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Abstract

The eigentime identity for one-dimensional diffusion processes on the halfline with an
entrance boundary at ∞ is obtained by using the trace of the deviation kernel. For the
case of an exit boundary at ∞, a similar eigentime identity is presented with the aid of
the Green function. Explicit equivalent statements are also listed in terms of the strong
ergodicity or the uniform decay for diffusion processes.
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1. Introduction and main results

In this paper we study the eigentime identity for one-dimensional nonsingular diffusion
processes on the halfline R+ := [0, +∞) with a reflecting boundary at 0, whose definition is
generalized from finite Markov chains (cf. [1, Chapter 3]) to this setting. Roughly speaking,
we are looking for some typical quantities in terms of some random times to characterize the
behavior of one-dimensional diffusion processes. The readers are urged to refer to [13] and [14]
for the background and the present status of the study on this topic. We would like to indicate
that the eigentime identity raises the study of more general passage times, e.g. lifetime, which
is further applied to strong stationary times for the diffusion case; see our recent result [3] for
details.

Let a be a positive and continuous function on [0, +∞) and b be a locally integrable function
on [0, +∞). Consider the diffusion operator

L := a(x)
d2

dx2 + b(x)
d

dx
, (1.1)

with diffusion coefficient a and drift b acting on a domain of functions denoted by D(L)

subject to some appropriate smoothness and boundary conditions (see, e.g. [2, pp. 15–17]).
Define c(x) = ∫ x

0 b(u)/a(u) du for all x > 0, and μ(dx) = a(x)−1ec(x) dx. Then, it is well
known that (L, D(L)) is a nonpositive definite, and self-adjoint operator on L2(μ). Adopting
the standard Feller’s notation (see [7], [10]) for a one-dimensional diffusion operator, μ(dx)

and s(x) := ∫ x

0 e−c(u) du are called the speed measure and the scale function, respectively.
Let X = (Xt : t ≥ 0) be a diffusion process generated by L on the halfline [0, ∞) with

reflecting boundary 0. We investigate the stated problem according to the type of boundary ∞.
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Eigentime identity for one-dimensional diffusion processes 225

We first consider the process (Xt ) with ∞ the reflecting (Neumann) boundary, i.e. the process
starting from any point will certainly come back. Define

R =
∫ ∞

0
μ((0, x)) ds(x) and S =

∫ ∞

0
s(x)μ(dx). (1.2)

Actually, by Feller’s terminology (see [5], [6]), we will consider ∞ as an entrance bound-
ary, where boundary ∞ is called entrance if R = ∞ and S < ∞, or, equivalently, S <

∞, μ((0, ∞)) < ∞, and s(∞) = ∞. Let π(dx) = μ(dx)/Z, where Z := μ([0, ∞)) < ∞.
Then L is a self-adjoint operator in L2(π). Denote the essential spectrum of L in L2(π)

by σess(L). We write λ ∈ σess(L) if, for any ε > 0, the closure of the range of 1(λ−ε,λ+ε)(L) is
infinite-dimensional, where 1 is the indicator function. For a deeper discussion of the essential
spectrum, see [18]. When σess(L) = ∅, denote all the eigenvalues of −L in L2(π) by

0 = λ0 < λ1 < λ2 < · · · .

Let Hy := inf{t ≥ 0, Xt = y} be the hitting time of y. Define the average hitting time by

T =
∫∫

ExHyπ(dx)π(dy).

The eigentime identity for (Xt ) is presented as follows.

Theorem 1.1. Let L be defined as in (1.1) with positive and continuous function a and locally
integrable function b. Assume that R = ∞ and S < ∞. Then σess(L) = ∅. Moreover,
for the one-dimensional diffusion process (Xt ) generated by L with reflecting boundary 0, the
eigentime identity is

T =
∞∑

n=1

λ−1
n < ∞,

where Ex stands for the expectation taken for the underlying process starting from x.

Before moving on, let us make some comments on Theorem 1.1.

(a) The average hitting time is closely related to time-asymptotic behaviors of the diffusion
process; see [1, Chapter 4] for the corresponding results for finite reversible Markov
chains.

(b) From Theorem 2.1 below, T < ∞ implies the existence of a spectral gap of −L in L∞(π),
which measures the rate of the strong ergodicity.

(c) The method to prove this result is based on the fact that the trace of the deviation kernel
with respect to π equals the average hitting time (see Lemma 2.1 below).

We now turn to the case with ∞ as the absorbing (Dirichlet) boundary, i.e. the diffusion
process starting from any point will be certainly absorbed at ∞. In fact, we will study ∞ as
an exit boundary (see [5], [6]), where boundary ∞ is called exit if R < ∞ and S = ∞, or
equivalently, R < ∞, μ((0, ∞)) = ∞, and s(∞) = ∫ ∞

0 e−c(u) du < ∞.
It is already known that when R < ∞, the corresponding diffusion process is not unique

(see, e.g. [8] and the references therein). We are interested in the minimal process (Xt ). (The
minimal process is a Markov process on ([0, ∞], B([0, ∞])) with {P̃ (t, x, dy)} as transition
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probabilities, where P̃ (t, x, B) = P(t, x, B) if x ∈ R+, B ∈ B(R+); P̃ (t, x, {∞}) =
1 − P(t, x, R+) if x ∈ R+; P̃ (t, ∞, R+) = 0, P̃ (t, ∞, {∞}) = 1, and P(t, x, dy) is the
subprobability associated with L.) Define the lifetime

ζ = lim
x→∞ Hx.

When the essential spectrum of L, with respect to L2(μ), satisfies σess(L) = ∅, we denote all
eigenvalues of −L by

0 < λ1 < λ2 < · · · .

The eigentime identity for the minimal diffusion process is presented in the following theorem.

Theorem 1.2. Let L be defined as in (1.1) with positive and continuous function a and locally
integrable function b. Assume that R < ∞ and S = ∞. Then σess(L) = ∅. Moreover, for the
one-dimensional minimal diffusion process (Xt ) generated by L with reflecting boundary 0,
the eigentime identity reads as

E0ζ =
∞∑

n=1

λ−1
n < ∞.

We will also give some notes on this theorem.

(a) We would like to use the approximation processes of [3] to give the distribution of
the lifetime, but the main obstacle is to clarify the spectral relationship between the
original process and the approximating processes. The eigentime identity established in
Theorem 1.2 helps us to solve this problem (see [3, Lemma 2.7]).

(b) It is well known that R is just the expectation of the first passage time of (Xt ) from 0 to
∞, i.e. R = E0ζ < ∞ (see [8]), which implies the uniform decay of the process; see
Theorem 3.1 below.

(c) Compared with earlier works (see [13], [14], and the references therein), the equation
for the Laplace transform of the hitting time will become a powerful tool in order to deal
with our setting.

The rest of this paper is organized as follows. In the next section we will present the proof
of Theorem 1.1 first, and then illustrate the relationship among T , eigenvalues of −L, and the
strong ergodicity. In Section 3 we will complete the proof of Theorem 1.2 and estimate the
uniform decay rate by the spectrum in L2(μ).

2. Entrance boundary

In this section we are committed to the study of the diffusion process (Xt ) with ∞ the
entrance boundary generated by L.

2.1. Proof of Theorem 1.1

Assume that (Pt , t ≥ 0) is the Markov semigroup associated with L and p(t, x, y) is the
transition density of the ergodic process (Xt ) relative to the invariant probability measure π ,
i.e.

P(t, x, dy) = p(t, x, y)π(dy).
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Remark that p(t, x, y) can be chosen to be jointly continuous in (t, x, y) ∈ R
3+ (cf. [7,

Section 4.11]). Our method is based on the deviation kernel, which is defined by

d(x, y) :=
∫ ∞

0
(p(t, x, y) − 1) dt, x, y ∈ [0, ∞).

By [11, Theorem 2.1], the function d(x, y) exists and is finite for all x, y ∈ R+ if and only
if

∫ ∞
0 ExHyπ(dx) < ∞ for some y ∈ R+. It is easy to see that S < ∞ implies that d(x, y)

is well defined. The following lemma, in which we present some important properties of the
deviation kernel, is essential to the proof of Theorem 1.1.

Lemma 2.1. Under the same conditions as in Theorem 1.1, the function d(x, y) exists and is
finite for all x, y ∈ R+, and ∫ ∞

0
d(y, y)π(dy) = T < ∞. (2.1)

Proof. Also from [11, Theorem 2.1], we know that d(y, y) = ∫ ∞
0 ExHyπ(dx) for any y ∈

R+. So, it suffices for us to prove that ‘T < ∞’. We now turn to show that ‘S < ∞’ implies
that ‘T < ∞’.

Actually, ‘S < ∞’ is equivalent to ‘T < ∞’. It is well known (see, e.g. [8, Chapter 15])
that

ExHy =

⎧⎪⎪⎨
⎪⎪⎩

∫ x

y

μ((t, ∞)) ds(t), x > y,∫ y

x

μ((0, t)) ds(t), x ≤ y.

By this and the fact that π(dx) = (1/Z)μ(dx), where Z = μ([0, ∞)) < ∞, we have

T =
∫∫

ExHyπ(dx)π(dy)

=
∫∫

x>y

ExHyπ(dx)π(dy) +
∫∫

x≤y

ExHyπ(dx)π(dy)

= 1

Z2

∫∫
x>y

μ(dx)μ(dy)

∫ x

y

μ((t, +∞))ds(t)

+ 1

Z2

∫∫
x≤y

μ(dx)μ(dy)

∫ y

x

μ((0, t)) ds(t)

= 1

Z

∫
μ((0, t])μ([t, ∞)) ds(t).

In addition, S = ∫
μ([x, ∞)) ds(x). It is easy to see that T ≤ S. When T < ∞, we choose

t0 > 0 such that μ([0, x0])/Z > 1
2 . Then,

∞ > T ≥ 1

Z

∫
[x0,+∞)

μ((0, x])μ([x, ∞)) ds(x) >
1

2

∫
[x0,+∞)

μ([x, ∞)) ds(x)

and
∫
(0,x0)

ds(x)μ([x, ∞)) < ∞, which immediately implies that S < ∞.

Our initial step is to show that under the assumption of Theorem 1.1, Pt is a Hilbert–Schmidt
operator on L2(π), which is the case if the following Hilbert–Schmidt norm is finite:

‖Pt‖2
HS =

∞∑
i=1

‖Ptei‖2,

where ‖ · ‖ is the norm in L2(π) and {ei} is an orthonormal basis of L2(π).
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Lemma 2.2. Assume ∞ is an entrance boundary. Then Pt is a Hilbert–Schmidt operator in
L2(π) for each t > 0. Thus, σess(L) = ∅.

Proof. We should check the monotonicity of p(t, x, x) first. Select t, t0 ∈ (0, ∞) such that
t0 < t . By the contraction of Pt under L2-norm ‖ · ‖, we obtain

p(t, x, x) =
∫

p2
(

t

2
, x, y

)
π(dy)

=
∫ (

P(t−t0)/2p

(
t0

2
, x, ·

)
(y)

)2

π(dy)

=
∥∥∥∥P(t−t0)/2p

(
t0

2
, x, ·

)∥∥∥∥
2

≤
∥∥∥∥p

(
t0

2
, x, ·

)∥∥∥∥
2

= p(t0, x, x), (2.2)

where the second equality comes from the property that Pt/2(x, dy) = P(t−t0)/2Pt0/2(x, dy).
Therefore, p(t, x, x) is decreasing in t ∈ (0, ∞).

Let φ(t) := ∫
(p(t, x, x) − 1)π(dx) = ∫

p(t, x, x)π(dx) − 1.
Due to the ergodicity of the process, p(t, x, y) → 1 as t → ∞, for all x, y ∈ R+, which,

together with (2.2), implies that

p(t, x, x) − 1 ≥ 0 for any t > 0 and x ∈ R+.

By this and (2.1), we conclude that∫
[0,∞)

φ(t) dt =
∫ ∞

0
dt

∫ ∞

0
(p(t, x, x) − 1)π(dx)

=
∫ ∞

0

∫ ∞

0
(p(t, x, x) − 1) dtπ(dx)

= T

< ∞,

where the second equality is due to Fubini’s equation for nonnegative measurable functions.
Then, φ(t) < ∞ almost everywhere (a.e.) t ∈ (0, ∞). By the monotonicity of φ, we obtain
φ(t) < ∞ for all t ∈ (0, ∞). Hence,

∫
p(t, x, x)π(dx) = φ(t) + 1 < ∞ for all t ∈ (0, ∞).

Fix t > 0, to prove that Pt is a Hilbert–Schmidt operator we need to show that p(t, x, y) ∈
L2(π ×π). In fact, since p(t, x, y) is symmetric in x, y due to the reversibility of Pt in L2(π),
then by the Markov property, we have∫∫

p(t, x, y)2π(dx)π(dy) =
∫

P(t, x, dy)p(t, y, x)π(dx) =
∫

p(2t, x, x)π(dx) < ∞.

Therefore, σess(Pt ) = ∅, which implies that σess(L) = ∅ by the spectral mapping theorem
(see [4, Corollary 2.37]).

When σess(L) = ∅, let f (n) be an eigenfunction corresponding to λn such that {f (n) : n ≥ 0}
is an orthonormal basis inL2(π). We want to prove Theorem 1.1 by using the spectral expression
of the transition density.
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Eigentime identity for one-dimensional diffusion processes 229

Proof of Theorem 1.1. From Lemma 2.2, σess(L) = ∅. By the spectral theory, there exists
a family of projections {En = (·, f (n))f (n) : n ≥ 0} such that Pt = ∑

n≥0 e−λntEn. Then,

(Ptf, g) =
∫

Ptf (x)g(x)π(dx)

=
∫ ∑

n≥0

e−λnt (f, f (n))f (n)(x)g(x)π(dx)

=
∫∫ ∑

n≥0

e−λntf (y)f (n)(y)f (n)(x)g(x)π(dx)π(dy)

=
∫∫

f (y)g(x)p(t, x, y)π(dx)π(dy).

Thus, p(t, x, y) = ∑
n≥0 e−λntf (n)(y)f (n)(x), a.e. π ⊗ π and f (0) = 1, which further yields

d(y, y) =
∫ ∞

0

[∑
n≥0

e−λnt (f (n)(y))2 − 1

]
dt

=
∫ ∞

0

∑
n≥1

e−λnt (f (n)(y))2 dt

=
∑
n≥1

1

λn

(f (n)(y))2.

Combining this with Lemma 2.1, we obtain

T =
∫

d(y, y)π(dy) =
∫ ∑

n≥1

1

λn

(f (n)(y))2π(dy) =
∑
n≥1

1

λn

. (2.3)

2.2. Strong ergodicity

It is well known that T can be associated with the strong ergodicity for Markov processes
(cf. [1, Chapter 4], [13]). In this subsection we investigate the relationship between T and the
rate of the strong ergodicity. Recall that a Markov process Xt is said to be strongly ergodic if
there is an ε > 0 such that

sup
x∈R+

‖P(t, x, ·) − π‖var = O(e−εt ) as t → ∞.

Define the (exponential) convergence rate by

α := sup
{
ε > 0 : there exists a constant C > 0,

such that sup
x∈R+

‖P(t, x, ·) − π‖var ≤ Ce−εt , t > 0
}
.

It is easy to see that

α = − sup
t>0

1

t
sup

‖f ‖∞≤1
log ‖Ptf − π(f )‖∞,

where the right-hand side term is well defined by a similar argument as in [9, Section 2]. So,
when α > 0, it is equivalent to the fact that the spectral radius of Pt −π in L∞(π) is less than 1
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for any t > 0 (see [20] for the corresponding results for Markov chains). Moreover, the rate α

is quite different from λ1, the spectral gap of L in L2(π), which is related to the exponentially
ergodic rate in the L2-sense. In the following conclusion we present the estimates of α in terms
of the eigenvalues in L2(π).

Theorem 2.1. Assume that ∞ is an entrance boundary. Then we have

λ−1
1 ≤ α−1 ≤

[∑
n≥1

(1 + f (n)2
(0))λ−1

n

]
∧

[
64

∑
n≥1

λ−1
n

]
. (2.4)

Remark 2.1. (a) Mao [13, Proposition 3.2] gave a sufficient condition for the first inequality
becoming equality.

(b) The second inequality indicates that T < ∞ admits the strong ergodicity.

Proof of Theorem 2.1. The first inequality in (2.4) comes from [13, Proposition 3.2].
For the second inequality, we want to prove the following inequality first:

α−1 ≤ 64T . (2.5)

The main idea is essentially due to [1, Lemma 15, Chapter 4] for Markov chains. The key proof
is sketched in Appendix A as a completion.

On the other hand, by [15, Theorem 3], we know that α ≥ δ−1, where

δ :=
∫ ∞

0
e−c(y) dy

∫ ∞

y

a(z)−1ec(z) dz.

Recall that S = ∫
μ([x, ∞)) ds(x) defined in (1.2). It is then easy to see that δ = S and

α−1 ≤ S. (2.6)

We now turn to prove that
S = T + d(0, 0). (2.7)

Recall that T = (1/Z)
∫

μ((0, t])μ([t, ∞)) ds(t). Comparing this to the expressions for T

and S, we have the following identity:

T = S − 1

Z

∫ ∞

0
μ((x, ∞))2 ds(x).

In addition, as ExH0 = ∫ x

0 μ((t, ∞)) ds(t), and by Lemma 2.1, we obtain

1

Z

∫ ∞

0
μ((x, ∞))2 ds(x) =

∫ ∞

0
ExH0π(dx) =

∫ ∞

0
(p(t, 0, 0) − 1) dt = d(0, 0),

which implies (2.7). Therefore, by (2.5), (2.6), and (2.7), we arrive at

α−1 ≤ (64T ) ∧ (T + d(0, 0)). (2.8)

Thus, it suffices to find the spectral expressions for T and d(0, 0). Since

d(0, 0) =
∫ ∞

0

(∑
n≥0

e−λnt (f (n)(0))2 − 1

)
dt =

∑
n≥1

(f (n)(0))2 1

λn

, (2.9)

we obtain the second inequality by substituting expressions (2.3) and (2.9) into (2.8).

https://doi.org/10.1239/jap/1429282617 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1429282617


Eigentime identity for one-dimensional diffusion processes 231

Note that in [1], α−1 has upper bound 66T . Properly choosing the parameters in our proof
leads to the better estimate (see Appendix A for details).

For the ergodic process, i.e. μ((0, ∞)) < ∞ and s(∞) = ∞, the following conclusion
illustrates the relationship among T , eigenvalues of −L, and the strong ergodicity.

Theorem 2.2. For the one-dimensional ergodic diffusion process (Xt ) generated by L, the
following statements are equivalent:

(1) the process is strongly ergodic;

(2) S := ∫
μ([x, ∞)) ds(x) < ∞;

(3) T < ∞;

(4) σess(L) = ∅ and
∑

n≥1 λ−1
n < ∞.

Proof. We first remark that the equivalence between (1) and (2) is due to Mao [12].
As shown in the proof of Lemma 2.1, (2) is equivalent to (3). So, we need to show that (3) is
equivalent to (4). If T < ∞ then by the fact that (2) is equivalent to (3), ∞ is the entrance
boundary. Thus, by Theorem 1.1, (3) implies (4) directly. Conversely, it is easy to see that (4)
will imply (3) from the proof of Theorem 1.1.

As an application, we study some distances which are used to estimate the convergence
rate of Pt towards equilibrium. Due to Theorem 2.2, and with a similar procedure as in
[15, Theorem 4.1], we obtain the following corollary.

Corollary 2.1. For the ergodic diffusion process (Xt ) generated by L, define

dp,q(Pt , π) =
{∫

π(dx)

(∫
π(dy)|p(t, x, y) − 1|p

)q/p}1/q

, p, q ∈ [1, ∞].

If
∫ ∞

0 d2,2(Pt , π)2 dt < ∞ then limt→∞ d1,∞(Pt , π) = 0.

Proof. By making full use of the expression d2,2(Pt , π), we obtain

d2,2(Pt , π)2 =
∫ ∞

0
π(dx)

∫ ∞

0
(p(t, x, y) − 1)2π(dy)

=
∫ ∞

0
π(dx)

(∫ ∞

0
p2(t, x, y)π(dy) − 1

)

=
∫ ∞

0
p2(t, x, y)π(dy)π(dx) − 1

=
∫ ∞

0
(p(2t, x, x) − 1)π(dx).

It follows that
∫ ∞

0 d2,2(Pt , π)2 dt = T/2 < ∞ by Lemma 2.1. On the other hand, we have

d1,∞(Pt , π) = sup
x

∫ ∞

0
|p(t, x, y) − 1|π(dy) = sup

x
‖P(t, x, ·) − π(·)‖var.

Since T < ∞, the process is strongly ergodic. Thus, limt→∞ d1,∞(Pt , π) = 0.
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3. Exit boundary

In the section we study the eigentime identity for the minimal diffusion process with ∞ as
the exit boundary.

3.1. Proof of Theorem 1.2

Recall that (Xt ) is the minimal diffusion process generated by L. Define

p(t, x, y) = P min(t, x, dy)

μ(dy)
,

where P min(t, x, A) = Px(Xt ∈ A; t < ζ ). Define the Green function G = (g(x, y); x, y ∈
R+) by

g(x, y) :=
∫ ∞

0
p(t, x, y) dt for all x, y ∈ R+.

Denote the trace of G by tr(G) := ∫
g(x, x)μ(dx). It is well known that if a process is transient,

i.e. μ((0, ∞)) = ∞ and s(∞) = ∫ ∞
0 e−c(u) du < ∞, then g(x, y) < ∞ for all x, y ∈ R+.

Lemma 3.1. For the minimal diffusion process (Xt )t≥0 with ∞ the exit boundary, tr(G) =
E0(ζ ) = R < ∞.

Before moving on, it is necessary to recall some useful notation concerning hitting times.
It is well known that the following equation (cf. [17]) is the Laplace transform of the hitting
time Hy : for all x, y ∈ R+ and λ ≥ 0,

Ex(exp(−λHy)) =

⎧⎪⎪⎨
⎪⎪⎩


λ,−(x)


λ,−(y)
if x < y,


λ,+(x)


λ,+(y)
if x > y,

for functions 
λ,± (with 
λ,− increasing and 
λ,+ decreasing) determined uniquely up to
constant factors as a pair of increasing and decreasing nonnegative solutions 
 of the differential
equation

L
 = λ
,

subject to appropriate boundary conditions (
′(0) = 0 for 
λ,−; 
(∞) = 0 for 
λ,+); see
[7, pp. 128–130]. This equation leads us to prove Lemma 3.1.

Proof of Lemma 3.1. Since the process is transient, then g(x, y) = ∫ ∞
0 p(t, x, y) dt < ∞.

The corresponding general Green function (see, e.g. [7], [18]) is

Gλ(x, y) :=
∫ ∞

0
e−λtp(t, x, y) dt = ω−1

λ 
λ,−(x ∧ y)
λ,+(x ∨ y),

where the Wronskian ωλ := (
′
λ,−(y)
λ,+(y) − 
λ,−(y)
′

λ,+(y))/s′(y) depends only on λ

but not on y. It is easy to see that

Gλ(x, y)

Gλ(y, y)
= 
λ,−(x ∧ y)
λ,+(x ∨ y)


λ,+(y)
λ,+(y)
=

⎧⎪⎪⎨
⎪⎪⎩


λ,+(x)


λ,+(y)
, x > y,


λ,−(x)


λ,−(y)
, x < y.

(3.1)
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Recall that Hy := inf{t : Xt = y, t < ζ }. It is known from [17] that

Ex[exp(−λHy)] =

⎧⎪⎪⎨
⎪⎪⎩


λ,+(x)


λ,+(y)
, x > y,


λ,−(x)


λ,−(y)
, x < y,

which together with (3.1) implies that

Gλ(x, y)

Gλ(y, y)
= Ex[exp(−λHy)].

By letting λ → 0, we obtain limλ→0 Ex(exp (−λHy)) = Px(Hy < ∞). Thus, g(x, y) =
g(y, y)Px(Hy < ∞), where Px stands for the probability taken for the underlying process
starting from x. Since P0(Hy < ∞) = 1, we further obtain

∫
g(0, y)μ(dy) =

∫
g(y, y)μ(dy) := tr(G).

On the other hand,
∫ ∞

0
p(t, 0, y)μ(dy) =

∫ ∞

0
P(t, 0, dy; t < ζ ) = P0(ζ > t).

Then, we obtain
∫

g(0, y)μ(dy) =
∫ ∫ ∞

0
p(t, 0, y) dtμ(dy) =

∫ +∞

0
P0(ζ > t) dt = E0ζ.

Therefore, E0ζ = tr(G) = R < ∞.

Proof of Theorem 1.2. The essential idea is similar to the case with ∞ as the entrance
boundary, and we just sketch the proof. First, by a similar discussion as in Lemma 2.2, we know
that if tr(G) < ∞ then Pt is a Hilbert–Schmidt operator for all t > 0. Thus, σess(L) = ∅.
Then, due to the spectral expression of p(t, x, y), tr(G) can be represented as

∑∞
n=1 λ−1

n , which
leads to the finial conclusion by using Lemma 3.1.

3.2. Uniform decay

Similar to the entrance case, the eigentime identity for ∞ as the exit boundary can be related
to the uniform decay (see, e.g. [16]), which is the case where

sup
x∈R+

‖P(t, x, ·)‖var = O(e−εt ), t → ∞.

Define (exponential) uniform decay rate by

β := sup
{
ε > 0 : there exists a constant c > 0,

such that sup
x∈R+

‖P(t, x, ·)‖var ≤ ce−εt for all t > 0
}
.

In the following theorem we present the estimate of β by using the spectrum in L2(μ).
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Theorem 3.1. For the one-dimensional minimal diffusion process (Xt ) with the exit bound-
ary ∞, we have

λ−1
1 ≤ β−1 ≤

∑
n≥1

λ−1
n .

Proof. The proof is similar to that of [14, Theorem 1.8] for Markov chains, and we omit
it here.

We end this section by collecting a series of explicit equations for transient processes, which
are equivalent to the rule of the uniform decay.

Theorem 3.2. For the one-dimensional minimal diffusion process (Xt ) generated by L, the
following statements are equivalent:

(1) the process is uniformly decaying;

(2) R := ∫
μ([0, x)) ds(x) < ∞;

(3) tr(G) < ∞;

(4) E0ζ < ∞;

(5) σess(L) = ∅ and
∑

n≥1 λ−1
n < ∞.

Appendix A.

Proof of ‘α−1 ≤ 64
∑

n≥1 λ−1
n ’ in Theorem 2.1. Recall some basic notation to measure the

deviation from stationarity at time t first. Let

d(t) := sup
x

‖Px(Xt ∈ ·) − π(·)‖var.

Note that
‖Px(Xt ∈ ·) − π(·)‖ = 2 sup

A∈B
(Px(Xt ∈ A) − π(A)),

where B are the Borel-σ fields. Then, it is easy to see that

1
2d(s + t) ≤ 1

2d(s) × 1
2d(t).

We also define some useful parameters,

τ1 := inf
{
t : 1

2d(t) ≤ e−1},
τ2 := sup

x,y

∫ ∞

0
|ExHz − EyHz|π(dz),

τ3 := sup
x∈R+,A∈B

π(A)ExHA.

The first parameter is to formalize the idea of ‘time to approach stationarity from the worst
starting place’. The second parameter measures the variability of mean hitting times as the
starting place varies. The final parameter is regarded as the ratio of ExHA, the diffusion process
mean hitting time on A, to 1/π(A). By [1, Lemma 14, Chapter 4], we have τ3 ≤ τ2 ≤ 2T .
If τ1 < ∞ then from submultiplicativity it follows that

1

2
d(t) ≤ exp

(
1 − t

τ1

)
, t ≥ 0,

https://doi.org/10.1239/jap/1429282617 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1429282617


Eigentime identity for one-dimensional diffusion processes 235

and, hence, α−1 ≤ τ1. Now, we turn to prove that τ1 ≤ 64T . For small δ > 0, which will be
specified later, let

A :=
{
x : EπHx ≤ T

δ

}
.

According to the Markov inequality and the definition of T , we infer that

π(Ac) = π

{
x : EπHx >

T

δ

}
≤

∫
EπHxπ(dx)

T /δ
= T

T/δ
= δ.

For any x ∈ R+, by the monotonicity of p(t, x, x) about t and p(t, x, x) ≥ 1, which is
explained in the proof of Lemma 2.2, we obtain

EπHx =
∫ ∞

0
(p(s, x, x) − 1) ds ≥ t (p(t, x, x) − 1) for all t ∈ R+.

Thus, for any y ∈ A, we have

p(t, y, y) − 1 ≤ EπHy

t
≤ T

δt
,

which together with the inequality

|p(t + s, x, y) − 1| ≤ √
(p(2t, x, x) − 1)(p(2s, y, y) − 1)

implies that

p(t, x, y) ≥ 1 − T

δt
, x, y ∈ A.

Let x be arbitrary and z ∈ A. For all 0 ≤ s ≤ u,

Px(Xu+t ∈ dz | HA = s)

π(dz)
≥ inf

y∈A

Py(Xu+t−s ∈ dz)

π(dz)
= inf

y∈A
p(u + t − s, y, z).

Thus,

p(u + t, x, z) ≥
(

1 − T

δt

)+
Px(HA ≤ u). (A.1)

By using the Markov inequality and the definition of τ3, we conclude that

Px(HA > u) ≤ ExHA

u
≤ τ3

uπ(A)
. (A.2)

Since τ3 ≤ τ2 ≤ 2T , and by inequalities (A.1) and (A.2) we obtain

p(u + t, x, z) ≥
(

1 − T

δt

)+(
1 − 2T

uπ(A)

)+
=: η < 1.

Since x is arbitrary, we have

1

2
d(u + t) = 1

2
sup
x

∫
|p(u + t, x, z) − 1|π(dz)

= sup
x

(
1 −

∫
1 ∧ p(u + t, x, z)π(dz)

)
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≤ sup
x

(
1 −

∫
A

1 ∧ p(u + t, x, z)π(dz)

)

≤ 1 − ηπ(A)

≤ 1 −
(

1 − T

δt

)+(
π(A) − 2T

u

)+

≤ 1 −
(

1 − T

δt

)+(
1 − δ − 2T

u

)+
.

Taking t = 46T , u = 18T , and δ = √
92/69, we obtain the bound 4

√
23/69 + 37/414 ≤ e−1,

i.e. τ1 ≤ 64T . Therefore, we have α−1 ≤ 64T . Note that Aldous and Fill [1] achieved the
result α−1 ≤ 66T by putting t = 49T , u = 17T , and δ = 1/7. A slight modification in our
proof makes a better estimation.
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