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THE EICHLER TRACE OF Z, ACTIONS
ON RIEMANN SURFACES

DENIS SJERVE AND QING JIE YANG

ABSTRACT. We study 7, actions on compact connected Riemann surfacesviatheir
associated Eichler traces. We determine the set of possible Eichler tracesand determine
the relationship between 2 actions if they have the same trace.

1. Introduction. Inthispaper we study group actionsof Z;, the cyclic group of odd
prime order p, on compact connected Riemann surfaces S. If the genus of Sis g then the
vector space V of holomorphic differentials on S has dimension g and any action of Z,
on Sdetermines arepresentation p: Z, — GL(V). If T isapreferred generator of Z, then
this representation yields amatrix p(T) € GL(V). The trace ozfﬂthis matrix, x = tr(T), is
referred to asthe Eichler trace. Clearly x € Z[(], where{ = e .

One of the goals of this paper is to determine how much information about the action
of Z, is captured by the Eichler trace. There are actually two questions here.

QUESTION 1. What elements x € Z[¢] can be realized as the trace of some action?

QUESTION 2. What is the relationship between two actions, not necessarily on the
same surface, if they have the same trace?

We give complete answers to both questions. To explain our results we need to
develop some notation. Let T be an automorphism of order p on a compact connected
Riemann surface S. Suppose there are t fixed points P4, ..., P. In a sufficiently small
neighbourhood of afixed point P; the automorphism will have the form T:z — ¢4z for
some integer ki, 1 < k; < p — 1. Thisinteger is defined to be the rotation number at P;.
The Eichler Trace Formula, see[7], is

to1
= + R
N x=1 1:21 Ck‘ 1

Let A denotethe set of all Eichler traces of all possible actions, that is
2 A={x €Z[q] | x =tr(T)},

where T is any automorphism of order p on any compact connected Riemann surface S.
A simple calculation with the Eichler Trace Formula 1 showsthat x +x = 2 — t for any
x € A, where x denotes the complex conjugate of . Thus A C B, where

©) B={xeZl|x+x €}
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In Section 3 we show that B is a free abelian subgroup of Z[¢] of rank (p + 1) /2 and
determine abasis. Thusareasonablefirst step in describing A isto determine the “index”
of Ain B. Unfortunately, it turns out that A is not a subgroup of B, so this does not make
sense. On the other hand, the quotient set A = A/Z, that is the elements of A modulo the
integers, is a group, in fact a subgroup of B = B/Z. We prove that B is a free abelian
group of rank (p — 1) /2 and that the index of Ain Bisfinite.

A dlightly different version of the following theorem was first announced, but not
proved, in Ewing’s paper [6]. An equivalent result, stated in terms of Witt classes and
G-signatures, first appeared in Ewing [5]. At the end of Section 3 we briefly indicate
how to translate Ewing'’s results into ours.

THEOREM 1. Theindex of Ain B is hy, the first factor of the class number h of Z[(].

Thistheorem givesapartial answer to Question 1. In Section 4 wefind free generators
of A, thereby answering completely Question 1. See Theorems 4, 5 and Corollary 1 in
this section, and Proposition 1 in Section 2.

Implicit in these theorems is an answer to Question 2. To an automorphismT: S— S
of order pwe associatea“vector” [g; ki, . . ., k], where g isthe genus of the orbit surface
S/ Zy, t is the number of fixed points, and the k; are the rotation numbers. The rotation
numbers are unique modulo p, but their order is not determined. From the Eichler Trace
Formula 1 it is clear that x = tr(T) does not depend on g or on the order of the k;. If a
cancelling pair {k,p — k}, where 1 < k < p — 1, appears amongst the set of rotation
numbers{k, ..., k}, thenaneasy calculation showsthat their contribution to the Eichler
traceis 1 1

(4) ckj-i-m:_

Thuswecan replacethe cancelling pair {k, p—k} by any other cancellingpair {1, p—I}

and not change the Eichler trace.
Given two such automorphisms

TS —S, TxS—S

we havetwo “vectors’ [g; k. . ... k], [h; 11, .. ., lu]. Let x1 and x» denote the respective

Eichler traces.
THEOREM 2. x1 = x2if, and onlyif, t = uand the set of rotation numbers {ky, .. . . k}
agreeswith {l,, ..., I} up to permutations and replacements of cancelling pairs.

Asfar asthe set of Eichler tracesis concernedthereisnolossof generality in assuming
that the orbit surface S/ Z,, is the extended complex plane C. In other words, if x isthe
Eichler trace of some action with orbit genusg > O (the orbit genusis defined to be the
genus of S/Zp,) then there will be some other action, on a different Riemann surface,
with the same Eichler trace x and orbit genusg = 0. Thereis also no loss of generality
in considering actions up to topological conjugacy since an easy consequence of the
Eichler Trace Formula 1 isthat conjugate actions have the same Eichler trace.
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In Section 2 we recall how Z, actions with orbit genusg = 0 can be parametrized up
to topological conjugacy by sequences

t
5) [a,-.-, al, where 1<g <---<a<p-—1 and > g = 0(modp).
=1

The next result is due to Nielsen [11], and is stated here only for reference.

THEOREM 3. There is a one-to-one correspondence between the set of topological
conjugacy classes of automorphisms T: S — S of order p and orbit genus 0, where
Sis an arbitrary compact connected Riemann surface, and sequences satisfying the
conditionsin 5. The integer t is the number of fixed points and the rotation numbersk
are determined by the equationskjg; = 1 (modp), 1 <j <t.

We can also parametrizethese actionsby sequences|ay, . . . , a], wherel <a <p-1
forl <j <t and Zj}zla,- = 0 (mod p). Two such sequences[ay, ..., &), [ba,.... 0y
arethe sameif t = u and they agree up to a permutation.

Now consider theinfinitely generated free abeliangroup F generated by all sequences
[ai, ..., &] asin 5. The goal is to make the Eichler trace into a group isomorphism, so

we introduce some relations.

DerINITION 1. Let A denotethe abeliangroup F /R, where R isthe subgroup of F
generated by the following relations:

@) [as.....a] +[br.....bu] =[ac ... & bi.....by.

(i) [...a0....p—a..]=[...a...p—a..]

Inrelation (i) the sequences|ay, . . . , &],[bs. ..., by] arearbitrary sequences satisfying
condition 5, and in relation (ii) the sequence|...,a,....p — a,...] is any sequence
satisfying condition 5 and having a cancelling pair {a, p — a}. The first relation says
that addition in A is, up to rearrangement, concatenation of sequences, and the second
relation allowsusto deleteacancelling pair {a, p—a}. It followsthat theidentity element
of A isrepresented by the empty sequence] ], or by any sequence consisting entirely of
cancelling pairs. Theinverseof [ay, ..., &] isrepresented by [p— &3, ..., p—&], upto
rearrangement.

In Section 4 we prove the following two theorems.

THEOREM 4. The Eichler trace determinesa natural group isomorphism: A — A.

THEOREM 5. The abelian group A isfree of rank (p — 1) /2. A free basisis given by
thetriples[1.r,s],wherel <r <s<p-—1land1l+r+s= 0(modp).

It follows from these theorems that A is a free abelian group of rank of (p — 1)/2.1n
the next corollary we give abasis, thereby completely answering Question 1.

COROLLARY 1. Aisa free abelian group of rank (p — 1)/2. It isfreely generated by
the mod Z representatives of the (p — 1) /2 elements:

1 1 1

Xr,s=<_1+<r_1+<s_1. wherel <r <s<p-—2landl+r+s=0(modp).
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Thenin Section 5we give Theorems4 and 5 geometric content by relating equivariant
cobordism of Z, actions on compact connected Riemann surfaces to A To explain this
let Q denote the group of equivariant cobordism classes of Z,, actions. In the definition
of Q we do not assumethe orbit genusis zero. We show that the Eichler trace induces a
natural group homomorphism ¢: A — Q.

THEOREM 6. ¢: A — Q isa group isomorphism.

COROLLARY 2. Q is a free abelian group of rank (p — 1)/2. A free basis is given
by those cobordism classes of automorphisms T: S— S having order p, orbit genus 0,
and three fixed points, at least one of which has rotation number one. If the other two
rotation numbers are ky, k3 then the only restriction is that 1 + a, + a3 = 0 (modp),
where ka; = kzaz = 1 (modp).

2. Preliminaries. In this section we collect some of the preliminaries needed for
later sections. First we describe how all group actions on Riemann surfaces occur and
then we specialize to the case of the group Z,,.

Wewill usethe notation Aut(S) for the group of analytic automorphismsof aRiemann
surface S Throughout the paper all surfaces will be connected, orientable and without
boundary. By the uniformization theorem the universal covering space U of Sis one of
three possibilities: the extended complex plane C, the complex plane C, or the upper half
plane H. The letter U will always denote one of these three.

If G is afinite group acting topologically on a surface S by orientation preserving
homeomorphisms then the positive solution of the Nielsen Realization Problem guaran-
tees that there exists a complex analytic structure on S for which the action of G is by
analytic automorphisms (see [12], [9], [8] or [2]). Thusthere is no loss of generality in
assuming that the action of G is complex analytic to begin with, and we will tacitly do
SO.

To any action of G on Swe associate a short exact sequence of groups

(6) 1-nN-r—2.6-1

with " being a discrete subgroup of Aut(U) and N atorsion free normal subgroup of I,
asfollows. Let 7: U — Sdenote the covering map. Then T is defined by

(7 Mr={ycAut(U) | roy=gomqge G}.

In other words I consists of al lifts y: U — U of al automorphismsg:S— S, g € G.
The subgroup I' is unique up to conjugation in Aut(U).

The epimorphism 6: T — G is defined by 6(Y) = g, wherey andg areasin 7. The
kernel of 8:" — G is T, the fundamental group of S, and is therefore torsion free. The
actionof Gon S=U/M isgiven by g[Zn = [Y(2]n, whereze U,g € G,andY € T
is any element such that 6(Y) = g. Here the square brackets denote the orbits under the
action of M. The orbit surface S= U/T, and the branched covering m: S— S isjust the
natural map U/M — U/T, [2n — [Zr.
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Conversely, suppose 1 — M — T Y G- 1isa given short exact sequence of
groups, where I is a discrete subgroup of Aut(U) and I istorsion free. Then this short
exact sequence corresponds to the one arising from the action of G on the Riemann
surface S= U/ defined above.

Thus there is a one-to-one correspondence between analytic conjugacy classes of
analytic actions by the finite group G on compact connected Riemann surfaces and
short exact sequences 6, where I' is a discrete subgroup of Aut(U), unique only up to
conjugation in Aut(U), and I is atorsion free subgroup of I".

Now suppose G isthe cyclic group Z, and T € Z, denotes a fixed generator. Actions

of Z, on Riemann surfaces correspond to short exact sequencesl — M — I LN 7y — 1.

tti

Since the kernel of ¢ is torsion free the signature of I must have the form (g; p, . . . , p),
where g and t are non-negative integers. As an abstract group I has the following
presentation

() t+2ggeneratorsAg, ..., A, X1, Y1,..., X3, Yg.

(i) t+1relations A} =--- = AP = Ay A[Xs, Y1] - - - [Xg. Yg] = 1.

ttimes

We denotethisgroup by I' = I'(g; F_@ Any such group can be embedded in Aut(U)

as adiscrete subgroup in many different ways up to conjugation.

FIGURE 1: Fundamental Domain

Figure 1illustrates afundamental domain for a particular embedding wheng = 0 and
t = 3. It consists of aregular 3-gon P, all of whose anglesare 7/ p, together with a copy
of P obtained by reflectionin one of its sides. The generators A;, As, Az are therotations
by 27/ p about consecutive vertices, ordered in the counterclockwise sense.
ttimes

. . —_——— . .
Let ' be any Fuchsian group of signature (g;p,- .., p). Then an epimorphism 6:

I — Z, is determined by the images of the generators. The relations in ' must be
preserved and the kernel of 6 must be torsion free, so 6 is determined by the equations

OA)=T3. 1<j<t0X)=T> 6(Y)=T% 1<k<g.
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The following restrictions must hold:

(i) Theq areintegerssuchthat 1 < g <p—1and th:la,- = 0 (modp).

(ii) Theby, ¢k arearbitrary integers mod p, except that at least one of them is non-zero
if t = O (this guaranteesthat 4 is an epimorphism).
It follows from the first restriction that the only possible valuesof taret=0,2,3,....

Conversely, given integers g;, by, ¢ satisfying conditions (i) and (ii), there is an
epimorphism §:" — Z, with torsion free kernel ' and a corresponding Z, action
T:S— S whereS=U/.

The integer t equals the number of fixed points of T:S — Sand g is the genus of
the orbit surface S/Z,. A well known result of Nielsen [11] says that the topological
conjugacy class of T: S— Sis completely determined by g and the unordered sequence
(& ....a). We use the notation [g | ay,. ... &] to denote the topological conjugacy
class of the homeomorphism T:S — S determined by this data. If g = 0 we use the
notation [ay. . . ., &], and usually order theg; sothat 1 <a; <--- <a <p—1

Of particular interest is the case g = 0. Then the orbit surface S/Z;, is the extended
complex plane € and T hasthe presentation

(i) tgeneratorsAg, ... A.

(i) t+1relationsA} =--- = AP =A;---A =1
The epimorphism 6 is given by the equations

t
8 O(A)=T3 wherel<a <---<a<p-—1 and > a =0 (modp).
=1

With these preliminariesit is now straight forward to give an answer to Question 1in
theintroduction. Thisisjust amatter of determining the possible setsof rotation numbers.
Thuslet {ki.. ...k} beany set of t numberssatisfyingl <k <p—1,1<j <t, and

let & denote that number such that kigj = 1 (modp) and 1 < &g <p— 1.

PROPOSITION 1. 1+ X1, <‘ﬁ+1 € A, if, and onlyif, 5!, & = 0 (mod p).

3. The Eichler trace. In this section we prove Theorems 1 and 2. Recall that the
class number h of the ring of integers Z[(] is the number of egquivalence classes of non-
zero integral ideals | in Z[(], where the equivalencerelation is fractional equivalence:

| ~J if there exist non-zero elementsr, s € Z[¢], suchthat rl = sJ.

In fact the collection of equivalence classesof integral ideals forms afinite abelian group
C of order h, where the group structure is given by multiplication of ideals. See[10]. If
| isanideal then soisits complex conjugate | and it is easy to see that

C.={I |l isaprincipal ideal}

is a subgroup of C. The order of this subgroup is by definition the first factor h; of the
class number.

https://doi.org/10.4153/CJM-1998-035-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-035-8

626 D. SIERVE AND Q. J. YANG

We begin by observing that the set A is not a subgroup of Z[(]. To see this suppose

that y € A, that is
t

1
=1+ -
X J:Zl &—1
isthe Eichler trace of some automorphism T: S— S The possible valuesfor the number
of fixed pointsaret = 0,2, 3. .. ., and therefore the possible valuesof x + x =2 —t are
2,0,-1.-2,.... We also have y € Asince

-4 i 1
=1+
=T

is the trace of T™1:S — S Therefore, if A were a subgroup we would have y + x =

2—t € A, and hence Z would be a subgroup of A. Butif n € Aisan integer, n > 2, then

n+n=2n > 4isnot of theform 2 — t for an admissiblet. Therefore A is not a subgroup.
Recall that A is the set of realizable Eichler traces modulo Z.

PROPOSITION 2. A is a subgroup of Z[(].

PROOF. Suppose x1 = 1+ Y &—{1 and x2 = 1+ Y%, -1 are in A Therefore

=1 1
Xi+ X2 =X, where y = 1+ Z}=1<"i—1—1 + J'u=1<'i+1' If x1 ancd X2 are represented by
T1:S — S and To: S — S respectively, then x can be represented by the equivariant
connected sum of T; and T,. Thus A is closed under sums.
If x € Athenalsoy € Aand y + x = 2 —t. Therefore ) isthe inverse of x once we
reduce modulo the integers. The identity element of A is represented by any fixed point

free action. n
To determine the index of A in B we need abasisfor B, but first we find abasisfor B.

DEFINITION 2. Let m = (p — 1)/2 and define elements 61.6,. ....6m in Z[(] by
61=¢+yP 2 dand=¢t—¢H2<k<m

The proof of the following proposition is elementary.
PROPOSITION 3. A basisof Bisgiven bythem+ 1 elements 1, 61,65, ..., Om.

REMARK. Everyinteger n € B, andinfact 61 + 61 = —1. Wealso have( — (1 € B;
since
C—Cr1=1+200+0,+ - + 6.
Itfollowsthat 1. — (1.2 —¢72,....¢"— ¢~ form abasisfor an index 2 subgroup of
B.
An immediate corollary of Proposition 3is

COROLLARY 3. Bisafreeabelian group of rank (p — 1) /2 with basis

0]_. 62. “e. ,Hm.
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Before completing the calculation of the index of A in B we first consider Question 2
from Section 1. Thus supposetwo elements from A have the same Eichler trace, say

This leads usinto consideration of equations zp 1 .’ﬁ = 0inintegers x¢. To solve this
equation we need the next lemma, whose proof is om| tted

If sisany integer relatively prime to p then let R(s) denote that integer q such that
1<qg<p-1landqg=s(modp), thatis, s =[s/p]p+ R(s). In what follows >j=n
denotesthe sum over all ordered pairs (j, k) suchthat jk =n(modp)and1 <j <p-— 1

LEMMA 1.
p—1 X
= —— + — Xk X
kgl Ck -1 ] ;11 “ p n21<]kznJ kgll k)
Asacorollary we get
COROLLARY 4. Zk 1 C =0if,and only if, Sj=njx« = 0,for L <n<p—1.

Now itisconvenientto changethevarlablesxl ..... Xo—1 tonew variablesys, . . ., Yo-1
according to the equation

9 Vi =Xk, Wherekl =1 (modp).
Then Corollary 4 becomes

COROLLARY 5. »P~ 1 cTXL 0if, and only if, - R(nk)yx =0, for 1 <n < p— 1.

The coefficient matrix of thislinear systemisthe (p — 1) x (p — 1) matrix M whose
(i.j) entry isM j) = R(ij). To solvethis system of p— 1 equationsin p — 1 unknownswe
apply a sequence of row and column operations. The details are left to the reader. Recall
thaam=(p—1)/2.

1. Addthei-th row tothe(p —i)-throw, 1 <i <m.

2. Add thej-th columnto the (p — j)-th column, 1 <j < m.

3. Subtract the (m + 1)-st row from rons m+ 2,.. ., p — 1, and then subtract the

(m+ 1)-st column from columnsm+2,. ..., p—1
The variables z, for the new coefficient matrix are related to the yy by the equations

Z=Ye—Ypk L<KSM Zpia =Ymer ¥ +Yp1. Zj =Ymj» 25 ) <p—1
It turns out that zp.o. . . . , zy—1 are completely independent; wheress, zi, . . ., Zms+1 Satisfy

L 2 -~ m pllz ]l [0]
2 4 - 2m p b4 0
i R@2) --- Rmi) p z |=1]0
mR2m) --- RM) p || zm 0

Lp P - P 2p|[Zna] [O]
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Now we apply another sequence of row and column operationsto this last coefficient
matrix.

1. Subtract i timesthefirst row fromthei-throw, 2 <i <m.

2. Subtract j times the first column from the j-th column, 2 <j < m.

The new variables w; arerelated tothez by wy =z, + 22+ --- + mzpand w; = z,
2 <j <m+1, andthe new equationsare w; = W1 = 0, Wo + 2wz +- - - +(M—L)wy =0

—[9/plp -+ —=[3i/plp --- —[3m/p]p] [ ws 0
[8/plp - —Tii/plp -~ —lim/plp | | w | =0

~[3m/plp --- —[mi/plp -+ —[m?/plp| |Wm | [O
The coefficient matrix of this system can be row reduced to the matrix whose(i. j) entry,
3<i.j <m,islij/plp — [(i — 1)j/plp, by first subtracting row m— 3 from row m— 2,
then row m— 4 from row m— 3, etc., and then changing all signs. The resulting matrix
is invertible, in fact its determinant equals +p™2h;, where h; is the first factor of the
classnumber [1]. Thusw; =0,1 <j <m+1.
This provesthat >0- (kxkj =0if, and only if, yk = yp-k for 1 <k < p—1, and
Ym=—Ym2— " — Yp-1,
where ymso. . . .. Yp—1 are completely arbitrary. Trandating back to the x, variables we
COROLLARY 6. SP— 1 a1 = 0if, and only if, % = X, for L <k <p—1,and
Xm = —Xmi2 — - — Xp-1,
where Xm+2, . - . , Xo—1 are completely arbitrary.
We can now complete the proof of Theorem 2.

PROOF. Suppose x1 = x2 are the Eichler traces of two actions, say

where uy is the number of times k appears as a rotation number in 1, and vy is defined
similarly. Weimmediately gett = usincey;+x1 = 2—tandy2+x2 = 2—u. Theequation
x1 — x2 = 0 givesthelinear relation 25;11 (kxkj =0, where X, = ux — W. It follows from
Corollary 6 that the vector X = (Xi.....%1) iS an integral linear combination of the
vectors

§=(...L....—L.—-1....1..). 1<j<m-1
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wherethe 1's arein positions j, p — j; the —1's are in positions m, m + 1; and the other
entries are zero.

For argument’s sake suppose X = € for some j. This means we can move from the
vector of rotation numbers [uy, .. ., Up—1] to the vector [vi, ..., Vp—1] by replacing the
cancelling pair {j, p—j} by thecancelling pair {m, m+1}. Taking linear combinations of
the & correspondsto a sequence of such moves. This completesthe proof of Theorem 2.

The remainder of this section is concerned with the proof of Theorem 1. According
to Proposition 1 the set of Eichler tracesis given by

t 1
A= {XGZ[C] | X:1+J;§kﬂ——l}‘

where the only restriction on the rotation numbersk; is that E}zl R(kj*1) = 0 (modp). If
we define x, to be the number of j, 1 <j <t, such that k; = k, then we can characterize
Aby

p—1 Xk p-1 _1
(10) A:{XeZ[g]|X:1+Zk—.xk20and S RK )xkEO(modp)}.
k1 6<—1 k=1

In the next lemma we show that by passing to A we can remove the restriction that
the X, be non-negative integers.

LEMMA 2. The set of Eichler tracesmodulo Z is given by

~ R ~ p-1 Xk p—1 1
A= (R eZlq | x= % 55 > Rk %= 0(modp)|.
k¢ —1 i
PROCF. First note that by choosing all X = 1 in Equation 10 we get an element
x € A Infact ashort calculation using Lemma 1 gives y = 1 — (p — 1)/2, and thusthis
element represents 0 in A. By adding x sufficiently many times to an element in A we
can ensurethat all the coefficients x, become positive, and this does not changeits value
inA. n
This description of A containsalot of redundancy, as the next lemma shows.

LEMMA 3. The set of Eichler tracesmodulo Z is given by

A= (3] x =3 %= 3 Rk )z = 0 (modp)).
k:lC 1 k=1

PROOF. According to Lemma 2 atypical element ¥ € A can be represented by

=Y ey Ky o
X— - — N
k-1 H¢&—-1 HG¢k-1
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where the xk are integers satisfying ij_l Rk Y)x = 0 (modp). Using Equation 4 we
seethat § = 1, wherey) = S, Zé— and z, = X — Xp—k. Therestriction on the integers
Zc iseasily seento be X R(k~ 1)z, = 0 (mod p). "

In Definition 2 we introduced elements 6.6, ..., 6m and then in Corollary 3 we
showed that the correspondi ng classesmodulo Z, that is61. 05, .. . . 6m, formed abasis of
B. To determine the index of A in B we want to express atypical element of A in terms
of thisbasis. But first we need a definition.

DEFINITION 3. For integersk, n define C(k. n) = R(k—1n) + R(k~1) — p. Thefollowing
properties of the coefficients C(k, n) are easy to verify:
(i) C(k,n)+C(p—k.n) =0and C(k,n) + C(k,p—n) = 2R — p.
(i) C(1.n) =n+1—p,C(k, 1) = 2Rk H)—p, C(p—1,n) = p—n—1,and C(k. p—1) = 0.
LEMMA 4. The elements of A are those elements § € Z[(] of the form
. 1.m,m .
§= =22 Clk )
P =N
where the only restriction on the integers z is ¥, R(k~)z. = 0 (mod p).

PROOF. By Lemma 3 a typical Eichler trace modulo Z is given by %, where xy =
SRy <kaT1 and X1, R(k 1)z = 0 (mod p). Using Lemma 1 we have

—2
=X Tt (Sia- ¥ ja)
Pik=—1 P =1 \jkzn jk=—1
The condition >, R(k~1)z, = 0 (mod p) can be written as Yjk=1jz« = 0 (mod p), and

S0 Yjk=—1JZ = Zjk=1 (P — J)z = 0 (mod p). Therefore, modulo Z we have

1R2 . n
=S (Tia- ¥ ) ——z(zjzk > e
P n=1 \jik=n jk=—1 P r=1 \jkzn jk=—1
Note that the term corresponding to n = p — 1 contributes 0 to the sum. Also note that

Yia— > = ZC(k n)z

jk=n jk=—1
and therefore x = SPo (S, Clk, )z )¢
To complete the proof we break the last sum up into two pieces, one piece for

1 < n < m, the other for the remaining values of n, and then use properties of the
coefficients C(k, n). n

DEFINITION 4. Let K be the collection of mrtuplesV = [z, ..., Zy] satisfying the
condition

f: R(k 1)z, = 0 (mod p).
k=1
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Thus K is afree abelian group of rank m. We can write z = Ip — >, R(k )z, for
some integer |, and therefore abasis of K is given by the vectors

Vi =[p.0,....0 .k =[-Rk™).....1....]. 2<k<m

where the 1isin the k-th entry, and all other entries, except thefirst, are zero.
Now consider the group homomorphism L: K — A defined by

L) = % il (kf; Clk, n)zk)@n.

Lemma4 implies that L is an epimorphism.
PROPOSITION 4. L isa group isomor phism.

ProOF. We first compute the images of the basis elements v; and Vi, 2 < k < m,
using properties of the coefficients C(k. n). By aroutine calculation we have:

m
L(v1) = > (n+1—p)oy
n=1
L 1 L1 A P
L(%) = ngl( [p} + = 1),
wherej = R(k™Y).
Now consider the m x m matrix M whose (k, n) entry is given by
n+l—p ifk=1,
_[%‘]+j—1 if k> 2.

M@y =

To complete the proof of the proposition we need only show that det(M) # 0. In fact we
will show that the determinant of this matrix is +h;, thereby completing the proof of
Theorem 1.

There aretwo casesto consider. Thefirst case concernsthosevaluesof k,2 <k <m,
for whichm+1 <j < p— 1. For each such value of k we add the first row of M to the
k-th row, and then change signs. The resulting entries of the new k-th row are

jny . _ jn \\ _ [(p—1in .

—(n+ l1-p-— [5] +j— 1) = —(n+1+ [_E] - (p—J)) = —[T] +(p—j)—1
Notice that the form of these entries is the same as that of the matrix M and that now
l<p—j<m

In the second case, that is for those valuesof k suchthat 2 < k <mand1 <j <m,
we leave the k-th row asit is.

Applying these elementary row operationsto M results in a matrix which agrees, up
to rearrangement of rows, with the matrix N whose entries are given by

_(n+l-p ifk=1,
Noen) = —[0] +k—1 ifk>2.
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By a sequence of operations, similar to those used in the proof of Corollary 6, the
determinant of N is + that of the following matrix, where3 <k, n < m:;

) _[k_;] +'[£k;plm]

According to [1] the determinant of this matrix is 4-h;. This provesthe proposition since
the determinant of M hasonly changed by a+ sign in the course of the above elementary
row and column operations. ]

The proof of Theorem 1 follows from the fact that det(M) = +h; since the matrix M
is the coefficient matrix for expressing the basis elements of A in the basis elements of
B.

As mentioned in the introduction, Ewing proves our Theorem 1, but in a different
setting. See Theorem 3.2 in [5]. To explain how Ewing's results relate to ours we need
some notation.

Let W denote the Witt group of equivalence classes [V, 3, p], where V is a finitely
generated free abelian group, 3 is a skew symmetric non-degenerate bilinear formon 'V,
and p is arepresentation of Z, into the group of 3-isometries of V. To an automorphism
of order p, T: S— S we assign the Witt class[V, 3. p], where V is the first cohomology
group, (3 is the cup product form, and p is the induced representation on cohomology.
This assignment is well defined up to cobordism and so defines a group homomorphism
ab: Q — W, the so-called Atiyah-Bott map.

The G-signature of Atiyah and Singer defines a group homomorphism from the
group of Witt classes to the complex representation ring of Z,, sigoW — R(Zp). Let
e:R(Z,) — Z[¢] be the homomorphism that evaluates the character of a representation
at the generator T € Zp,. Let s:Q — Z[¢] denote the composite e o sigo ab: Q — Z[(].

Ewing provesthat sis amonomorphism whose image hasindex h; in the subgroup R
of Z[(] defined by

R= {iai(éi—éfi) lag=a=--- Eam(modZ)}.

From the Remark earlier in this section it follows that R has index 2™ in B. If
(g] a,. .. ,a) denotesthe cobordism class of T, see Section 5 for the notation, then the
G signature o is given by

(12) oc=s{g|a,.... &) = Xt:

The relationship between the G-signature ¢ and the Eichler trace x is given by o =
2x +t— 2, and from thisit is not too difficult to translate Ewing'’s results into ours.
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4. TheEichler isomorphism. Westart this section with some preliminaries needed
for the proofs of Theorems 4 and 5. Any sequence [a, ..., &], asin 5, determines
uniquely up to topological conjugacy, a compact connected Riemann surface S and an
analytical automorphism T: S— Shaving order p, orbit genus0, and whose Eichler trace

is given by the equation
t

12) X:1+Zﬁ. where kg = 1 (modp), for1 <j <t.
167~

Let x[a1, ..., &] denote this Eichler trace.

By Theorem 2, if [&;....,&] and [bs,...,b,] are two such sequences then
xlag,...,a] = x[by, ..., by] if, and only if, t = u and the sequences agree up to re-
arrangement and cancelling pairs.

Define a group homomorphism 1, from the abelian group A in Definition 1 to the free

abelian group Z[(] / Z by:
(13) A —=Z[Q/Z.n:[a.....a] — x[a1.....a&] (modZ).

Now we prove Theorem 4.

PrOOF. To provethat , iswell defined recall that the relations used to define A are:

X[ a,..., p—a..]=x[....&....p—a...]—1.

This follows from the Eichler Trace Formula 12. Thus the Eichler trace is not additive,
but reducing modulo Z we see that 1, is awell defined group homomorphism.

By definition the image of 1 is A, the set of Eichler traces modulo Z. It remains to
show that 1 isamonomorphism. If thereisan element in the kernel of 1 we may assume
it is a generator, say n[a, ..., &] = 0. This follows from the nature of the defining

relations in A. Therefore x = x[as....,&] = n for some integer n. From the Eichler
Trace Formula12weget x + x =2 —t = 2n,and so n < 1. A short calculation then
givesy = x[L.p—1,..., 1, p — 1], where there are 1 — n cancelling pairs {1,p — 1}.
Now Theorem 2 implies that [a, ..., &) consists entirely of cancelling pairs, and so

represents 0 in A. This completes the proof of Theorem 4. L]

Now we begin the proof of Theorem 5. First we show that A is generated by all
triples. The argument used in the following lemma is analogous to an argument used by
Symondsin [13].

LEMMA 5. The abelian group A is generated by the triples[q.r. s], where1 < g <
r<s<p-121landq+r+s=0(modp).
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PrOOF. We will show that any generator [a;. ..., &] can be expressed as a linear
combination of triples. We can assumethat the sequence[ay, . . . , &] does not have any
subsequence[q, r, 5] suchthat g+r +s = 0 (mod p), and does not contain any cancelling
pairs. Thereforet > 4. The following equation is valid because of the defining relations

inA:
[a1, 82,83, 84, ...] =[a1, &2, b] +[ay + &p.83....], Whereb=p—a — a, (modp).

Arguing by induction on the length of the sequence completes the proof. ]
The generatorsin Lemma 5 are not independent as the next Example shows.

ExAMPLE. Letr beany integer suchthat 1 <r < p— 3. Then
[1,r,p—r—1]+[Lr+1p—r—2]=[1Lr,p—r—2]=[1,1,p—-2]+[2,r,p—r—2].

Now we completethe proof of Theorem 5, that iswe show that the abelian group A is
freely generated by thetriples[1,r, s],wherel <r < s<p—l1landl+r+s= 0(modp).

Proor. Let G denote the subgroup generated by these triples. The first equation in
the example showsthat all 4-tuples[1,1.r.s] € G, where

1<r<s<p-1land2+r+s=0(modp).

We now set up an induction. To reduce the amount of notation we omit mentioning
some of the restrictions that the following sequences must satisfy.

Assume that we have shown that for some integer g > 1 all 3-tuples of the form
[g.r.s] € G and all 4-tuples of theform [1.q.r.s] € G. The Example above establishes
theinitial case, g = 1, of the induction. Now consider the equations

[1,9,p—g—1]+[g+Ll,r,s] =[1,q,r,5]. [g+lr.s]+[1,r+g+l,s—1] =[1,g+1,r,s-1].

The first equation showsthat all 3-tuples of the form [q + 1., 5] € G, and then the next

equation shows that all 4-tuples of theform [1.q+ 1.r.s— 1] € G. Theinduction ends

when q is so large that there are no triples satisfying the conditions stated in Lemmas.
This provesthat A is generated by thetriples[1,r. 5|, where

1<r<s<p—1 and 1+r+s=0(modp).

There are (p — 1) /2 such triples. To complete the proof we show that A is free abelian
of rank (p — 1)/2.

To do thisrecall that B is a free abelian group of rank (p — 1)/2, see Corollary 3. But
Aisasubgroup of finiteindex in B, see Theorem 1, and therefore A is also a free abelian
group of rank (p— 1) /2. Theorem 4 now impliesthat A isfree abelian of rank (p—1) /2,
and so the generators[1, r. s] freely generate A. This completesthe proof of Theorem 5.
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5. Equivariant cobordism. In this section we prove Theorem 6. To begin with
suppose T1:S§, — § and To: S — S are automorphisms of order p on compact
connected Riemann surfaces. We do not assume that the orbit genus of either S; or S; is
0. We start with a standard definition.

DEFINITION 5. We say that T is equivariantly cobordant to T,, written Ty ~ To,
if there exists a smooth, compact, connected 3-manifold W and a smooth Z, action
T:W— W such that

(i) Theboundary of Wisthedigointunionof S, and$,9(W) =S U S.

(i) T restricted to 9 (W) agreeswith T, LI To.

The cobordism class of an automorphism T: S— Sdependsonly upon its topological
conjugacy class[g | &, ..., &]. We denote this cobordism classby (g | ay, . .. . &), and

if the orbit genusg = 0, we denoteit by (ay, ..., &).
Theset of all cobordism classesof Z, actions on compact connected Riemann surfaces
is denoted by Q. Addition of the cobordism classes of the automorphisms T1: S — S,

T2: S — S isdefined by equivariant connected sum.

(14) (9] a..... a)+(h|by.....b)=(g+h|a..... a. br.....by).

The next two lemmas show that Q is an abelian group generated by the cobordism
classes(ay, . ... a). Theidentity is represented by any fixed point free action, or by any
cobordism class consisting entirely of cancelling pairs, and theinverseof (g | ay, . ... a)
isrepresentedby (g | p— ay, - - ., p — &). The proofs are not original, but are presented

here to emphasize the relationship with A.

LEMMA 6. (9] &,....&) =(a1...., a).
PROOF. LetT:S— Srepresenttheclass(ay, ..., & ). First wetake the product cobor-

dismW; = Sx [0, 1], where T is extended over W; in the obviousway. Next we modify
W; onthetop end Sx {1} asfollows. Takeadisc D in Ssuchthat D, T(D), ..., T°-1(D)
are mutually disjoint, and then to each disc T¥(D) in Sx {1}, k=0,1,...,p— 1, attach
a copy of a handlebody H of genus g by identifying the disc T¥(D) with some disc
D’ C d(H). Let W, denote the resulting 3-manifold. See Figure 2. The action of Z,
can be extended to W, by permuting the handlebodies. The manifold W, provides the

cobordism showing that (g | a,....a&) ={(a1....,&). "

LEMMA 7. (a.p—a.as. ... . a)=(1l|as.....a) = (ag.....&).

PROCOF. The proof of this lemma is similar to the proof of the last one. Start with
a product cobordism W;. Suppose Py, P; are the fixed points corresponding to the
cancellingpair {a. p—a}. Choosesmall invariant discs Do, D; around Py, P; respectively,
and then modify the cobordism at the top end by adding a solid tube D x [0, 1] so that
D x {0} = Dg and D x {1} = Dy. The automorphism T can be extended over this tube,
and the resulting cobordism shows that
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QO

FIGURE 2:
See Figure 3. Lemma 6 completes the proof. ]
- —
FIGURE 3:

Define the isomorphism of Theorem 6, ¢:A — Q, by ¢[ay,.... al = (ag,....&).

The defining relations of A are
() [ac.....a] +[br.....b] =[ac.....a.b..... b
(i) [....a....p—a...]=[....a....p~a..l]

The same relations hold for cobordism classes, see Equation 14 and Lemma 7, and
therefore the mapping ¢ is awell defined group homomorphism.
Now we complete the proof of Theorem 6. The argument is analogousto one used in

(3].

PrOOF. From the remarks above we know that ¢: A — Q is awell defined group
homomorphism. Lemma 6 implies that it is an epimorphism. It only remains to prove
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that ¢ isamonomorphism.

If thereisan elementinthekernel of ¢ we canassumeitisagenerator, say [ay, . . . . &].
Suppose T: S— Srepresents [ay, . . . , &]. Then there is a compact, connected, smooth
3-manifold W such that 9 (W) = S, and an extension of T to a smooth homeomorphism
T:W — W of order p, also denoted by T. The fixed point set of T: W — W must consist
of digoint, properly embedded arcs joining fixed points in Sto fixed pointsin S. The
fixed points at the end of each arc will form acancelling pair {a, p— a}. In this way we
seethat [ay, ..., &] consists entirely of cancelling pairs, and hence [ay, . . ., &] =0in

A. .
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