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THE EICHLER TRACE OF Zp ACTIONS
ON RIEMANN SURFACES

DENIS SJERVE AND QING JIE YANG

ABSTRACT. We study Zp actions on compact connected Riemann surfaces via their
associated Eichler traces. We determine the set of possible Eichler traces and determine
the relationship between 2 actions if they have the same trace.

1. Introduction. In this paper we study group actions of Zp, the cyclic group of odd
prime order p, on compact connected Riemann surfaces S. If the genus of S is g then the
vector space V of holomorphic differentials on S has dimension g and any action of Zp

on S determines a representation ö:Zp ! GL(V). If T is a preferred generator of Zp then
this representation yields a matrix ö(T) 2 GL(V). The trace of this matrix, ü = tr(T), is
referred to as the Eichler trace. Clearly ü 2 Z[ê], where ê = e

2ôi
p .

One of the goals of this paper is to determine how much information about the action
of Zp is captured by the Eichler trace. There are actually two questions here.

QUESTION 1. What elements ü 2 Z[ê] can be realized as the trace of some action?

QUESTION 2. What is the relationship between two actions, not necessarily on the
same surface, if they have the same trace?

We give complete answers to both questions. To explain our results we need to
develop some notation. Let T be an automorphism of order p on a compact connected
Riemann surface S. Suppose there are t fixed points P1Ò    ÒPt. In a sufficiently small
neighbourhood of a fixed point Pj the automorphism will have the form T: z ! êkj z for
some integer kj, 1 � kj � p � 1. This integer is defined to be the rotation number at Pj.
The Eichler Trace Formula, see [7], is

ü = 1 +
tX

j=1

1
êkj � 1

(1)

Let A denote the set of all Eichler traces of all possible actions, that is

A = fü 2 Z[ê] j ü = tr(T)gÒ(2)

where T is any automorphism of order p on any compact connected Riemann surface S.
A simple calculation with the Eichler Trace Formula 1 shows that ü + ǖ = 2� t for any
ü 2 A, where ǖ denotes the complex conjugate of ü. Thus A ² B, where

B = fü 2 Z[ê] j ü + ǖ 2 Zg(3)
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EICHLER TRACE OF ZP 621

In Section 3 we show that B is a free abelian subgroup of Z[ê] of rank (p + 1)Û2 and
determine a basis. Thus a reasonable first step in describing A is to determine the “index”
of A in B. Unfortunately, it turns out that A is not a subgroup of B, so this does not make
sense. On the other hand, the quotient set Â = AÛZ, that is the elements of A modulo the
integers, is a group, in fact a subgroup of B̂ = BÛZ. We prove that B̂ is a free abelian
group of rank (p � 1)Û2 and that the index of Â in B̂ is finite.

A slightly different version of the following theorem was first announced, but not
proved, in Ewing’s paper [6]. An equivalent result, stated in terms of Witt classes and
G-signatures, first appeared in Ewing [5]. At the end of Section 3 we briefly indicate
how to translate Ewing’s results into ours.

THEOREM 1. The index of Â in B̂ is h1, the first factor of the class number h of Z[ê].

This theorem gives a partial answer to Question 1. In Section 4 we find free generators
of Â, thereby answering completely Question 1. See Theorems 4, 5 and Corollary 1 in
this section, and Proposition 1 in Section 2.

Implicit in these theorems is an answer to Question 2. To an automorphism T: S ! S
of order p we associate a “vector” [g; k1Ò    Ò kt], where g is the genus of the orbit surface
SÛZp, t is the number of fixed points, and the kj are the rotation numbers. The rotation
numbers are unique modulo p, but their order is not determined. From the Eichler Trace
Formula 1 it is clear that ü = tr(T) does not depend on g or on the order of the kj. If a
cancelling pair fkÒ p � kg, where 1 � k � p � 1, appears amongst the set of rotation
numbersfk1Ò    Ò ktg, then an easy calculation shows that their contribution to the Eichler
trace is

1
êk � 1

+
1

êp�k � 1
= �1(4)

Thus we can replace the cancelling pair fkÒ p�kg by any other cancelling pair flÒ p�lg
and not change the Eichler trace.

Given two such automorphisms

T1: S1 ! S1Ò T2: S2 ! S2

we have two “vectors” [g; k1Ò    Ò kt], [h; l1Ò    Ò lu]. Let ü1 and ü2 denote the respective
Eichler traces.

THEOREM 2. ü1 = ü2 if, and only if, t = u and the set of rotation numbers fk1Ò    Ò ktg

agrees with fl1Ò    Ò lug up to permutations and replacements of cancelling pairs.

As far as the set of Eichler traces is concerned there is no loss of generality in assuming
that the orbit surface SÛZp is the extended complex plane Ĉ. In other words, if ü is the
Eichler trace of some action with orbit genus g Ù 0 (the orbit genus is defined to be the
genus of SÛZp) then there will be some other action, on a different Riemann surface,
with the same Eichler trace ü and orbit genus g = 0. There is also no loss of generality
in considering actions up to topological conjugacy since an easy consequence of the
Eichler Trace Formula 1 is that conjugate actions have the same Eichler trace.
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622 D. SJERVE AND Q. J. YANG

In Section 2 we recall how Zp actions with orbit genus g = 0 can be parametrized up
to topological conjugacy by sequences

[a1Ò    Ò at]Ò where 1 � a1 � Ð Ð Ð � at � p � 1Ò and
tX

j=1
aj � 0 (mod p)(5)

The next result is due to Nielsen [11], and is stated here only for reference.

THEOREM 3. There is a one-to-one correspondence between the set of topological
conjugacy classes of automorphisms T : S ! S of order p and orbit genus 0, where
S is an arbitrary compact connected Riemann surface, and sequences satisfying the
conditions in 5. The integer t is the number of fixed points and the rotation numbers kj

are determined by the equations kjaj � 1 (mod p), 1 � j � t.

We can also parametrize these actions by sequences [a1Ò    Ò at], where 1 � aj � p�1
for 1 � j � t, and

Pt
j=1 aj � 0 (mod p). Two such sequences [a1Ò    Ò at], [b1Ò    Ò bu]

are the same if t = u and they agree up to a permutation.
Now consider the infinitely generated free abelian group F generated by all sequences

[a1Ò    Ò at] as in 5. The goal is to make the Eichler trace into a group isomorphism, so
we introduce some relations.

DEFINITION 1. Let A denote the abelian group FÛR , where R is the subgroup of F
generated by the following relations:

(i) [a1Ò    Ò at] + [b1Ò    Ò bu] = [a1Ò    Ò atÒ b1Ò    Ò bu].
(ii) [   Ò aÒ    Ò p � aÒ   ] = [   Ò âÒ    Ò dp � aÒ   ].

In relation (i) the sequences [a1Ò    Ò at], [b1Ò    Ò bu] are arbitrary sequences satisfying
condition 5, and in relation (ii) the sequence [   Ò aÒ    Ò p � aÒ   ] is any sequence
satisfying condition 5 and having a cancelling pair faÒ p � ag. The first relation says
that addition in A is, up to rearrangement, concatenation of sequences, and the second
relation allows us to delete a cancelling pair faÒ p�ag. It follows that the identity element
of A is represented by the empty sequence [ ], or by any sequence consisting entirely of
cancelling pairs. The inverse of [a1Ò    Ò at] is represented by [p � a1Ò    Ò p � at], up to
rearrangement.

In Section 4 we prove the following two theorems.

THEOREM 4. The Eichler trace determines a natural group isomorphism ë: A ! Â.

THEOREM 5. The abelian group A is free of rank (p � 1)Û2. A free basis is given by
the triples [1Ò rÒ s], where 1 � r � s � p � 1 and 1 + r + s � 0 (mod p).

It follows from these theorems that Â is a free abelian group of rank of (p � 1)Û2. In
the next corollary we give a basis, thereby completely answering Question 1.

COROLLARY 1. Â is a free abelian group of rank (p � 1)Û2. It is freely generated by
the modZ representatives of the (p � 1)Û2 elements:

ürÒs =
1

ê � 1
+

1
êr � 1

+
1

ês � 1
Ò where 1 � r � s � p � 1 and 1 + r + s � 0 (mod p)
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Then in Section 5 we give Theorems 4 and 5 geometric content by relating equivariant
cobordism of Zp actions on compact connected Riemann surfaces to Â. To explain this
let Ω denote the group of equivariant cobordism classes of Zp actions. In the definition
of Ω we do not assume the orbit genus is zero. We show that the Eichler trace induces a
natural group homomorphism û: A ! Ω.

THEOREM 6. û: A ! Ω is a group isomorphism.

COROLLARY 2. Ω is a free abelian group of rank (p � 1)Û2. A free basis is given
by those cobordism classes of automorphisms T: S ! S having order p, orbit genus 0,
and three fixed points, at least one of which has rotation number one. If the other two
rotation numbers are k2, k3 then the only restriction is that 1 + a2 + a3 � 0 (mod p),
where k2a2 � k3a3 � 1 (mod p).

2. Preliminaries. In this section we collect some of the preliminaries needed for
later sections. First we describe how all group actions on Riemann surfaces occur and
then we specialize to the case of the group Zp.

We will use the notation Aut(S) for the group of analytic automorphisms of a Riemann
surface S. Throughout the paper all surfaces will be connected, orientable and without
boundary. By the uniformization theorem the universal covering space U of S is one of
three possibilities: the extended complex plane Ĉ, the complex plane C, or the upper half
plane H. The letter U will always denote one of these three.

If G is a finite group acting topologically on a surface S by orientation preserving
homeomorphisms then the positive solution of the Nielsen Realization Problem guaran-
tees that there exists a complex analytic structure on S for which the action of G is by
analytic automorphisms (see [12], [9], [8] or [2]). Thus there is no loss of generality in
assuming that the action of G is complex analytic to begin with, and we will tacitly do
so.

To any action of G on S we associate a short exact sequence of groups

1 ! Π ! Γ í
��! G ! 1Ò(6)

with Γ being a discrete subgroup of Aut(U) and Π a torsion free normal subgroup of Γ,
as follows. Let ô:U ! S denote the covering map. Then Γ is defined by

Γ = fç 2 Aut(U) j ô Ž ç = g Ž ôÒ g 2 Gg(7)

In other words Γ consists of all lifts ç:U ! U of all automorphisms g: S ! S, g 2 G.
The subgroup Γ is unique up to conjugation in Aut(U).

The epimorphism í: Γ ! G is defined by í(ç) = g, where ç and g are as in 7. The
kernel of í: Γ ! G is Π, the fundamental group of S, and is therefore torsion free. The
action of G on S = UÛΠ is given by g[z]Π = [ç(z)]Π, where z 2 U, g 2 G, and ç 2 Γ
is any element such that í(ç) = g. Here the square brackets denote the orbits under the
action of Π. The orbit surface S̄ = UÛΓ, and the branched covering ô: S ! S̄ is just the
natural map UÛΠ ! UÛΓ, [z]Π 7! [z]Γ.
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Conversely, suppose 1 ! Π ! Γ í
! G ! 1 is a given short exact sequence of

groups, where Γ is a discrete subgroup of Aut(U) and Π is torsion free. Then this short
exact sequence corresponds to the one arising from the action of G on the Riemann
surface S = UÛΠ defined above.

Thus there is a one-to-one correspondence between analytic conjugacy classes of
analytic actions by the finite group G on compact connected Riemann surfaces and
short exact sequences 6, where Γ is a discrete subgroup of Aut(U), unique only up to
conjugation in Aut(U), and Π is a torsion free subgroup of Γ.

Now suppose G is the cyclic group Zp and T 2 Zp denotes a fixed generator. Actions

of Zp on Riemann surfaces correspond to short exact sequences 1 ! Π ! Γ í
! Zp ! 1.

Since the kernel of í is torsion free the signature of Γ must have the form (g;

t timesz }| {
pÒ    Ò p),

where g and t are non-negative integers. As an abstract group Γ has the following
presentation

(i) t + 2g generators A1Ò    ÒAtÒX1ÒY1Ò    ÒXgÒYg.
(ii) t + 1 relations Ap

1 = Ð Ð Ð = Ap
t = A1 Ð Ð Ð At[X1ÒY1] Ð Ð Ð [XgÒYg] = 1.

We denote this group by Γ = Γ(g;

t timesz }| {
pÒ    Ò p). Any such group can be embedded in Aut(U)

as a discrete subgroup in many different ways up to conjugation.

A1

A2

A3

v1
v2

v3
R(p)

P

g = 0
t = 3

FIGURE 1: Fundamental Domain

Figure 1 illustrates a fundamental domain for a particular embedding when g = 0 and
t = 3. It consists of a regular 3-gon P, all of whose angles are ôÛp, together with a copy
of P obtained by reflection in one of its sides. The generators A1, A2, A3 are the rotations
by 2ôÛp about consecutive vertices, ordered in the counterclockwise sense.

Let Γ be any Fuchsian group of signature (g;

t timesz }| {
pÒ    Ò p). Then an epimorphism í:

Γ ! Zp is determined by the images of the generators. The relations in Γ must be
preserved and the kernel of í must be torsion free, so í is determined by the equations

í(Aj) = Taj Ò 1 � j � t; í(Xk) = Tbk Ò í(Yk) = Tck Ò 1 � k � g
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The following restrictions must hold:
(i) The aj are integers such that 1 � aj � p � 1 and

Pt
j=1 aj � 0 (mod p).

(ii) The bk, ck are arbitrary integers mod p, except that at least one of them is non-zero
if t = 0 (this guarantees that í is an epimorphism).

It follows from the first restriction that the only possible values of t are t = 0Ò 2Ò 3Ò    .
Conversely, given integers aj, bk, ck satisfying conditions (i) and (ii), there is an

epimorphism í: Γ ! Zp with torsion free kernel Π and a corresponding Zp action
T: S ! S, where S = UÛΠ.

The integer t equals the number of fixed points of T: S ! S and g is the genus of
the orbit surface SÛZp. A well known result of Nielsen [11] says that the topological
conjugacy class of T: S ! S is completely determined by g and the unordered sequence
(a1Ò    Ò at). We use the notation [g j a1Ò    Ò at] to denote the topological conjugacy
class of the homeomorphism T: S ! S determined by this data. If g = 0 we use the
notation [a1Ò    Ò at], and usually order the aj so that 1 � a1 � Ð Ð Ð � at � p � 1.

Of particular interest is the case g = 0. Then the orbit surface SÛZp is the extended
complex plane Ĉ and Γ has the presentation

(i) t generators A1Ò    ÒAt.
(ii) t + 1 relations Ap

1 = Ð Ð Ð = Ap
t = A1 Ð Ð Ð At = 1.

The epimorphism í is given by the equations

í(Aj) = Taj Ò where 1 � a1 � Ð Ð Ð � at � p � 1Ò and
tX

j=1
aj � 0 (mod p)(8)

With these preliminaries it is now straight forward to give an answer to Question 1 in
the introduction. This is just a matter of determining the possible sets of rotation numbers.
Thus let fk1Ò    Ò ktg be any set of t numbers satisfying 1 � kj � p � 1, 1 � j � t, and
let aj denote that number such that kjaj � 1 (mod p) and 1 � aj � p � 1.

PROPOSITION 1. 1 +
Pt

j=1
1

ê
kj �1

2 A, if, and only if,
Pt

j=1 aj � 0 (mod p).

3. The Eichler trace. In this section we prove Theorems 1 and 2. Recall that the
class number h of the ring of integers Z[ê] is the number of equivalence classes of non-
zero integral ideals I in Z[ê], where the equivalence relation is fractional equivalence:

I ¾ J if there exist non-zero elements rÒ s 2 Z[ê]Ò such that rI = sJ

In fact the collection of equivalence classes of integral ideals forms a finite abelian group
C of order h, where the group structure is given by multiplication of ideals. See [10]. If
I is an ideal then so is its complex conjugate Ī and it is easy to see that

C1 = fI j IĪ is a principal idealg

is a subgroup of C . The order of this subgroup is by definition the first factor h1 of the
class number.

https://doi.org/10.4153/CJM-1998-035-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-035-8


626 D. SJERVE AND Q. J. YANG

We begin by observing that the set A is not a subgroup of Z[ê]. To see this suppose
that ü 2 A, that is

ü = 1 +
tX

j=1

1
êkj � 1

is the Eichler trace of some automorphism T: S ! S. The possible values for the number
of fixed points are t = 0Ò 2Ò 3Ò   , and therefore the possible values of ü + ǖ = 2 � t are
2Ò 0Ò �1Ò �2Ò    . We also have ǖ 2 A since

ǖ = 1 +
tX

j=1

1
ê�kj � 1

is the trace of T�1: S ! S. Therefore, if A were a subgroup we would have ü + ǖ =
2� t 2 A, and hence Z would be a subgroup of A. But if n 2 A is an integer, n ½ 2, then
n + n̄ = 2n ½ 4 is not of the form 2� t for an admissible t. Therefore A is not a subgroup.

Recall that Â is the set of realizable Eichler traces modulo Z.

PROPOSITION 2. Â is a subgroup of dZ[ê].

PROOF. Suppose ü1 = 1 +
Pt

j=1
1

ê
kj �1

and ü2 = 1 +
Pu

j=1
1

ê
lj�1

are in A. Therefore

cü1 + cü2 = ü̂, where ü = 1 +
Pt

j=1
1

ê
kj�1

+
Pu

j=1
1

ê
lj�1

. If ü1 and ü2 are represented by

T1: S1 ! S1 and T2: S2 ! S2 respectively, then ü can be represented by the equivariant
connected sum of T1 and T2. Thus Â is closed under sums.

If ü 2 A then also ǖ 2 A and ü + ǖ = 2 � t. Therefore ǖ is the inverse of ü once we
reduce modulo the integers. The identity element of Â is represented by any fixed point
free action.

To determine the index of Â in B̂ we need a basis for B̂, but first we find a basis for B.

DEFINITION 2. Let m = (p � 1)Û2 and define elements í1Ò í2Ò    Ò ím in Z[ê] by
í1 = ê +

Pp�2
j=m+1 ê

j and ík = êk � ê�k , 2 � k � m.

The proof of the following proposition is elementary.

PROPOSITION 3. A basis of B is given by the m + 1 elements 1Ò í1Ò í2Ò    Ò ím.

REMARK. Every integer n 2 B, and in fact í1 + í̄1 = �1. We also have ê � ê�1 2 B;
since

ê � ê�1 = 1 + 2í1 + í2 + Ð Ð Ð + ím

It follows that 1Ò ê � ê�1Ò ê2 � ê�2Ò    Ò êm �ê�m form a basis for an index 2 subgroup of
B.

An immediate corollary of Proposition 3 is

COROLLARY 3. B̂ is a free abelian group of rank (p � 1)Û2 with basis

cí1Òcí2Ò    Ò cím
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Before completing the calculation of the index of Â in B̂ we first consider Question 2
from Section 1. Thus suppose two elements from A have the same Eichler trace, say

1 +
tX

j=1

1
êkj � 1

= 1 +
uX

j=1

1
êlj � 1



This leads us into consideration of equations
Pp�1

k=1
xk

êk�1 = 0 in integers xk. To solve this
equation we need the next lemma, whose proof is omitted.

If s is any integer relatively prime to p then let R(s) denote that integer q such that
1 � q � p � 1 and q � s (mod p), that is, s = [sÛp]p + R(s). In what follows

P
jk�n

denotes the sum over all ordered pairs (jÒ k) such that jk � n (mod p) and 1 � j � p� 1.

LEMMA 1.
p�1X
k=1

xk

êk � 1
= �

1
p

X
jk��1

jxk +
1
p

p�2X
n=1

�X
jk�n

jxk �
X

jk��1
jxk

�
ên

As a corollary we get

COROLLARY 4.
Pp�1

k=1
xk

êk�1 = 0 if, and only if,
P

jk�n jxk = 0, for 1 � n � p � 1.

Now it is convenient to change the variables x1Ò    Ò xp�1 to new variables y1Ò    Ò yp�1

according to the equation

yl = xkÒ where kl � 1 (mod p)(9)

Then Corollary 4 becomes

COROLLARY 5.
Pp�1

k=1
xk

êk�1 = 0 if, and only if,
Pp�1

k=1 R(nk)yk = 0, for 1 � n � p � 1.

The coefficient matrix of this linear system is the (p � 1) ð (p � 1) matrix M whose
(iÒ j) entry is M(iÒj) = R(ij). To solve this system of p� 1 equations in p� 1 unknowns we
apply a sequence of row and column operations. The details are left to the reader. Recall
that m = (p � 1)Û2.

1. Add the i-th row to the (p � i)-th row, 1 � i � m.
2. Add the j-th column to the (p � j)-th column, 1 � j � m.
3. Subtract the (m + 1)-st row from rows m + 2Ò    Ò p � 1, and then subtract the

(m + 1)-st column from columns m + 2Ò    Ò p � 1.
The variables zk for the new coefficient matrix are related to the yk by the equations

zk = yk � yp�kÒ 1 � k � mÒ zm+1 = ym+1 + Ð Ð Ð + yp�1Ò zm+j = ym+jÒ 2 � j � p� 1

It turns out that zm+2Ò    Ò zp�1 are completely independent; whereas, z1Ò    Ò zm+1 satisfy2
6666666666666664

1 2 Ð Ð Ð m p
2 4 Ð Ð Ð 2m p
...

...
. . .

...
...

i R(2i) Ð Ð Ð R(mi) p
...

...
. . .

...
...

m R(2m) Ð Ð Ð R(m2) p
p p Ð Ð Ð p 2p

3
7777777777777775

2
6666666666666664

z1

z2
...
zi
...

zm

zm+1

3
7777777777777775

=

2
6666666666666664

0
0
...
0
...
0
0

3
7777777777777775
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Now we apply another sequence of row and column operations to this last coefficient
matrix.

1. Subtract i times the first row from the i-th row, 2 � i � m.
2. Subtract j times the first column from the j-th column, 2 � j � m.
The new variables wj are related to the zj by w1 = z1 + 2z2 + Ð Ð Ð + mzm and wj = zj,

2 � j � m + 1, and the new equations are w1 = wm+1 = 0, w2 + 2w3 + Ð Ð Ð + (m� 1)wm = 0
and 2

66666666664

�[9Ûp]p Ð Ð Ð �[3jÛp]p Ð Ð Ð �[3mÛp]p
...

. . .
...

. . .
...

�[3iÛp]p Ð Ð Ð �[ijÛp]p Ð Ð Ð �[imÛp]p
...

. . .
...

. . .
...

�[3mÛp]p Ð Ð Ð �[mjÛp]p Ð Ð Ð �[m2Ûp]p

3
77777777775

2
66666666664

w3
...

wj
...

wm

3
77777777775

=

2
66666666664

0
...
0
...
0

3
77777777775


The coefficient matrix of this system can be row reduced to the matrix whose (iÒ j) entry,
3 � iÒ j � m, is [ijÛp]p � [(i � 1)jÛp]p, by first subtracting row m � 3 from row m � 2,
then row m � 4 from row m � 3, etc., and then changing all signs. The resulting matrix
is invertible, in fact its determinant equals špm�2h1, where h1 is the first factor of the
class number [1]. Thus wj = 0, 1 � j � m + 1.

This proves that
Pp�1

k=1
xk

êk�1 = 0 if, and only if, yk = yp�k for 1 � k � p � 1, and

ym = �ym+2 � Ð Ð Ð � yp�1Ò

where ym+2Ò    Ò yp�1 are completely arbitrary. Translating back to the xk variables we
have:

COROLLARY 6.
Pp�1

k=1
xk

êk�1 = 0 if, and only if, xk = xp�k for 1 � k � p � 1, and

xm = �xm+2 � Ð Ð Ð � xp�1Ò

where xm+2Ò    Ò xp�1 are completely arbitrary.

We can now complete the proof of Theorem 2.

PROOF. Suppose ü1 = ü2 are the Eichler traces of two actions, say

ü1 = 1 +
tX

j=1

1
êkj � 1

= 1 +
p�1X
k=1

uk

êk � 1
Ò

ü2 = 1 +
uX

j=1

1
êlj � 1

= 1 +
p�1X
k=1

vk

êk � 1
Ò

where uk is the number of times k appears as a rotation number in ü1, and vk is defined
similarly. We immediately get t = u sinceü1+ǖ1 = 2�t andü2 +ǖ2 = 2�u. The equation
ü1 � ü2 = 0 gives the linear relation

Pp�1
k=1

xk
êk�1 = 0, where xk = uk � vk. It follows from

Corollary 6 that the vector x̨ = (x1Ò    Ò xp�1) is an integral linear combination of the
vectors

ęj = (   Ò 1Ò    Ò �1Ò �1Ò    Ò 1Ò   )Ò 1 � j � m � 1Ò
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where the 1’s are in positions jÒ p � j; the �1’s are in positions mÒm + 1; and the other
entries are zero.

For argument’s sake suppose x̨ = ęj for some j. This means we can move from the
vector of rotation numbers [u1Ò    Ò up�1] to the vector [v1Ò    Ò vp�1] by replacing the
cancelling pair fjÒ p� jg by the cancelling pair fmÒm+1g. Taking linear combinations of
the ęj corresponds to a sequence of such moves. This completes the proof of Theorem 2.

The remainder of this section is concerned with the proof of Theorem 1. According
to Proposition 1 the set of Eichler traces is given by

A =
²
ü 2 Z[ê] j ü = 1 +

tX
j=1

1
êkj � 1

¦
Ò

where the only restriction on the rotation numbers kj is that
Pt

j=1 R(k�1
j ) � 0 (mod p). If

we define xk to be the number of j, 1 � j � t, such that kj = k, then we can characterize
A by

A =
²
ü 2 Z[ê] j ü = 1 +

p�1X
k=1

xk

êk � 1
Ò xk ½ 0 and

p�1X
k=1

R(k�1)xk � 0 (mod p)
¦
(10)

In the next lemma we show that by passing to Â we can remove the restriction that
the xk be non-negative integers.

LEMMA 2. The set of Eichler traces modulo Z is given by

Â =
²
ü̂ 2 ˆZ[ê] j ü =

p�1X
k=1

xk

êk � 1
Ò

p�1X
k=1

R(k�1)xk � 0 (mod p)
¦


PROOF. First note that by choosing all xk = 1 in Equation 10 we get an element
ü 2 A. In fact a short calculation using Lemma 1 gives ü = 1� (p � 1)Û2, and thus this
element represents 0 in Â. By adding ü sufficiently many times to an element in A we
can ensure that all the coefficients xk become positive, and this does not change its value
in Â.

This description of Â contains a lot of redundancy, as the next lemma shows.

LEMMA 3. The set of Eichler traces modulo Z is given by

Â =
²
ü̂ j ü =

mX
k=1

zk

êk � 1
Ò

mX
k=1

R(k�1)zk � 0 (mod p)
¦


PROOF. According to Lemma 2 a typical element ü̂ 2 Â can be represented by

ü =
p�1X
k=1

xk

êk � 1
=

mX
k=1

xk

êk � 1
+

mX
k=1

xp�k

ê�k � 1
Ò
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where the xk are integers satisfying
Pp�1

k=1 R(k�1)xk � 0 (mod p). Using Equation 4 we
see that ü̂ = †̂, where † =

Pm
k=1

zk
êk�1 and zk = xk � xp�k. The restriction on the integers

zk is easily seen to be
Pm

k=1 R(k�1)zk � 0 (mod p).

In Definition 2 we introduced elements í1Ò í2Ò    Ò ím and then in Corollary 3 we
showed that the corresponding classes modulo Z, that is cí1Òcí2Ò    Ò cím, formed a basis of
B̂. To determine the index of Â in B̂ we want to express a typical element of Â in terms
of this basis. But first we need a definition.

DEFINITION 3. For integers kÒ n define C(kÒ n) = R(k�1n) + R(k�1)� p. The following
properties of the coefficients C(kÒ n) are easy to verify:

(i) C(kÒ n) + C(p � kÒ n) = 0 and C(kÒ n) + C(kÒ p � n) = 2R(k�1)� p.
(ii) C(1Ò n) = n+1�p, C(kÒ 1) = 2R(k�1)�p, C(p�1Ò n) = p�n�1, and C(kÒ p�1) = 0.

LEMMA 4. The elements of Â are those elements ü̂ 2 dZ[ê] of the form

ü̂ =
1
p

mX
n=1

� mX
k=1

C(kÒ n)zk

�cínÒ

where the only restriction on the integers zk is
Pm

k=1 R(k�1)zk � 0 (mod p).

PROOF. By Lemma 3 a typical Eichler trace modulo Z is given by ü̂, where ü =Pm
k=1

zk
êk�1 , and

Pm
k=1 R(k�1)zk � 0 (mod p). Using Lemma 1 we have

ü = �
1
p

X
jk��1

jzk +
1
p

p�2X
n=1

�X
jk�n

jzk �
X

jk��1
jzk

�
ên

The condition
Pm

k=1 R(k�1)zk � 0 (mod p) can be written as
P

jk�1 jzk � 0 (mod p), and
so

P
jk��1 jzk =

P
jk�1 (p � j)zk � 0 (mod p). Therefore, modulo Z we have

ü �
1
p

p�2X
n=1

�X
jk�n

jzk �
X

jk��1
jzk

�
ên �

1
p

p�1X
n=1

�X
jk�n

jzk �
X

jk��1
jzk

�
ên

Note that the term corresponding to n = p � 1 contributes 0 to the sum. Also note that

X
jk�n

jzk �
X

jk��1
jzk =

mX
k=1

C(kÒ n)zk

and therefore ü � 1
p

Pp�1
n=1

�Pm
k=1 C(kÒ n)zk

�
ên.

To complete the proof we break the last sum up into two pieces, one piece for
1 � n � m, the other for the remaining values of n, and then use properties of the
coefficients C(kÒ n).

DEFINITION 4. Let K be the collection of m-tuples v̨ = [z1Ò    Ò zm] satisfying the
condition

mX
k=1

R(k�1)zk � 0 (mod p)
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Thus K is a free abelian group of rank m. We can write z1 = lp �
Pm

k=2 R(k�1)zk, for
some integer l, and therefore a basis of K is given by the vectors

v̨1 = [pÒ 0Ò    Ò 0]Ò v̨k = [�R(k�1)Ò    Ò 1Ò   ]Ò 2 � k � mÒ

where the 1 is in the k-th entry, and all other entries, except the first, are zero.
Now consider the group homomorphism L: K ! Â defined by

L(̨v) =
1
p

mX
n=1

� mX
k=1

C(kÒ n)zk

�cín

Lemma 4 implies that L is an epimorphism.

PROPOSITION 4. L is a group isomorphism.

PROOF. We first compute the images of the basis elements v̨1 and v̨k, 2 � k � m,
using properties of the coefficients C(kÒ n). By a routine calculation we have:

L(v̨1) =
mX

n=1
(n + 1 � p)cín

L(v̨k) =
mX

n=1

�
�
� jn

p

½
+ j � 1

�cínÒ

where j = R(k�1).
Now consider the m ð m matrix M whose (kÒ n) entry is given by

M(kÒn) =
(

n + 1 � p if k = 1,
�[ jn

p ] + j � 1 if k ½ 2.

To complete the proof of the proposition we need only show that det(M) 6= 0. In fact we
will show that the determinant of this matrix is šh1, thereby completing the proof of
Theorem 1.

There are two cases to consider. The first case concerns those values of k, 2 � k � m,
for which m + 1 � j � p � 1. For each such value of k we add the first row of M to the
k-th row, and then change signs. The resulting entries of the new k-th row are

�
�

n + 1� p�
� jn

p

½
+ j� 1

�
= �

�
n + 1 +

�
�

jn
p

½
� (p� j)

�
= �

� (p � j)n
p

½
+ (p� j)� 1

Notice that the form of these entries is the same as that of the matrix M and that now
1 � p � j � m.

In the second case, that is for those values of k such that 2 � k � m and 1 � j � m,
we leave the k-th row as it is.

Applying these elementary row operations to M results in a matrix which agrees, up
to rearrangement of rows, with the matrix N whose entries are given by

N(kÒn) =
(

n + 1 � p if k = 1,
�[ kn

p ] + k � 1 if k ½ 2.
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By a sequence of operations, similar to those used in the proof of Corollary 6, the
determinant of N is š that of the following matrix, where 3 � k, n � m:

2
666664

...
Ð Ð Ð �[kn

p ] + [ (k�1)n
p ] Ð Ð Ð

...

3
777775

According to [1] the determinant of this matrix is šh1. This proves the proposition since
the determinant of M has only changed by aš sign in the course of the above elementary
row and column operations.

The proof of Theorem 1 follows from the fact that det(M) = šh1 since the matrix M
is the coefficient matrix for expressing the basis elements of Â in the basis elements of
B̂.

As mentioned in the introduction, Ewing proves our Theorem 1, but in a different
setting. See Theorem 3.2 in [5]. To explain how Ewing’s results relate to ours we need
some notation.

Let W denote the Witt group of equivalence classes [VÒ åÒ ö], where V is a finitely
generated free abelian group, å is a skew symmetric non-degenerate bilinear form on V,
and ö is a representation of Zp into the group of å-isometries of V. To an automorphism
of order p, T: S ! S, we assign the Witt class [VÒ åÒ ö], where V is the first cohomology
group, å is the cup product form, and ö is the induced representation on cohomology.
This assignment is well defined up to cobordism and so defines a group homomorphism
ab: Ω ! W, the so-called Atiyah-Bott map.

The G-signature of Atiyah and Singer defines a group homomorphism from the
group of Witt classes to the complex representation ring of Zp, sig: W ! R(Zp). Let
e: R(Zp) ! Z[ê] be the homomorphism that evaluates the character of a representation
at the generator T 2 Zp. Let s: Ω ! Z[ê] denote the composite e Ž sig Ž ab: Ω ! Z[ê].

Ewing proves that s is a monomorphism whose image has index h1 in the subgroup R
of Z[ê] defined by

R =
² mX

i=1
ai(ê

i � ê�i) j a1 � a2 � Ð Ð Ð � am (mod 2)
¦


From the Remark earlier in this section it follows that R̂ has index 2m in B̂. If
hg j a1Ò    Ò ati denotes the cobordism class of T, see Section 5 for the notation, then the
G signature õ is given by

õ = shg j a1Ò    Ò ati =
tX

j=1

êkj + 1
êkj � 1

(11)

The relationship between the G-signature õ and the Eichler trace ü is given by õ =
2ü + t � 2, and from this it is not too difficult to translate Ewing’s results into ours.

https://doi.org/10.4153/CJM-1998-035-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-035-8


EICHLER TRACE OF ZP 633

4. The Eichler isomorphism. We start this section with some preliminaries needed
for the proofs of Theorems 4 and 5. Any sequence [a1Ò    Ò at], as in 5, determines
uniquely up to topological conjugacy, a compact connected Riemann surface S and an
analytical automorphism T: S ! S having order p, orbit genus 0, and whose Eichler trace
is given by the equation

ü = 1 +
tX

j=1

1
êkj � 1

Ò where kjaj � 1 (mod p)Ò for 1 � j � t(12)

Let ü[a1Ò    Ò at] denote this Eichler trace.
By Theorem 2, if [a1Ò    Ò at] and [b1Ò    Ò bu] are two such sequences then

ü[a1Ò    Ò at] = ü[b1Ò    Ò bu] if, and only if, t = u and the sequences agree up to re-
arrangement and cancelling pairs.

Define a group homomorphism ë from the abelian group A in Definition 1 to the free
abelian group Z[ê]ÛZ by:

ë: A ! Z[ê]ÛZÒ ë: [a1Ò    Ò at] ! ü[a1Ò    Ò at] (modZ)(13)

Now we prove Theorem 4.

PROOF. To prove that ë is well defined recall that the relations used to define A are:

[a1Ò    Ò at] + [b1Ò    Ò bu] = [a1Ò    Ò atÒ b1Ò    Ò bu]Ò

[   Ò aÒ    Ò p � aÒ   ] = [   Ò âÒ    Ò dp � aÒ   ]

The corresponding equations for the Eichler trace are

ü[a1Ò    Ò at] + ü[b1Ò    Ò bu] = ü[a1Ò    Ò atÒ b1Ò    Ò bu] + 1Ò

ü[   Ò aÒ    Ò p � aÒ   ] = ü[   Ò âÒ    Ò dp � aÒ   ]� 1

This follows from the Eichler Trace Formula 12. Thus the Eichler trace is not additive,
but reducing modulo Z we see that ë is a well defined group homomorphism.

By definition the image of ë is Â, the set of Eichler traces modulo Z. It remains to
show that ë is a monomorphism. If there is an element in the kernel of ë we may assume
it is a generator, say ë[a1Ò    Ò at] = 0. This follows from the nature of the defining
relations in A . Therefore ü = ü[a1Ò    Ò at] = n for some integer n. From the Eichler
Trace Formula 12 we get ü + ǖ = 2 � t = 2n, and so n � 1. A short calculation then
gives ü = ü[1Ò p � 1Ò    Ò 1Ò p � 1], where there are 1 � n cancelling pairs f1Ò p � 1g.
Now Theorem 2 implies that [a1Ò    Ò at] consists entirely of cancelling pairs, and so
represents 0 in A . This completes the proof of Theorem 4.

Now we begin the proof of Theorem 5. First we show that A is generated by all
triples. The argument used in the following lemma is analogous to an argument used by
Symonds in [13].

LEMMA 5. The abelian group A is generated by the triples [qÒ rÒ s], where 1 � q �

r � s � p � 1 and q + r + s � 0 (mod p).
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PROOF. We will show that any generator [a1Ò    Ò at] can be expressed as a linear
combination of triples. We can assume that the sequence [a1Ò    Ò at] does not have any
subsequence [qÒ rÒ s] such that q + r + s � 0 (mod p), and does not contain any cancelling
pairs. Therefore t ½ 4. The following equation is valid because of the defining relations
in A :

[a1Ò a2Ò a3Ò a4Ò   ] = [a1Ò a2Ò b] + [a1 + a2Ò a3Ò   ]Ò where b � p � a1 � a2 (mod p)

Arguing by induction on the length of the sequence completes the proof.

The generators in Lemma 5 are not independent as the next Example shows.

EXAMPLE. Let r be any integer such that 1 � r � p� 3. Then

[1Ò rÒ p� r�1] + [1Ò r + 1Ò p� r�2] = [1Ò 1Ò rÒ p� r�2] = [1Ò 1Ò p�2] + [2Ò rÒ p� r�2]

Now we complete the proof of Theorem 5, that is we show that the abelian group A is
freely generated by the triples [1Ò rÒ s], where 1 � r � s � p�1 and 1+r+s � 0 (mod p).

PROOF. Let G denote the subgroup generated by these triples. The first equation in
the example shows that all 4-tuples [1Ò 1Ò rÒ s] 2 G, where

1 � r � s � p � 1 and 2 + r + s � 0 (mod p)

We now set up an induction. To reduce the amount of notation we omit mentioning
some of the restrictions that the following sequences must satisfy.

Assume that we have shown that for some integer q ½ 1 all 3-tuples of the form
[qÒ rÒ s] 2 G and all 4-tuples of the form [1Ò qÒ rÒ s] 2 G. The Example above establishes
the initial case, q = 1, of the induction. Now consider the equations

[1Ò qÒ p�q�1]+[q+1Ò rÒ s] = [1Ò qÒ rÒ s]Ò [q+1Ò rÒ s]+[1Ò r+q+1Ò s�1] = [1Ò q+1Ò rÒ s�1]

The first equation shows that all 3-tuples of the form [q + 1Ò rÒ s] 2 G, and then the next
equation shows that all 4-tuples of the form [1Ò q + 1Ò rÒ s � 1] 2 G. The induction ends
when q is so large that there are no triples satisfying the conditions stated in Lemma 5.

This proves that A is generated by the triples [1Ò rÒ s], where

1 � r � s � p � 1 and 1 + r + s � 0 (mod p)

There are (p � 1)Û2 such triples. To complete the proof we show that A is free abelian
of rank (p � 1)Û2.

To do this recall that B̂ is a free abelian group of rank (p� 1)Û2, see Corollary 3. But
Â is a subgroup of finite index in B̂, see Theorem 1, and therefore Â is also a free abelian
group of rank (p�1)Û2. Theorem 4 now implies that A is free abelian of rank (p�1)Û2,
and so the generators [1Ò rÒ s] freely generate A . This completes the proof of Theorem 5.

https://doi.org/10.4153/CJM-1998-035-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-035-8


EICHLER TRACE OF ZP 635

5. Equivariant cobordism. In this section we prove Theorem 6. To begin with
suppose T1: S1 ! S1 and T2: S2 ! S2 are automorphisms of order p on compact
connected Riemann surfaces. We do not assume that the orbit genus of either S1 or S2 is
0. We start with a standard definition.

DEFINITION 5. We say that T1 is equivariantly cobordant to T2, written T1 ¾ T2,
if there exists a smooth, compact, connected 3-manifold W and a smooth Zp action
T: W ! W such that

(i) The boundary of W is the disjoint union of S1 and S2, ] (W) = S1 t S2.
(ii) T restricted to ] (W) agrees with T1 t T2.

The cobordism class of an automorphism T: S ! S depends only upon its topological
conjugacy class [g j a1Ò    Ò at]. We denote this cobordism class by hg j a1Ò    Ò ati, and
if the orbit genus g = 0, we denote it by ha1Ò    Ò ati.

The set of all cobordism classes ofZp actions on compact connected Riemann surfaces
is denoted by Ω. Addition of the cobordism classes of the automorphisms T1: S1 ! S1,
T2: S2 ! S2 is defined by equivariant connected sum.

hg j a1Ò    Ò ati + hh j b1Ò    Ò bui = hg + h j a1Ò    Ò atÒ b1Ò    Ò bui(14)

The next two lemmas show that Ω is an abelian group generated by the cobordism
classes ha1Ò    Ò ati. The identity is represented by any fixed point free action, or by any
cobordism class consisting entirely of cancelling pairs, and the inverse of hg j a1Ò    Ò ati

is represented by hg j p � a1Ò    Ò p � ati. The proofs are not original, but are presented
here to emphasize the relationship with A .

LEMMA 6. hg j a1Ò    Ò ati = ha1Ò    Ò ati.

PROOF. Let T: S ! S represent the class ha1Ò    Ò ati. First we take the product cobor-
dism W1 = Sð [0Ò 1], where T is extended over W1 in the obvious way. Next we modify
W1 on the top end Sðf1g as follows. Take a disc D in S such that DÒT(D)Ò    ÒTp�1(D)
are mutually disjoint, and then to each disc Tk(D) in Sð f1g, k = 0Ò 1Ò    Ò p� 1, attach
a copy of a handlebody H of genus g by identifying the disc Tk(D) with some disc
D0 ² ] (H). Let W2 denote the resulting 3-manifold. See Figure 2. The action of Zp

can be extended to W2 by permuting the handlebodies. The manifold W2 provides the
cobordism showing that hg j a1Ò    Ò ati = ha1Ò    Ò ati.

LEMMA 7. haÒ p � aÒ a3Ò    Ò ati = h1 j a3Ò    Ò ati = ha3Ò    Ò ati.

PROOF. The proof of this lemma is similar to the proof of the last one. Start with
a product cobordism W1. Suppose P0, P1 are the fixed points corresponding to the
cancelling pair faÒ p�ag. Choose small invariant discs D0, D1 around P0, P1 respectively,
and then modify the cobordism at the top end by adding a solid tube D ð [0Ò 1] so that
D ð f0g = D0 and D ð f1g = D1. The automorphism T can be extended over this tube,
and the resulting cobordism shows that

haÒ p � aÒ a3Ò    Ò ati = h1 j a3Ò    Ò ati
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FIGURE 2:

See Figure 3. Lemma 6 completes the proof.

FIGURE 3:

Define the isomorphism of Theorem 6, û: A ! Ω, by û[a1Ò    Ò at] = ha1Ò    Ò ati.
The defining relations of A are

(i) [a1Ò    Ò at] + [b1Ò    Ò bu] = [a1Ò    Ò atÒ b1Ò    Ò bu].
(ii) [   Ò aÒ    Ò p � aÒ   ] = [   Ò âÒ    Ò dp � aÒ   ].

The same relations hold for cobordism classes, see Equation 14 and Lemma 7, and
therefore the mapping û is a well defined group homomorphism.

Now we complete the proof of Theorem 6. The argument is analogous to one used in
[3].

PROOF. From the remarks above we know that û: A ! Ω is a well defined group
homomorphism. Lemma 6 implies that it is an epimorphism. It only remains to prove
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that û is a monomorphism.
If there is an element in the kernel ofûwe can assume it is a generator, say [a1Ò    Ò at].

Suppose T: S ! S represents [a1Ò    Ò at]. Then there is a compact, connected, smooth
3-manifold W such that ] (W) = S, and an extension of T to a smooth homeomorphism
T: W ! W of order p, also denoted by T. The fixed point set of T: W ! W must consist
of disjoint, properly embedded arcs joining fixed points in S to fixed points in S. The
fixed points at the end of each arc will form a cancelling pair faÒ p� ag. In this way we
see that [a1Ò    Ò at] consists entirely of cancelling pairs, and hence [a1Ò    Ò at] = 0 in
A .
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