § 8] in a similar context.
When p ≡ 3 mod 4, he notes that

S0(A; pn) =


p2[n/2], if νp(A) � n,

pn(1 + 1/p), if νp(A) < n and 2 | νp(A),
0, if νp(A) < n and 2 � νp(A).

(2.4)

Finally, when p = 2 and n � 2, we have

S0(A; 2n) =

{
2n+1, if 2−ν2(A)A ≡ 1 mod 4,
0, otherwise.

(2.5)

Note that Heath-Brown states this formula only for odd A that are congruent to 1 modulo 4,
but the general case is easily checked. Indeed, if ν = ν2(A), then one notes that 2 | gcd(x, y) in
the definition of S0(A; 2n) if ν � 2, and 2 � xy if ν = 1. In the former case one therefore has
S0(A; 2n) = 4S0(A/4; 2n−2), and in the latter case one finds that S0(A; 2n) = 2n+1.

Let L1, . . . , L4 ∈ Z[x1, x2] be arbitrary linear forms, and recall the definition (1.6) of the deter-
minant ρ∗(h). It follows from the multiplicativity of ρ∗ that

1
detΓD

∏
p>2

σp =
∏
p>2

cp

in the statement of Theorem 3, with

cp =
(

1 − χ(p)
p

)4 ∑
ni�0

χ(p)n1+···+n4

ρ∗(pmax{νp(D1),νp(d1)+n1}, . . . , pmax{νp(D4),νp(d4)+n4})
.

We claim that
cp = ωλ,µ(p), (2.6)

for each p > 2, where ωλ,ν(p) is given by (1.17) and the values of λ,ν are as in the statement
of Theorem 4. The proof of this claim will be in two steps: the case p ≡ 1 mod 4 and the case
p ≡ 3 mod 4.

Lemma 1. Let p ≡ 1 mod 4 be a prime. Then (2.6) holds.

Proof. Let A ∈ Z, and let p ≡ 1 mod 4 be a prime. On combining (2.3) with (2.2) it follows that

Sα(A; pn) = (1 + νp(A) − α)pn+α(1 − 1/p),

provided that α � νp(A) < n. Our plan will be to fix p-adic valuations νi of Li(x), and then to use
this formula to count the resulting number of s, t ∈ (Z/pnZ)4 in Nλ,µ(pn). Note that we must have

νi � Mi := max{λi, µi}.
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It follows that

Nλ,µ(pn) = p4n+λ1+···+λ4

(
1 − 1

p

)4 ∑
νi�Mi

Mν(pn)
∏

1�i�4

(1 + νi − λi) + O(n4p5n),

where Mν(pn) counts the number of x mod pn such that pµi | Li(x) and νp(Li(x)) = νi. But then

Mν(pn) =
∑

e∈{0,1}4

(−1)e1+···+e4#{x mod pn : pmax{νi+ei,µi} | Li(x)}

=
∑

e∈{0,1}4

(−1)e1+···+e4#{x mod pn : pνi+ei | Li(x)}

= p2n
∑

e∈{0,1}4

(−1)e1+···+e4

ρ∗(pν1+e1, . . . , pν4+e4)
.

Making the change of variables ni = νi + ei − λi, and noting that νi + ei � Mi + ei � Mi, we
therefore deduce that

ωλ,µ(p) =
(

1 − 1
p

)4 ∑
ni�Mi−λi

ρ∗(pλ1+n1 , . . . , pλ4+n4)−1

×
∑

0�ei�min{1,λi+ni−Mi}
(−1)e1+···+e4

∏
1�i�4

(1 + ni − ei).

Now it is clear that ∑
0�e�min{1,λ+n−M}

(−1)e(1 + n − e) =

{
1, if λ + n − M � 1,

1 + M − λ, if λ + n − M = 0.

Since 1 + M − λ = #Z ∩ [0,M − λ], a little thought reveals that

ωλ,µ(p) =
(

1 − 1
p

)4 ∑
ni�0

ρ∗(pmax{M1,λ1+n1}, . . . , pmax{M4,λ4+n4})−1

=
(

1 − 1
p

)4 ∑
ni�0

ρ∗(pmax{µ1,λ1+n1}, . . . , pmax{µ4,λ4+n4})−1.

This completes the proof of the lemma.

Lemma 2. Let p ≡ 3 mod 4 be a prime. Then (2.6) holds.

Proof. Let α ∈ Z�0 and A ∈ Z, and recall the definition (2.1) of Sα(A; pn). Combining (2.4) with
(2.2), and arguing precisely as in the proof of Lemma 1, we conclude that

Nλ,µ(pn) = p6n+λ1+···+λ4

(
1 +

1
p

)4 ∑
νi�Mi
2|νi−λi

∑
e∈{0,1}4

(−1)e1+···+e4

ρ∗(pν1+e1, . . . , pν4+e4)
+ O(n4p5n).

Making the change of variables ni = νi + ei − λi, it follows that

ωλ,µ(p) =
(

1 +
1
p

)4 ∑
ni�Mi−λi

ρ∗(pλ1+n1, . . . , pλ4+n4)−1
∑

0�ei�min{1,λi+ni−Mi}
ei≡ni mod 2

(−1)e1+···+e4 .
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This time we find that the summand can be expressed in terms of

∑
0�e�min{1,λ+n−M}

e≡n mod 2

(−1)e =


(−1)n, if λ + n − M � 1,
1, if λ + n − M = 0 and 2 | M − λ,

0, if λ + n − M = 0 and 2 � M − λ.

Since
∑

0�n�M−λ(−1)n is equal to 1 if M − λ is even, and 0 otherwise, we conclude that

ωλ,µ(p) =
(

1 +
1
p

)4 ∑
ni�0

(−1)n1+···+n4

ρ∗(pmax{µ1,λ1+n1}, . . . , pmax{µ4,λ4+n4})
.

This completes the proof of the lemma.

We now turn to the 2-adic density, for which we claim that

δj,k(A) = ωj,k,d(2), (2.7)

where δj,k(A) is given by (1.15) and ωj,k,d(2) is given by (1.18). On recalling the definition (1.14)
of En, it follows from (2.5) that

Nj,k,d(2n) =24n+4#
{
x ∈ Z/2nZ :

Li(x) ∈ diEn

x1 ≡ 1 mod 4, x2 ≡ j mod 2

}
.

But then

ωj,k,d(2) = lim
n→∞

1
22n−4

#
{
x ∈ Z/2nZ :

Li(x) ∈ diEn

x1 ≡ 1 mod 4, x2 ≡ j mod 2

}
,

which is just δj,k(A). This completes the proof of (2.7).
Finally we turn to the archimedean density ωR(∞) of points on the variety (1.16) for which

x ∈ R. We claim that

ωR(∞) = π4 meas(R). (2.8)

Our assumptions on L1, . . . , L4,R imply that Li(x) > 0 for all x ∈ R. To begin with, it is clear that

ωR(∞) = 28ω+
R(∞),

where ω+
R(∞) is defined as for ωR(∞), but with the additional constraint that si, ti > 0. We will

calculate ω+
R(∞) by parametrising the points via the ti, using the Leray form. In this setting the

Leray form is given by

(24t1t2t3t4)−1 ds1 · · · ds4 dx1 dx2.

On making the substitution ti =
√

d−1
i Li(x) − s2

i , and noting that∫ √
A

0

ds√
A − s2

=
π

2
,

we therefore conclude that

ωR(∞) = 24

∫
x∈R

( ∏
1�i�4

∫ √
d−1

i Li(x)

0

ds√
d−1

i Li(x) − s2

)
dx1 dx2

= π4 meas(R),

as required for (2.8).
Bringing together (2.6), (2.7) and (2.8), we easily deduce the statement of Theorem 4.
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3. The 2-adic densities

In this section we explicitly calculate the value of the 2-adic densities δj,k(A) = δj,k(A,d) in (1.15).
In effect this will simplify the process of deducing Theorem 3. Let L1, . . . , L4 ∈ Z[x1, x2] be arbitrary
linear forms that satisfy any of the normalisation conditions from the introduction, with L3, L4 given
by (1.13). In particular, it is clear that there exist integers k3, k4 � 0 such that

2−k3L3(x) = 2µ3a′3x1 + 2ν3b′3x2, 2−k4L4(x) = 2µ4a′4x1 + 2ν4b′4x2, (3.1)

for integers a′i, b
′
i such that

a′3a
′
4b

′
3b

′
4(a

′
3b

′
4 − a′4b

′
3) 
= 0, 2 � a′3a

′
4b

′
3b

′
4, (3.2)

and integers µi, νi � 0 such that

µ3ν3 = µ4ν4 = 0. (3.3)

We are now ready to proceed with the calculation of δj,k(A), whose value will depend intimately on
j, k, d and the values of the coefficients in (3.1). The calculations in this section are routine and so
we will be brief. In fact we will meet these calculations again in § 7 under a slightly different guise.

Recall the definition (1.14) of En for any n ∈ N, and the definition (1.15) of δj,k(A), for
L1, . . . , L4,R satisfying NHk(d). When k = 0, it easily follows from our normalisation conditions
that Li(x) ∈ diEn for any integer vector x such that x1 ≡ 1 mod 4. Hence

δj,0(A) = δj, (3.4)

in the notation of (1.12).
Let us now suppose that j = k = 1. Then clearly

δ1,1(A) = lim
n→∞

1
22n−4

#
{
x ∈ (Z/2nZ)2 :

x1 ≡ 1 mod 4, 2 � x2

d3L3(x), d4L4(x) ∈ En

}
. (3.5)

It follows from (3.3) that at most two of µ3, µ4, ν3, ν4 can be non-zero. An easy calculation shows
that

δ1,1(A) =

{
1, if b′3d3 − 2µ3 ≡ b′4d4 − 2µ4 mod 4,
0, otherwise,

(3.6)

when ν3 = ν4 = 0 and µ3, µ4 � 1. Similarly, we deduce that

δ1,1(A) =

{
2, if a′j ≡ dj − 2νj mod 4 for j = 3, 4,

0, otherwise,
(3.7)

when µ3 = µ4 = 0 and ν3, ν4 � 1. Let j1, j2 denote distinct elements from the set {3, 4}. Then it
follows from (3.5) that

δ1,1(A) =

{
1, if a′j1 ≡ dj1 − 2νj1 mod 4,
0, otherwise,

(3.8)

when µj1 = νj2 = 0 and µj2, νj1 � 1. Still with the notation {j1, j2} = {3, 4}, a simple calculation
reveals that

δ1,1(A) =

{
1, if a′j2 ≡ dj2 − 2νj2 mod 4,
0, otherwise,

(3.9)

when µ3 = µ4 = νj1 = 0 and νj2 � 1. In performing this calculation it is necessary to calculate
the contribution to the right-hand side of (3.5) for fixed values of n and fixed 2-adic valuation ξ of
a′3x1 + b′3x2, before then summing over all possible values of ξ � 1. In a similar fashion, one finds

δ1,1(A) = 1/2, (3.10)
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when ν3 = ν4 = µj1 = 0 and µj2 � 1. It remains to handle the case in which all the µj, νj are zero.
For this we set

v := ν2(a′3b
′
4 − a′4b

′
3), (3.11)

which must be a positive integer, since a′j , b
′
j are all odd. Thus we have

δ1,1(A) =


1/2, if v = 1,

1 − 3/2v , if v � 2 and b′3d3 ≡ b′4d4 mod 4,

3/2v , if v � 2 and b′3d3 ≡ −b′4d4 mod 4,

(3.12)

when µ3 = µ4 = ν3 = ν4 = 0.

When j 
= 1 and k 
= 0, we will find it convenient to phrase our formulae for δj,k(A) in terms of
δ1,k(A). We claim that

δ0,k(A) =
∞∑

ξ=1

δ1,k(AMξ)
2ξ

, δ∗,k(A) =
∞∑

ξ=0

δ1,k(AMξ)
2ξ

, (3.13)

when k = 1 or 2, where

Mξ :=
(

1 0
0 2ξ

)
. (3.14)

Here the formula for δ0,k(A) is not hard to establish, and follows on extracting the 2-adic valuation
of x2 in (1.15). The formula for δ∗,k(A) follows on noting that δ∗,k(A) = δ0,k(A) + δ1,k(A). Finally,
we express δ1,2(A) in terms of δ∗,1(A) via the transformation

Mc,d2 :=
(

1 0
κ + 4c 4

)
, (3.15)

where κ = ±1 denotes the residue modulo 4 of d2, and c ∈ {0, 1, 2} is any parameter we care to
choose. It is not hard to see that

δ1,2(A) =
δ∗,1(AMc,d2)

4
, (3.16)

using the fact that x1 ≡ 1 mod 4 and x2 ≡ d2 mod 4.

4. Proof of Theorem 1

Our proof follows that given by Heath-Brown for [HB03, Theorem 1], but with extra care taken to
keep track of the error term’s dependence on L1, . . . , L4 and R. Our improvement in the exponent
of log X will emerge through a modification of the final stages of the argument.

Let XR4 := {x ∈ Z2 ∩ XR : x1 ≡ 1 mod 4}, and for given d ∈ N4 let R(d) ⊆ R denote a
convex region depending on d. We write XR4(d) for the set {x ∈ Z2 ∩ XR(d) : x1 ≡ 1 mod 4}.
The first step of the argument involves modifying the ‘level of distribution’ result that is employed
by Heath-Brown [HB03, Lemma 2.1].

Lemma 3. Let X � 1 and Q1, Q2, Q3, Q4 � 2. Write Q = maxi Qi and V = Q1Q2Q3Q4. Then there
is an absolute constant A > 0 such that∑

d∈N4

di�Qi
2�di

∣∣∣∣#(Γd ∩ XR4(d)) − meas(R(d))X2

4 det Γd

∣∣∣∣ � Lε
∞r∞X(V 1/2(log Q)A + Q) + V.
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Proof. We appeal to work of Daniel [Dan99, Lemma 3.2]. This gives∣∣∣∣#(Γd ∩ XR4(d)) − meas(R(d))X2

4 det Γd

∣∣∣∣ � r∞
X

|v| + 1, (4.1)

for some vector v ∈ Γd with coprime coordinates, such that

|v| � (det Γd)1/2 � (d1d2d3d4)1/2 � V 1/2.

The contribution from the second term in (4.1) is clearly O(V ). To complete the proof of the lemma
it will suffice to show that ∑

d∈N4

di�Qi

1
|v| � Lε

∞(V 1/2(log Q)A + Q), (4.2)

for some absolute constant A > 0.
Let σ1 denote the contribution from the case in which L1(v) · · ·L4(v) 
= 0, and let σ2 denote

the remaining contribution. We then have

σ1 �
∑

|v|	V 1/2

Li(v)
=0

1
|v|

∑
d∈N4

di�Qi
di|Li(v)

1 � Lε
∞τ(F (v)),

where τ is the divisor function and F is a primitive binary form that is proportional to L1 · · ·L4. A
simple application of [BB06, Corollary 1] now reveals that there exists a constant A > 0 such that∑

|v|�x

τ(F (v)) � Lε
∞x2(log x)A.

We therefore obtain the estimate σ1 � Lε∞V 1/2(log Q)A, on carrying out a dyadic summation for
the range of v, which is satisfactory for (4.2).

Turning to a bound for σ2, we suppose that i0 ∈ {1, 2, 3, 4} is an index for which Li0(v) =
ai0v1 + bi0v2 = 0. Since gcd(v1, v2) = 1, we have v1 | bi0 and v2 | ai0 . If j 
= i0, then Lj(v) 
= 0
because Li0 and Lj are not proportional. Moreover, we have |Lj(v)| � 2L2∞ and the number of
possible values of Lj(v) is bounded by O(Lε∞). Since dj | Lj(v), the number of available dj is
O(Lε∞), whereas the number of di0 is bounded by Qi0 � Q. Thus it follows that σ2 � Lε∞Q, which
therefore completes the proof of (4.2).

Recall the definition (1.3) of r′ = r′(L1, . . . , L4,R). It will be convenient to set

X ′ := r′X

in what follows, and to assume that r′X1−ε � 1. In particular this ensures that log X ′ � log X.
Our next task is to establish a uniform version of [HB03, Lemma 3.1]. The reader is recommended

to consult [HB03] for full details of the ensuing argument, since we will only stress those parts where
modification is needed. When 0 < m � X ′ and m ≡ 1 mod 4, we may write

r(m) = 4
∑
d|m

d�X′1/2

χ(d) + 4
∑
e|m

m>eX′1/2

χ(e) = 4A+(m) + 4A−(m),

say, as in [HB03]. This will be employed with m = Li(x) for 1 � i � 3. The conditions Li(x) ≡
v1 mod 4 and v1 ≡ 1 mod 4 yield m ≡ 1 mod 4. In a similar fashion, we may write

r(m) = 4B+(m) + 4C(m) + 4B−(m),

1386

https://doi.org/10.1112/S0010437X08003692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003692


Binary linear forms as sums of two squares

under the same hypotheses on m, with

B+(m) :=
∑
d|m
d�Y

χ(d), C(m) :=
∑
d|m

Y <d�X′/Y

χ(d), B−(m) :=
∑
e|m

m>eX′/Y

χ(e).

Here 1 � Y � X ′1/2 is a parameter to be chosen in due course. This formula will be used with m =
L4(x). The variable e in A−(Li(x)) and B−(L4(x)) will satisfy e � X ′1/2 and e � Y , respectively.

On writing

S±,±,±,± :=
∑

x∈XR4

A±(L1(x))A±(L2(x))A±(L3(x))B±(L4(x)),

we obtain

S∗(X) = 4S0 + 44
∑

S±,±,±,±,

which is the analogue of [HB03, Equation (3.4)]. Let us consider the sum S+,+,−,−, the other 15
sums being handled similarly. Write Q1 = Q2 = Q3 = X ′1/2 and Q4 = Y . Then

S+,+,−,− =
∑
d∈N4

di�Qi

χ(d1d2d3d4)#(Γd ∩ XR4(d)),

where R(d) := {x ∈ R : L3(x) > d3X
′1/2, L4(x) > d4X

′/Y }. An application of Lemma 3 therefore
implies that

S+,+,−,− =
∑
d∈N4

di�Qi

χ(d1d2d3d4)
meas(R(d))X2

4 det Γd
+ O(T ), (4.3)

with

T := Lε
∞r∞XX ′3/4

Y 1/2(log X ′)A + X ′3/2
Y

and A � 2. Choosing Y = X ′1/2/(log X ′)2A+2, we obtain

T � Lε∞r∞r′X2

log X ′ +
r′2X2

(log X ′)2A+2
.

We claim that it is possible to take

T � Lε∞r∞r′X2

log X
(4.4)

in (4.3). When r′ � r∞(log X ′)2A+1 this is trivial, since the assumption r′X1−ε � 1 yields log X ′ �
log X. Suppose now that r′ > r∞(log X ′)2A+1 � r∞(log X)2A+1. Then on returning to the original
definition of S±,±,±,±, it follows from an easy application of [BB06, Corollary 1] that

S+,+,−,− �
∑

x∈XR4

τ(L1(x)L2(x)L3(x)L4(x)) � Lε
∞r2

∞X2(log X)4 � Lε
∞r∞r′X2(log X)3−2A.

Thus we may certainly take (4.4) in (4.3) in this case too.
Although we will omit the details here, it is easy to modify the argument of [HB03] to deduce

that the main term in (4.3) is

π4 meas(R)X2

45

∏
p>2

σ∗
p + O(Lε

∞r∞r′X79/40+ε),

and similarly for all the S±,±,±,±. Bringing all of this together we have therefore established the
following result.
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Lemma 4. Assume that r′X1−ε � 1. Then we have

S∗(X) = 4π4 meas(R)X2
∏
p>2

σ∗
p + 4S0 + O

(
Lε∞r∞r′X2

log X

)
,

where

S0 :=
∑

x∈XR4

r(L1(x))r(L2(x))r(L3(x))C(L4(x)).

To conclude our treatment of S∗(X) we must estimate S0. Let

B := {m ∈ Z : ∃ d | m,Y < d � X ′/Y } ∩ {m ∈ Z : ∃x ∈ XR4, L4(x) = m}.
Then as in [HB03], we write

S0 �
∑
m∈B

S0(m)|C(m)|, (4.5)

where

S0(m) :=
∑

x∈A(m)

r(L1(x))r(L2(x))r(L3(x))

and A(m) := {x ∈ XR4 : L4(x) = m}. We proceed to establish the following estimate.

Lemma 5. There exists an absolute constant c0 > 0 such that

S0(m) � Lε
∞r∞X(log log X ′)c0 .

Proof. We begin by recalling the notation used in [HB03], with only very minor modifications.
Suppose that Li(x) = aix1 + bix2 with ai ≡ 1 mod 4 and bi ≡ 0 mod 4. Then we have x1 =
(m − b4x2)/a4 and

Li(x) =
Aim + Bin

a4
= L′

i(m,n),

with Ai = ai, n = x2 and Bi = a4bi − aib4. It is crucial to observe that B1B2B3 
= 0 since none of
L1, L2, L3 are proportional to L4. We will use the inequality r(L′

i(m,n)) � r(a4(Aim + Bin)). Note
that

a4(Aim + Bin) = a4 gcd(Aim,Bi)(A′
i(m) + B′

in)

with B′
i := Bi/ gcd(Aim,Bi) and A′

i(m) = Aim/ gcd(Aim,Bi). In particular these coefficients are
coprime. Write

H = a3
4B1B2B3

∏
1�i
=j�3

|aibj − ajbi|,

and introduce the multiplicative function r1, given by

r1(pν) =

{
ν + 1, if p | H,

r(pν), otherwise.

Then we have

r(L1(x))r(L2(x))r(L3(x)) � r(a3
4)r(B1B2B3)

3∏
i=1

r1(A′
i(m) + B′

in)

� Lε
∞r1

(
Gm(n)

)
,

where Gm(X) :=
∏3

i=1(A
′
i(m) + B′

iX) is a primitive cubic polynomial with coefficients bounded in
size by O(L6∞).
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Bringing all of this together we have so far shown that

S0(m) � Lε
∞

∑
n�r∞X

r1(Gm(n)).

Arguing as in [HB03, § 4] to handle the possible fixed prime divisors of Gm, it now follows from
[BB06, Theorem 2] that there exists an absolute constant c0 > 0 such that

S0(m) � Lε
∞r∞X(log log m)c0 � Lε

∞r∞X(log log X ′)c0 ,

since visibly S0(m) = 0 unless m � r′X = X ′. This completes the proof of the lemma.

It remains to consider the sum
∑

m∈B |C(m)| in (4.5). It is precisely at this point that our
argument diverges from the proof of Heath-Brown. Define the function

Q(λ) := λ log λ − λ + 1. (4.6)

Then we have

max
λ∈(1,2)

min{Q(λ), 2Q(λ/2)} = Q(1/ log 2) = 2Q(1/(2 log 2)) = η,

where η is given by (1.4). With this in mind, we have the following result.

Lemma 6. We have ∑
m∈B

|C(m)| � r′X(log log X ′)9/4

(log X ′)η
.

In view of the fact that |C(m)| � 1 for any m such that C(m) 
= 0, we deduce from [HT98,
Theorem 21(ii)] that one cannot hope to do much better than this estimate, since up to multiplication
by powers of log log X ′ it is the true order of magnitude of the set B.

Proof of Lemma 6. Define the sum

σ(X ′; v) :=
∑

1�m�X′
|C(m)|2vΩ(m),

for any real number v ∈ [0, 1], where Ω(m) denotes the total number of prime factors of m. A crucial
ingredient in the proof of Lemma 6 will be the estimate

σ(X ′; v) � X ′(log log X ′)3(log Y )2v−2. (4.7)

This coincides with the estimate obtained by Heath-Brown in [HB03, § 5] when v = 1. To establish
(4.7) we begin by expanding |C(m)|2 and drawing out the highest common factor of the variables
involved. This gives

|C(m)|2 =
∑
h|m

χ(h2)
∑

k1|m/h
Y <hk1�X′/Y

χ(k1)
∑

k2|m/hk1

Y <hk2�X′/Y
gcd(k1,k2)=1

χ(k2).

Once substituted into σ(X ′; v), let us write σ1 for the overall contribution from h � Y and σ2

for the contribution from the remaining h. Note that we must have Y < h � X ′/Y in σ2, since
h � hk1 � X ′/Y . Write Z := X ′/Y . Then we have

σ1 =
∑
h�Y

χ(h2)vΩ(h)
∑

Y/h<k1�Z/h

χ(k1)vΩ(k1)
∑

n<Z/k1

vΩ(n)
∑
k2

χ(k2)vΩ(k2),

where the final summation is over integers k2 such that gcd(k1, k2) = 1 and Y/h < k2 � min{Z/h,
X ′/hk1n}. Here the inequality n < Z/k1 follows from the two inequalities n � X ′/hk1k2
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and hk2 > Y . We will need the basic estimates∑
n�x

vΩ(n) � x(log 2x)v−1 (4.8)

and ∑
k2�x

gcd(k1,k2)=1

χ(k2)vΩ(k2) � τ(k1)x exp{−3
√

log 2x}, (4.9)

for any v ∈ [0, 1]. When k1 = 1 the latter bound follows from the fact that the corresponding
Dirichlet series can be embedded holomorphically into a zero-free region for L(s, χ). The general
case then follows from an application of Möbius inversion.

For fixed values of h and k1, (4.9) and (4.8) imply that the overall contribution to σ1 from
n � X ′/Zk1 is

� τ(k1)Z
h

exp{−3
√

log 2Y/h}
∑

n�X′/Zk1

vΩ(n)

� τ(k1)X ′

hk1
(log(2max{1, hY 2/X ′}))v−1 exp{−3

√
log 2Y/h}.

Here we have used the fact that X ′/Zk1 � hX ′/Z2 = hY 2/X ′, since k1 � Z/h. Next, on breaking
the interval into dyadic intervals we deduce from (4.8) that∑

Y/k1<n�Z/k1

vΩ(n)

n
� log(X ′/Y 2) max

H>hY/Z

∑
H<n�2H

vΩ(n)

n

� log(X ′/Y 2)(log(2max{1, hY 2/X ′}))v−1,

for v ∈ [0, 1]. For fixed values of h and k1, it therefore follows from (4.9) that the contribution from
n > X ′/Zk1 is

� τ(k1)X ′

hk1
exp{−3

√
log 2Y/h}

∑
Y/k1<n�Z/k1

vΩ(n)

n

� τ(k1)X ′

hk1
log(X ′/Y 2)(log(2max{1, hY 2/X ′}))v−1 exp{−3

√
log 2Y/h}.

Combining these estimates with partial summation, we therefore deduce that

σ1 � X ′(log log X ′)
∑
h�Y

(
vΩ(h)

h
(log(Z/h))2(log(2max{1, hY 2/X ′}))v−1

× exp{−3
√

log 2Y/h}
)

� X ′(log log X ′)3(log Y )2v−2,

which is satisfactory for (4.7).
To bound σ2, we estimate trivially the sum over k2 as min{Z/h,X ′/hk1n}. Arguing as above,

it follows that

σ2 � X ′ log(X ′/Y 2)
∑

Y <h�Z

vΩ(h)

h

∑
k1�Z/h

(log Y )v−1

k1

� X ′(log log X ′)3(log Y )2v−2.

This therefore completes the proof of (4.7).
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The rest of the argument is inspired by the proof of [HT98, Theorem 21(ii)]. We define the set
of primes E := {p prime : 2 < p � Y }, and introduce the quantities

Ω(m,E) :=
∑
pν‖m
p∈E

ν, E(x) :=
∑
p�x
p∈E

1
p
,

for any m ∈ N and any x > 0. We will make use of the well-known bound (cf. [HT98, Exercise 04])

#{m � x : Ω(m,E) � λE(x)} � x

(log x)Q(λ)(log log x)1/2
, (4.10)

where Q is given by (4.6), and which is valid for any λ ∈ [1, 2]. We observe that∑
m∈B

|C(m)| �
∑

1�m�X′

∣∣∣∣ ∑
d|m

Y <d�Z

χ(d)
∣∣∣∣, (4.11)

where

Y =
X ′1/2

(log X ′)2A+2
, Z =

X ′

Y
= X ′1/2(log X ′)2A+2.

We will break the sum over m into three parts.

Let B1 denote the set of positive integers m � X ′ such that

Ω(m,E) � E(X ′)/ log 2,

let B2 denote the corresponding set for which

E(X ′)/ log 2 < Ω(m,E) � 2E(X ′),

and let B3 denote the remaining set of positive integers m � X ′. We proceed by writing
Sj =

∑
m∈Bj

|∑d χ(d)|, for 1 � j � 3, with the conditions on d as in (4.11). We then have

S1 �
∑

m∈B1

∑
d|m

Y <d�Z

1 =
∑

h+k�E(X′)/ log 2

∑
Y <d�Z

Ω(d,E)=h

∑
n�X′/d

Ω(n,E)=k

1.

Since E(X ′/d) = E(X ′) for d � Z, an application of [HT98, Theorem 08] yields∑
n�X′/d

Ω(n,E)=k

1 � X ′

d
exp{−E(X ′)}E(X ′)k

k!
,

uniformly for k � (3 − ε)E(X ′). Hence a repeated application of [HT98, Theorem 08] reveals that∑
Y <d�Z

Ω(d,E)=h

∑
n�X′/d

Ω(n,E)=k

1 � X ′ log(Z/Y ) exp{−2E(X ′)}E(X ′)h

h!
E(X ′)k

k!
,

uniformly for h, k � (3 − ε)E(X ′). It is clear that log(Z/Y ) � log log X ′ and

E(X ′) = E(Y ) = log log Y + O(1) = log log X ′ + O(1). (4.12)

Moreover, the binomial theorem implies that

�!
∑

h+k=�

1
h!k!

=
∑

0�h��

�!
h!(� − h)!

= 2�,
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for fixed �. We therefore deduce from [HT98, Theorem 09] that

S1 � X ′ log log X ′ ∑
��E(X′)/ log 2

exp{−2E(X ′)}(2E(X ′))�

�!

� X ′(log log X ′)1/2 exp{−2Q(1/(2 log 2))E(X ′)}
� X ′(log log X ′)1/2(log X ′)−η,

which is satisfactory for the lemma.
We now turn to S2. Let S2(�) denote the overall contribution to S2 from m such that Ω(m,E) = �.

There are clearly O(log log X ′) possible values for �. Write � = λE(X ′), for some λ ∈ (1/ log 2, 2].
Then on combining the Cauchy–Schwarz inequality with (4.7) and (4.10), we obtain

S2(�)2 � X ′

(log X ′)Q(λ)(log log X ′)1/2
((λ/2)−λE(X′)σ(X ′, λ/2))

� X ′2(log log X ′)5/2

(log X ′)Q(λ)+λ(log(λ/2)−1)+2
,

since E(X ′) = log log X ′ + O(1) by (4.12). Hence it follows that

S2 =
∑

�	log log X′
S2(�) � X ′(log log X ′)9/4

(log X ′)Q(λ)/2+λ(log(λ/2)−1)/2+1
.

This is satisfactory for the statement of the lemma, since

Q(λ)/2 + λ(log(λ/2) − 1)/2 + 1 � Q(1/ log 2),

for λ � 1/ log 2.
It remains to deal with the sum S3, which corresponds to a summation over positive integers

m � X ′ for which Ω(m,E) > 2E(X ′). For this we will combine the Cauchy–Schwarz inequality
with (4.7) for v = 1 and the bound (4.10), to deduce that

S3 �
(

X ′σ(X ′, 1)
(log X ′)Q(2)(log log X ′)1/2

)1/2

� X ′(log log X ′)5/4

(log X ′)Q(2)/2
.

This too is satisfactory for the statement of the lemma, since Q(2)/2 > η, and so completes its
proof.

Combining Lemmas 5 and 6 in (4.5), we may now conclude that there exists an absolute constant
c1 > 0 such that

S0 � Lε∞r∞r′X2(log log X ′)c1

(log X ′)η
� Lε∞r∞r′X2

(log X ′)η−ε
� Lε∞r∞r′X2

(log X)η−ε
,

since we have assumed that r′X1−ε � 1 in the statement of Theorem 1. Once inserted into Lemma 4,
this therefore completes the proof of the theorem.

5. Linear transformations

Our proof of Theorems 2 and 3 will involve first establishing the relevant estimate for a specific
choice of j ∈ {∗, 0, 1}. The corresponding estimate for the remaining values of j will be obtained via
simple changes of variables. Thus it will be important to consider the effect of linear transformations
on the sums (1.9), and that is the purpose of the present section.

We begin by recording a preliminary result from group theory. For any group G and any subgroup
H ⊆ G, write [G : H] for the index of H in G.
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Lemma 7. Let A,B be subgroups of finite index in a group G, such that [G : A] and [G : B] are
coprime. Then we have

[G : A ∩ B] = [G : A][G : B].

Proof. For any x, y ∈ G we claim that either xA ∩ yB is empty, or else it is a left coset of A ∩ B
in G. Indeed, supposing that xA ∩ yB is non-empty, we let c ∈ xA ∩ yB. Note that xA = cA and
yB = cB. But then it follows that

xA ∩ yB = cA ∩ cB = c(A ∩ B)

as required. Thus it follows that the total number of left cosets of A ∩ B in G is

[G : A ∩ B] � [G : A][G : B].

However, by Lagrange’s theorem we have [G : A ∩ B] = [G : A][A : A ∩ B], whence [G : A] divides
[G : A ∩ B]. Similarly, [G : B] divides [G : A ∩ B]. Thus it follows that

[G : A][G : B] � [G : A ∩ B],

since gcd([G : A], [G : B]) = 1. Once coupled with our upper bound for [G : A ∩ B], this completes
the proof of the lemma.

It will be useful to have a convenient way of referring back to the statements of our main results.
Let us say that ‘Hypothesis-(j, k)’ holds if Sj(X;d,ΓD) satisfies the asymptotic formula described
in Theorem 3 for all L1, . . . , L4,R that satisfy NHk(d). Thus Hypothesis-(j, k) amounts to the
established existence of an asymptotic formula

Sj(X;d,ΓD) = δj,k(A)C0X
2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
,

for r′X1−ε � 1, under the assumption that NHk(d) holds. Here

C0 = C0(L1, . . . , L4;d,ΓD,R) :=
π4 meas(R)

det ΓD

∏
p>2

σp, (5.1)

and σp is given by (1.10) and (1.11).
Let L1, . . . , L4 ∈ Z[x1, x2] be binary linear forms, and let R ⊂ R2. Let (d,D) ∈ D, where D is

given by (1.8), and set

X := ΓD ∩ XR. (5.2)

Then for a given matrix M ∈ GL2(Z), we define the sum

SM :=
∑

y∈Z2, My∈X
2�y1, y2≡j mod 2

r

(
L1(My)

d1

)
r

(
L2(My)

d2

)
r

(
L3(My)

d3

)
r

(
L4(My)

d4

)
.

Here, as throughout this paper, we let GL2(Z) denote the set of non-singular 2 × 2 integer-valued
matrices with non-zero determinant. Note that SM depends on X,d,D, L1, . . . , L4 and j, in addition
to M. In particular we have SM = Sj(X;d,ΓD), when M is the identity matrix. In general let us
write ‖M‖ to denote the maximum modulus of the coefficients of M. Bearing all this notation in
mind, the following elementary result will prove useful.

Lemma 8. Let (j, k) ∈ {∗, 0, 1}×{0, 1, 2} and suppose that Hypothesis-(j, k) holds. Let M ∈ GL2(Z)
such that detM = 2m for some m ∈ Z�0, and define Mi(y) := Li(My). Let ε > 0 and suppose that
r′(L1, . . . , L4,R)X1−ε � 1. Assume that M1, . . . ,M4,RM satisfy NHk(d), where

RM := {M−1z : z ∈ R}. (5.3)
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Then we have

SM =
δj,k(AM)C0

detM
X2 + O

(
DεLε∞‖M‖εr∞(RM)r′X2

(log X)η−ε

)
,

where D = D1 · · ·D4, L∞ = L∞(L1, . . . , L4), r′ = r′(L1, . . . , L4,R).

It is important to note that the definition of σp that appears in (5.1) is precisely as in (1.11).
Thus it involves lattices that depend on L1, . . . , L4, rather than M1, . . . ,M4. The net outcome of
Lemma 8 is that, for linear transformations that preserve the relevant normalisation conditions and
have determinant 2m for some m � 0, the main term of the corresponding asymptotic formula
should be multiplied by δj,k(AM)(δj,k(A) detM)−1.

Proof of Lemma 8. Recall the definition (5.2) of X , and the notation introduced in (1.7). We begin
by noting that y ∈ Z2 and My ∈ X if and only if y ∈ ΛM ∩RM, where

ΛM := {y ∈ Z2 : Di | Li(My)} = Γ(D;M1, . . . ,M4),

and RM is given by (5.3). We claim that

det ΛM = detΓ(D;M1, . . . ,M4) = det Γ(D;L1, . . . , L4), (5.4)

for any matrix M ∈ GL2(Z) such that gcd(detM,D) = 1. In particular, since M has determinant
2m for some m ∈ Z�0, this holds for any D ∈ N4 such that 2 � D. Assume (5.4) to be true for the
moment, and note that

meas(RM) =
meas(R)
detM

, r′(M1, . . . ,M4,RM) = r′(L1, . . . , L4,R) = r′,

in the notation of (1.3). Recalling the definitions in (1.1) and (1.2), we therefore deduce from
Hypothesis-(j, k) that

SM =
δj,k(AM)π4 meas(RM)
det Γ(D;M1, . . . ,M4)

X2
∏
p>2

σ′
p + O

(
DεL∞(M1, . . . ,M4)εr∞(RM)r′

X2

(log X)η−ε

)

=
δj,k(AM)π4 meas(R)

(detM)(det Γ(D;L1, . . . , L4))
X2

∏
p>2

σ′
p + O

(
DεL∞(M1, . . . ,M4)εr∞(RM)r′

X2

(log X)η−ε

)
,

where

σ′
p =

(
1 − χ(p)

p

)4 ∞∑
a,b,c,d=0

χ(p)a+b+c+dρ0(pa, pb, pc, pd;D;M1, . . . ,M4)−1.

On noting that L∞(M1, . . . ,M4) � L∞(L1, . . . , L4)‖M‖, we see that the error term in this estimate
for SM is as claimed in the statement of the lemma. Moreover, (1.10) and (5.4) give

ρ0(h;D;M1, . . . ,M4) =
det Γ

(
([D1, d1h1], . . . , [D4, d4h4]);M1, . . . ,M4

)
detΓ(D;M1, . . . ,M4)

= ρ0(h;D;L1, . . . , L4),

for any h ∈ N4 such that 2 � h1 · · · h4. Hence σ′
p = σp.

In order to complete the proof of Lemma 8 it remains to establish (5.4). For any matrix N ∈
GL2(Z) and any lattice Λ ⊆ Z2, it is easily checked that

det(NΛ) = detN detΛ,

where NΛ := {Nx : x ∈ Λ}. It therefore follows that

detΛM =
det(MΛM)

detM
.

1394

https://doi.org/10.1112/S0010437X08003692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003692


Binary linear forms as sums of two squares

Note that MΛM = M ∩ Γ(D;L1, . . . , L4), where M = {My : y ∈ Z2}. In particular we have
detM = detM. To establish (5.4), it therefore suffices to show that

det(L ∩ Γ(D;L1, . . . , L4)) = (det L)(det Γ(D;L1, . . . , L4))

for any lattice L ⊆ Z2 such that gcd(det L,D1D2D3D4) = 1. But this follows immediately from
Lemma 7, since the determinant of a sublattice of Z2 is equal to its index in Z2.

6. Proof of Theorem 2

We are now ready to establish the statement of Theorem 2. The proof will be in two stages: first we
will establish the result for j = ∗, and then we will proceed to handle the cases j ∈ {0, 1}. Our proof
of the estimate for j = ∗ is actually a straightforward generalisation of an argument already present
in Heath-Brown’s work [HB03, § 7], but we will include full details here for the sake of completeness.

Assume that (d,D) ∈ D, where D is given by (1.8). In particular it follows that there exists
x ∈ ΓD such that x1 ≡ 1 mod 4, where ΓD is given by (1.7). Indeed, the vector x = D2

1D
2
2D

2
3D

2
4(1, 1)

is clearly satisfactory. In estimating S∗(X;d,ΓD), our goal is to replace the summation over lattice
points x ∈ ΓD by a summation over all integer points restricted to a certain region. Given any
basis e1, e2 for ΓD, let Mi(v) be the linear form obtained from d−1

i Li(x) via the change of variables
x �→ v1e1 + v2e2. We claim that there is a choice of basis such that

Mi(v) ≡ v1(mod 4), (6.1)

for each i, and also

‖M‖ � detΓD, (6.2)

where M denotes the matrix formed from the basis vectors e1, e2. To check the claim we let e1, e2

be a minimal basis for ΓD. Thus we may assume that

|e1||e2| � detΓD. (6.3)

Now there must exist integers w1, w2 such that w1e11 + w2e21 ≡ 1 mod 4, since we have seen that
there exists x ∈ ΓD such that x1 ≡ 1 mod 4. In particular we may assume without loss of generality
that e11 is odd, and after multiplying e1 by ±1, we may as well assume that e11 ≡ 1 mod 4. Next,
on replacing e2 by e2 − ke1 for a suitable integer k ∈ {0, 1, 2, 3}, we may further assume that
4 | e21. In view of (6.3), this basis certainly satisfies (6.2). Moreover, the normalisation conditions
on L1, . . . , L4 imply that

diMi(v) = Li(v1e1 + v2e2) ≡ di(v1e11 + v2e21) ≡ div1 (mod 4),

which therefore establishes (6.1) since each di is odd.

Note that we must sum only over odd values of v1, since we have been summing over odd x1 in
S∗(X;d,ΓD). On recalling the definition (5.3) of RM, we may therefore deduce that

S∗(X;d,ΓD) =
∑

v∈Z2∩XRM
2�v1

r(M1(v)) · · · r(M4(v)).

Note that (6.1) holds by construction, and also Mi(v) > 0 for every v in the summations. We are
therefore in a position to apply Theorem 1 to estimate this quantity. In view of (6.2) and the fact
that detΓD | D = D1 · · ·D4, we may deduce that

L∞(M1, . . . ,M4) � ‖M‖L∞(L1, . . . , L4) � DL∞,
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where L∞ = L∞(L1, . . . , L4), as usual. Next we deduce from (6.2) that

r∞(RM) � ‖M‖
|detM|r∞(R) � r∞(R) = r∞,

since |detM| = detΓD, and furthermore

r′(M1, . . . ,M4,RM) = r′(L1, . . . , L4,R) = r′.

Moreover, it is clear that meas(RM) = meas(R)/|det M|. It therefore follows from Theorem 1 that

S∗(X;d,ΓD) =
4π4 meas(R)

detΓD
X2

∏
p>2

σ∗
p + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
,

where σ∗
p is given by (1.5), but with ρ∗(h) = det Γ(h;M1, . . . ,M4). To calculate this quantity we

note that it is just the index of

Λ1 = {x = v1e1 + v2e : v ∈ Z2, hi | Mi(v)}
in Λ2 = {x = v1e1 + v2e : v ∈ Z2}, whence

ρ∗(h) = [Λ1 : Λ2] =
detΛ1

detΛ2
=

det{x ∈ Γ(D;L1 . . . , L4) : dihi | Li(x)}
detΓ(D;L1, . . . , L4)

= ρ0(h;D;L1, . . . , L4),

in the notation of (1.10). This therefore establishes the estimate in Theorem 2 when j = ∗.
In order to complete the proof of Theorem 2 it remains to handle the cases j = 0, 1. For this we

carry out the change of variables x = My, with

M =
(

1 0
j 2

)
.

This has the effect of transforming the sum into one over integers y such that y1 is odd, without any
restriction on y2. Moreover, it is clear that Li(My) = Li(y1, jy1+2y2) ≡ diy1 mod 4, so that together
with RM, the new linear forms satisfy NH0(d). Since we have already seen that Hypothesis-(∗, 0)
holds, we may deduce from Lemma 8 that

Sj(X;d,ΓD) =
δ∗,0(AM)C0

2
X2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
,

for j = 0, 1, where C0 is given by (5.1). The statement of Theorem 2 follows since δ∗,0(AM) = δ∗ = 4,
by (3.4).

7. Proof of Theorem 3

We are now ready to establish Theorem 3. Let (j, k) ∈ {∗, 1, 2} × {1, 2} and let (d,D) ∈ D. It will
ease notation if we write Sj,k(X) to denote the sum Sj(X;d,ΓD), when L1, . . . , L4,R are assumed
to satisfy NHk(d). Furthermore, let us write

Sα := {y ∈ Z2 : y1 ≡ 1 mod 4, y2 ≡ α mod 2}, (7.1)

for α ∈ {∗, 0, 1}. We begin by showing how an estimate for k = 1 can be used to deduce a corre-
sponding estimate for the case k = 2.

Suppose that k = 2 and j = 1. We may clearly assume that the summation in S1,2(X) is only
over values of x1 ≡ 1 mod 4 and x2 ≡ d2 mod 4, since the summand vanishes unless

d1x1 ≡ 2−k1L1(x) ≡ d1(mod4), x2 ≡ 2−k2L2(x) ≡ d2(mod4).
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Write κ = ±1 for the residue modulo 4 of d2, and choose an integer c such that

aj + bj(κ + 4c) 
= 0,

for j = 3, 4, where aj , bj are as in (1.13). This is plainly always possible with c ∈ {0, 1, 2}. We will
carry out the transformation x = Mc,d2y, with Mc,d2 given by (3.15). Such a transformation is
valid if and only if there exists an integer y2 such that x2 − (κ + 4c)x1 = 4y2 where κ ≡ d2 mod 4.
Thus the transformation is certainly valid for x1 ≡ 1 mod 4 and x2 ≡ d2 mod 4, bringing the linear
forms into new forms Mi(y) = Li(Mc,d2y), say. It is not hard to see that M1, . . . ,M4,RMc,d2

will
satisfy NH1(d). There is now no 2-adic restriction on y2, so that the summation is over y ∈ S∗,
in the notation of (7.1). We clearly have r∞(RMc,d2

) � r∞(R). By combining Lemma 8 with the
assumption that Hypothesis-(∗, 1) holds, we therefore obtain

S1,2(X) =
δ∗,1(AMc,d2)C0

4
X2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
,

where C0 is given by (5.1). This is clearly satisfactory for the statement of Theorem 3, since (3.16)
yields δ1,2(A) = δ∗,1(AMc,d2)/4.

To handle S0,2(X) we will need to extract 2-adic powers from the variable x2. Accordingly, we
write x1 = y1 and x2 = 2ξy2, for ξ � 1 and y2 ≡ 1 mod 2. This corresponds to the transformation
x = Mξy with Mξ given by (3.14). The resulting linear forms Mi(y) = Li(Mξy) will continue to
satisfy NH2(d), and the summation will be over y ∈ S1. Moreover, the restriction x ∈ XR in the
definition of S0,2(X) forces the upper bound ξ � log(r∞X). It turns that this is too crude for our
purposes and we must work a little harder to control the contribution from large values of ξ. Recall
the definitions (1.1) and (1.2) of L∞ and r∞. We will show that∑

y∈Z2

Mξy∈X

r

(
L1(Mξy)

d1

)
· · · r

(
L4(Mξy)

d4

)
� (D2ξL∞)ε

(
r2
∞

X2

2ξ
+ r1+ε

∞ X1+ε

)
. (7.2)

Define the multiplicative function r1 via

r1(pν) =

{
1 + ν, if p | d1d2d3d4,
r(pν), if p � d1d2d3d4,

for any prime power pν . Then we have

r

(
L1(Mξy)

d1

)
· · · r

(
L4(Mξy)

d4

)
� r1(F (y)),

where F (y) = L1(Mξy) · · ·L4(Mξy). The maximum modulus of the coefficients of this binary
form is O(L4∞24ξ). Hence (7.2) follows easily on taking X1 = r∞X and X2 = 2−ξr∞X in [BB06,
Corollary 1]. Note that it would not be sufficient to work instead with the trivial upper bound
O(Lε∞r2+ε∞ 2−ξX2+ε).

To complete our estimate for S0,2(X) we will combine Lemma 8 with Hypothesis-(1, 2) to handle
the contribution from ξ � ξ1, and we will use (7.2) to handle the contribution from ξ1 < ξ �
log(r∞X), for a value of ξ1 to be determined. We claim that

r∞ � 2L∞r′. (7.3)

To see this, suppose that z ∈ R is such that r∞ = |z1|, say. Then it follows that

r∞ � |a3b4 − a4b3||z1| = |b4L3(z) − b3L4(z)| � 2L∞r′,

in the notation of (1.13). Write

E1 =
2εξX2

(log X)η−ε
, E2 = L∞2−ξ+εξX2 + r′ε2εξX1+ε,
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and choose ξ1 ∈ N such that 2ξ1−1 < L∞(log X)η � 2ξ1 . Next we note that

C0 � Lε
∞Dε r2∞

det ΓD
� DεL1+ε

∞ r∞r′

in (5.1). Hence we deduce from (3.13) and (7.3) that

S0,2(X) =
ξ1∑

ξ=1

δ1,2(AMξ)C0

2ξ
X2 + O

(
DεLε

∞r∞r′
( ξ1∑

ξ=1

E1 +
log(r∞X)∑
ξ=ξ1+1

E2

))

=
∞∑

ξ=1

δ1,2(AMξ)C0

2ξ
X2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)

= δ0,2(A)C0X
2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
.

This completes the treatment of S0,2(X).
The estimate for S∗,2(X) = S0,2(X)+S1,2(X) is now an immediate consequence of our estimates

for S0,2(X) and S1,2(X). Indeed we plainly have

δ∗,2(A) = δ0,2(A) + δ1,2(A) =
∞∑

ξ=0

δ1,2(AMξ)
2ξ

.

The argument that we have presented here makes crucial use of our previous work [BB06] to control
the contribution from large values of ξ that feature in the change of variables. This basic technique
will recur at several points in the proof of Theorem 3. Rather than repeating exactly the same
details each time, however, we will merely refer the reader back to (7.2) in order to draw attention
to this basic chain of reasoning.

Let j ∈ {∗, 0, 1}. It remains to estimate Sj,1(X). In fact it will suffice to deal only with the case
j = 1. Indeed, the remaining cases are handled just as above, leading to (3.13) in the case k = 1.
Assume that L1, . . . , L4,R satisfy NH1(d). We have

S1,1(X) =
∑

x∈S1∩X
r

(
L1(x)

d1

)
r

(
L2(x)

d2

)
r

(
L3(x)

d3

)
r

(
L4(x)

d4

)
,

where S1 is given by (7.1) and X = ΓD ∩ XR. Let us write S(X) = S1,1(X) for short. Our aim is
to find a linear change of variables x = My, for some M ∈ GL2(Z), taking the linear forms Li into
forms Mi(y) = Li(My) such that

2−�iMi(y) ≡ diy1(mod 4), (7.4)

for certain �i ∈ Z�0. On setting M ′
i = 2−�iMi, so that M ′

1, . . . ,M
′
4 satisfy NH0(d), we will then be

in a position to apply Lemma 8 under the assumption that Hypothesis-(j, 0) holds for j ∈ {∗, 0, 1}.
Indeed, we have already seen that Theorem 2 holds in the previous section.

Let x ∈ S1 ∩ X , so that x1 ≡ 1 mod 4 and 2 � x2. Recall the assumption that (3.1) holds for
appropriate kj , a

′
j , b

′
j , µj , νj. At certain points of the argument we will find it convenient to extract

2-adic factors from the terms 2−kjLj(x). Let us write

ξj = ν2(2−kjLj(x)), (7.5)

for j = 3, 4. This will allow certain linear transformations to take place, and it turns out that the
matrices needed to bring Li in line with (7.4) will all take the shape

M =
(

1 0
A 2ξ+2

)
, (7.6)
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for appropriate non-negative integers A ∈ [0, 2ξ+2) and ξ. Here ξ will be a simple function of ξ3 and
ξ4. Assuming that we are now in a position to combine Lemma 8 with Hypothesis-(j, 0), we will
then obtain a contribution

=
δj,0(AM)C0

2ξ+2
X2 + O

(
DεLε∞r∞r′2ξεX2

(log X)η−ε

)
=

δjC0

2ξ+2
X2 + O

(
DεLε∞r∞r′2ξεX2

(log X)η−ε

)
,

(7.7)

since (3.4) implies that δj,0(B) = δj , and furthermore,

r∞(RM) � ‖M‖
detM

r∞(R) = r∞(R) = r∞.

Finally, we will need to sum this quantity over all available ξ3 and ξ4. It is here that we must return
to (7.2) and repeat the sort of argument used there to handle the large values of ξ3 and ξ4.

Under any transformation x = My, with M taking the shape (7.6), it follows from condition
(iv′)d in the introduction that

2−kjLj(My) ≡ djy1(mod4)

for j = 1, 2. As long as our transformations have this general shape therefore, we will be able
to focus our attention on the effect that the transformation has on the linear forms L3 and L4.
Unfortunately, bringing these forms into the required shape is not entirely straightforward, and
the permissible choice of M depends intimately upon the values of a′j, b

′
j , µj , νj in (3.1). We may

assume that these constants satisfy (3.2) and (3.3), and we proceed to consider a number of distinct
subcases separately.

7.1 The case max{µ3, ν3} ��� 1 and max{µ4, ν4} ��� 1
This case is equivalent to the case in which precisely two of the exponents µ3, µ4, ν3, ν4 are non-zero,
which in turn is equivalent to the statement that µj + νj � 1 for j = 3, 4, since µ3ν3 = µ4ν4 = 0. In
particular it follows that 2−kjLj(x) is odd for any odd values of x1, x2. Recall that the summation
is over x1 ≡ 1 mod 4 and x2 odd in S(X). Let us write g for the number of values of γ ∈ {−1, 1}
such that

2−kjLj(1, γ) = 2µj a′j + 2νjb′jγ ≡ dj(mod4) (7.8)
for j = 3 and 4. Our aim is to show that

δ1,1(A) = g, (7.9)

which we claim is satisfactory for (3.6)–(3.8). To see this, we suppose first that ν3, ν4 � 1. Then it
is clear that g = 2 if a′j is congruent to dj − 2νj modulo 4 for j = 3, 4, and g = 0 otherwise. When
µ3, µ4 � 1, we have g = 1 if b′3d3 − 2µ3 ≡ b′4d4 − 2µ4 mod 4, and g = 0 otherwise. When µ4, ν3 � 1
we have g = 1 when a′3 ≡ d3 − 2ν3 mod 4, the value of γ being given by the residue of b′4d4 − 2µ4

modulo 4, and g = 0 otherwise. Finally, the case µ3, ν4 � 1 is symmetric.
It remains to establish (7.9). We may clearly proceed under the assumption that g � 1. Let us

write S(X) =
∑

γ S(X; γ), where S(X; γ) is the overall contribution to S(X) from vectors such
that x2 ≡ γ mod 4, and the summation is over the g values of γ for which (7.8) holds. We will carry
out the transformation

M =
(

1 0
γ 4

)
.

This transformation is valid if and only if there exists an integer y2 such that x2 = γy1 + 4y2,
for each x in S(X). This is clearly true for x1 = y1 ≡ 1 mod 4 and x2 ≡ γ mod 4. Next we
observe that (7.4) holds for the new linear forms Mi(y) = Li(My), since (7.8) holds for j = 3, 4.
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The summation over y is now over y ∈ S∗, since as usual the condition y1 ≡ 1 mod 4 is automatic for
odd values of y1 such that r(M1(y)/d1) 
= 0. In line with (7.7), we therefore deduce from Lemma 8
and Hypothesis-(∗, 0) that

S(X; γ) =
δ∗C0

4
X2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
= C0X

2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
,

when γ is admissible. We complete the proof of (7.9) by summing over the g admissible choices
for γ.

7.2 The case µ3 = µ4 = 0 and max{ν3, ν4} ��� 1 > min{ν3, ν4} = 0
For reasons of symmetry we may restrict ourselves to the case ν3 � 1 and ν4 = 0. For x ∈ S1 ∩ X
the term 2−k3L3(x) is odd, whereas 2−k4L4(x) is always even. We note that r(L3(x)/d3) is non-zero
if and only if a′3 ≡ d3 − 2ν3 mod 4. We must show that (3.9) holds with (j1, j2) = (4, 3).

Let us write ξ4 = ν2(2−k4L4(x)), as in (7.5). Then necessarily ξ4 � 1, since x ∈ S1. We now see
that, in order for r(2−k4−ξ4L4(x)/d4) to be non-zero, it is necessary and sufficient that

x2 ≡ (d42ξ4 − a′4x1)b′4 ≡ (d42ξ4 − a′4)b′4x1 (mod 2ξ4+2), (7.10)

where b′4 is the multiplicative inverse of b′4 modulo 2ξ4+2. Here, we have used the fact that x1 ≡
1 mod 4 in the summation over x. For each ξ4 � 1 we make the transformation

M =
(

1 0
A 2ξ4+2

)
, (7.11)

where A ∈ [0, 2ξ4+2) denotes the residue of (d42ξ4 − a′4)b′4 modulo 2ξ4+2. This brings L3 and L4

into a satisfactory shape for NH0(d), by which we mean that 2−k3L3(My) ≡ d3y1 mod 4 and
2−k4−ξ4L4(My) ≡ d4y1 mod 4. Moreover, the summation is now over y ∈ S∗. In line with (7.7),
and using the estimate (7.2) to handle large values of ξ4, we therefore deduce from Lemma 8 and
Hypothesis-(∗, 0) that

S(X) =
∞∑

ξ4=1

δ∗C0

2ξ4+2
X2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
= C0X

2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
.

Thus δ1,1(A) = 1 when a′3 ≡ d3 − 2µ3 mod 4, as claimed in (3.9).

7.3 The case ν3 = ν4 = 0 and max{µ3, µ4} ��� 1 > min{µ3, µ4} = 0
The treatment of this case runs parallel to the previous section. For reasons of symmetry we may
restrict ourselves to the case µ3 � 1 and µ4 = 0. For x ∈ S1 ∩ X the term 2−k3L3(x) is odd,
whereas 2−k4L4(x) is always even. We now observe that r(L3(x)/d3) is non-zero if and only if
x2 ≡ b′3d3 − 2µ3 mod 4. Our task is to show that (3.10) holds.

Let us write ξ4 = ν2(2−k4L4(x)) � 1. Arguing as above we see that in order for
r(2−k4−ξ4L4(x)/d4) to be non-zero, it is necessary and sufficient that (7.10) holds. In particular
we must take care to sum only over those ξ4 for which

a′4 + b′3b
′
4d3 ≡ 2µ3 + 2ξ4(mod4). (7.12)

For each such ξ4 we make the transformation (7.11) as above, which again brings L3 and L4 into
a satisfactory shape for NH0(d), and the summation is over y ∈ S∗. We may now deduce from
Lemma 8 and Hypothesis-(∗, 0), together with the argument involving (7.2), that

S(X) =
∑
ξ4

δ∗C0

2ξ4+2
X2 + O

(
DεLε∞r∞r′X2

(log X)η−ε

)
,
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where the sum is over ξ4 � 1 such that (7.12) holds. If a′4 + b′3b′4d3 − 2µ3 ≡ 2 mod 4, then we must
restrict attention to the single value ξ4 = 1, which gives δ1,1(A) = 1/2. If however a′4+b′3b′4d3−2µ3 ≡
0 mod 4, then we must restrict attention to ξ4 � 2, giving δ1,1(A) =

∑∞
ξ4=2 2−ξ4 = 1/2. This

therefore confirms (3.10).

7.4 The case µ3 = ν3 = µ4 = ν4 = 0
We reason in an analogous manner to the previous sections. Our valuation of δ1,1(A) will depend
on the 2-adic valuation v of a′3b′4 − a′4b′3, as defined in (3.11). Our aim is to show that (3.12) holds.

Let x ∈ S1 ∩ X , and introduce parameters ξ3, ξ4 � 1 such that (7.5) holds for j = 3, 4. Let us
deal with the case ξ4 � ξ3. The system

a′3x1 + b′3x2 ≡ 0(mod2ξ3), a′4x1 + b′4x2 ≡ 0(mod2ξ4)

is equivalent to

(a′3b
′
4 − a′4b

′
3)x1 ≡ 0(mod2ξ3), a′4x1 + b′4x2 ≡ 0(mod2ξ4).

Let us write a′3b
′
4 − a′4b

′
3 = 2vc34, with c34 odd. We clearly have ξ3 � v. Moreover, the term

r(2−k4−ξ4L4(x)/d4) is non-zero if and only if (7.10) holds. Assuming this to be the case, we must
therefore have

a′3x1 + b′3x2 ≡ (a′3 + b′3b′4(d42ξ4 − a′4))x1 ≡ b′4c342v + b′3b′4d42ξ4(mod2ξ3+2).

Provided that

b′4c342v + b′3b′4d42ξ4 ≡ 2ξ3d3(mod2ξ3+2), (7.13)

therefore, it follows that we may again carry out the transformation (7.11) to bring L3 and L4 into a
satisfactory shape for NH0(d). The summation is now over y ∈ S∗. We easily deduce from Lemma 8
and Hypothesis-(∗, 0) that there is the contribution

δ∗C0

2ξ4+2
X2 + O

(
DεLε∞r∞r′2εξ4X2

(log X)η−ε

)
,

for fixed 1 � ξ3 � ξ4 such that (7.13) holds. Using an estimate of the type (7.2), it is an easy
matter to deduce that the overall contribution to the error in summing over the available ξ3, ξ4 is
O

(
DεLε∞r∞r′X2(log X)−η+ε

)
. Moreover, we deduce that

δ1,1(A) =
∑

ξ3=ξ4

1
2ξ4

+ 2
∑

ξ3<ξ4

1
2ξ4

,

for a summation over ξ3, ξ4 � 1 such that (7.13) holds. To evaluate this quantity we consider a
number of subcases, beginning with the contribution from ξ3 = ξ4. Then we must have 1 � ξ3 � v−1
and b′3b′4d4 + 2v−ξ3 ≡ d3 mod 4. Let us write W1 for the set of all such positive integers ξ3. Then we
obtain the overall contribution

∑
ξ∈W1

1
2ξ

=


0, if v = 1,

1 − 1/2v−2, if v � 2 and b′3d3 ≡ b′4d4 mod 4,

1/2v−1, if v � 2 and b′3d3 ≡ −b′4d4 mod 4.

(7.14)

Turning to the contribution from ξ3 < ξ4, it follows from (7.13) that ξ3 = v and b′4c34 + 2ξ4−v ≡
d3 mod 4. Write W2 for the set of all such vectors (ξ3, ξ4) ∈ N2. Then a little thought reveals that
we obtain a contribution

2
∑

(ξ3,ξ4)∈W2

1
2ξ4

=
1
2v

from this case. Combining this with (7.14), we therefore conclude the proof of (3.12).
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of which is gratefully acknowledged. While working on this paper the second author was supported
by EPSRC grant number EP/E053262/1. It is a pleasure to thank the referee for his careful reading
of the manuscript.

References
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