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Introduction

In [3] Fontaine and Mazur conjecture (as a consequence of a general principle) that a
number field k has no infinite unramified Galois extension such that its Galois group
is a p-adic analytic pro-p-group. A counter-example to this conjecture would
produce an unramified Galois representation with infinite image, that could not
‘come from geometry’. Some evidence for this conjecture is shown in [1] and [4].

Since every p-adic analytic pro-p-group contains an open powerful resp. uniform
subgroup, one is led to the question whether a given number field possesses an infinite
unramified Galois p-extension with powerful resp. uniform Galois group. With
regard to this problem, we would like to mention a result of Boston [1]:

Let p be a prime number and let k|k( be a finite cyclic Galois extension of degree
prime to p such that p does not divide the class number of k¢. Then, if the Galois
group G(M|k) of an unramified Galois p-extension M of k, Galois over ky, is
powerful, it is finite.

In this paper we will prove a statement which is in some sense weaker as the above
and in another sense stronger (and in view of the general conjecture very weak):

Let p be odd and let k be a CM-field with maximal totally real subfield k™
containing the group , of pth roots of unity. Let M = L(p) be the maximal
unramified p-extension of k. Assume that the p-rank of the ideal class group
CI(k™) of kT is not equal to 1. Then, if the Galois group G(L(p)|k) is powerful,
it is finite.
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If the p-rank of CI(k™) is equal to 1, we have two weaker results. First, replacing
the word powerful by uniform and assuming that the first step in the p-cyclotomic
tower of k is not unramified, then the above statement holds without any condition
on CI(k™). Secondly, we consider the conjecture in the p-cyclotomic tower of the
number field k. Denote the nth layer of the cyclotomic Zj-extension k., of k by
k, and let G(L,(p)|k,) be the Galois group of the maximal unramified p-extension
L,(p) of k,. Then the following statement holds.

Let p # 2 and let k be a CM-field containing p,. Assume that the Iwasawa
u-invariant of ko |k is zero. Then there exists a number 7y such that for all
n = ny the following holds: If the Galois group G(L,(p)|k,) is powerful, then
it is finite.

Similar results hold for the maximal unramified p-extension Lg(p) which is com-
pletely decomposed at all primes in S, and for the maximal p-extension kg(p) of
k which is unramified outside S, if S contains no prime above p.

Of course, our main interest is the conjecture for general p-adic analytic groups.
We will prove the following result.

Let p # 2 and let k be a CM-field containing p, with maximal totally real
subfield k* and assume that u,Zk; for all primes p of k™ above p. Then,
if G(Ly(p)|k) is p-adic analytic, G(Li+(p)|k™) is finite.

Unfortunately, we do not have Boston’s result for general analytic pro-p-groups.
Otherwise, in the situation above it would follow that G(L.(p)|k) is not an infinite
p-adic analytic group.

1. A Duality Theorem

We use the following notation:

P is a prime number,

k is a number field,

Seo is the set of Archimedean primes of k,
S is a set of primes of k containing S,

Es(k) is the group of S-units of &,

Cls(k) is the S-ideal class group of k,

Lg is the maximal unramified extension of k
which is completely decomposed at S,

Lg(p) is the maximal p-extension of k inside Lg,

L is the maximal unramified extension of %,

L(p) is the maximal p-extension of k inside L.

We write E(k) for the group Es_ (k) of units of k and CI(k) for the ideal class group
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Cls (k) of k. Obviously,

L=Ls, if kis totally imaginary,
L(p) = Ls_(p), if p#2 or k totally imaginary.

If K is an infinite algebraic extension of ), then Es(K) = lim Es(k) where k runs
. . —k
through the finite subextensions of K.
For a profinite group G, a discrete G-module M and any integer i the ith Tate
cohomology is defined by

H{(G, M) = H'(G,M) fori>1
and

H{(G, M) = lim H(G/U,MY) fori<O0,
U, def
where U runs through all open normal subgroups of G and the transition maps are
given by the deflation (see [7]).
THEOREM 1.1. Let S be a set of primes of k containing So,. Then the following holds:

(1) There are canonical isomorphisms
H'(G(Ls|k), Es(Ls)) = H* (G(Ls|k), Q/2)"

for all i € 7. Here v denotes the Pontryagin dual.
(i1) There are canonical isomorphisms

H(G(Ls(p)Ik), Es(Ls(p))) = H* (G(Ls(p)Ik), Q,/Z,)"

forallie 7.

Proof. Let Cs(Ls) be the S-idele class group of Ls. The subgroup C%(Ls) of Cs(Ls)
given by the ideles of norm 1 is a level-compact class formation for G(Lgs|k) with
divisible group of universal norms. From the duality theorem of Nakayama-Tate
we obtain the isomorphisms

H(G(Ls|k), Cs(Ls)) = H*(G(Lslk), 2)", i€,

since ﬁli(G(LS|k), Cs(Ly)) = ﬁli(G(LS|k), CY%(Ls)), see [7], Proposition 4.
Let K|k be a finite Galois extension inside Lg. From the exact sequence

0 — Es(K) —> Js(K) — Cs(K) —> Cls(K) —> 0,

where Jg(K) denotes the group of S-ideles of K, which is a cohomological trivial
G(K|k)-module (K |k is completely decomposed at S), we obtain isomorphisms

H*\(G(K|k), Es(K)) = H'(G(K|k), D(K)).
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where D(K) denotes the kernel of the surjection Cs(K)—> Cls(K), and a long exact
sequences

— HI(G(K k), D(K)) — H'(G(K k), Cs(K)) — H'(G(K|k), Cls(K)) —> .

If K’ is the maximal Abelian extension of K in Lg, then G(Lg|K’) is an open subgroup
of G(Ls|K) by the finiteness of the class number of K. The commutative diagram

norm

CZS(K/) —> Cls(K)

rch{ N rchr l

can

G(LS|K/)NI7 = G(L5|K)”b
shows, since can is the zero map, that

norm

Cls(K) 5 CIg(K)

is trivial. It follows that

lim H(G(K|k), Cls(K)) =0 for i < 0.
K

Since all groups in the exact sequence above are finite, we can pass to the projective
limit and we obtain isomorphisms

lim HI(G(K k), D(K)) = H'(G(Lslk), Cs(Ls)) fori<D0,
K

and therefore isomorphisms
HY(G(Lslk), Es(Ls)) = H'(G(Lslk), Cs(Ls)) fori< —1.

The last assertion also holds for i = 0: from the commutative diagram
H(G(K' k). DK') = H'(G(K'Ik), Es(K')
Jvdef J
H(G(KIK). D(K)) = H'(G(K|K), Es(K)).

where k € K C K’ are finite Galois extensions inside Lg, it follows that the limit
lim H'(G(K|k), Es(K)) exists. Since
— K

H'(G(K|k), Es(K)) € H'(G(Ls|k), Es(Ls)) = Cls(k)
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and

lim A°(G(KIk). D(K)) = H(G(Ls|k). Cs(Ls)) = H*(G(Lslk). 2)"
K
=~ H'(G(Lslk). Q/2)" = G(Lslk)" = Cls(k),

the projective limit lim H'(G(K|k), Es(K)) becomes stationary and is equal to
HY(G(Lslk), Es(Ls)). ~ *
For i > 1 the exact sequence

0 — Es(Ls) — Js(Ls) — Cs(Ls) — 0
induces isomorphisms
H'(G(Lslk), Cs(Ls)) = H(G(Lslk), Es(Ls)).
Putting all together, we obtain canonical isomorphisms
H"(G(Lslk), Es(Ls)) = H*(G(Lslk). )" = H'"(G(Lslk), Q/2)"

for all i € Z. The proof for the field Ls(p) is analogous. O

Let k be a number field of CM-type with maximal totally real subfield k* and let
4 = G(klkt) = (o) 2 Z/2Z. If p # 2, we put as usual

M=(+0M

for a Z,[A]-module M. For a Z,-module N let ,N = {x € N |px =0}.

COROLLARY 1.2. Let p be an odd prime number and let k be a CM-field. Let S be a
set of primes of k' containing Ss, and assume that no prime of S splits in the extension
k\k*. Then

dimy, , H(G(Ls(p)Ik), Q,/Z,)~ <9,

where d is equal to 1 if k contains the group w, of p-th roots of unity and otherwise equal
to 0.
Proof. By Theorem 1.1, there is a A-invariant surjection

Es(k) — H'(G(Ls(p)Ik), Es(Ls(p))) = H*(G(Ls(p)lk), ©,/Z,)"

and so a surjection

(Es(k)/p)”™ —> (H*(G(Ls(p)Ik), Qp/Z,)7)".

Since no prime of S splits in the extension k|k*, we have (Es(k)/p)” = u,(k) which
gives us the desired result. ]
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2. Powerful Pro-p-Groups with Involution

Let p be a prime number. For a pro-p-group G the descending p-central series is
defined by

G =G, Gy =(GY[G,G] foriz1.

If a group 4 = Z /27 acts on G and p is odd, then we define
d(G)* = dimy,(G/Gy)* = dimy, H'(G, Z/pZ)*.

The following proposition also follows from Boston result (resp. its proof’), but in
our situation, where only an involution acts on G, we will give a simple proof.

PROPOSITION 2.1. Let p # 2 and let G be a finitely generated powerful pro-p-group
with an action by the group A =2 7./27. Then the following holds:

If d(G)* =0, then G is Abelian.

In particular, if d(G)* =0 and G® is finite, then G is finite.
Proof. Since G is powerful, we have

[G,Gl/H € G’H/H where H = ([G, G]Y'[G, G, G].
From G/G, = (G/G>) it follows that
[G, Gl/H = (G, G)/H)" and G’H/H = (G'H/H)",
since G/[G, G] = (G/[G, G])” and G? = {¥’ | x € G}, ([2], Theorem 3.6(iii)), and so
()Y =x"mod H forl#ced and x e G.
We obtain
[G. G] < (G, GIY'[G, G, G].
This implies [G, G] = 1. O

LEMMA 2.2. Let p # 2 and let G be a finitely generated pro-p-group with an action by
the group A = 7./27.. Then the following inequalities hold.:

dG)t-d(G)” < dimlpp(Gz/G3)_—rankzp(G"b)_ + dimy, sz(G, Q,/Zy)",

(d((z;)+> + (d((;)> < dimlgp(Gz/Gg)*'—rankz,p(G"b)+ + dimﬂ:p sz(G, QP/Z[,)+.
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Proof. Let d* = d(G)*. From the exact sequences

0— HYG/G», Z/pZ) = H'(G, Z./p7) — HY(G,, Z./pZ7)°
— H*(G/G,, 7./p7) — HXG, 7./p7)

and
0—(,G") — H*G, Z/pZ) — , H G, Q,/Z,) — 0
we obtain the inequalities

dimy, HX(G/G», Z/pZ)*
< dimg, (G2/G3)* + dimy, (,G*)* + dimy, pH*(G, Q,/Z,)*.

Let
G/G,=2A1®--- DA+ DB D --- D By-

be a A-invariant decomposition into cyclic groups of order p such that 4; = A}
and B; = B;. For H?*(G/G,,7./p7) we obtain the A-invariant Kiinneth decom-
position:

d+
H*(G/G,, 2/pZ) = @) H(4:, Z/pZ)

i=1

o P H' (4. 2/pZ)® H'(4;. Z/pZ)

i<j

@ @ H'(B;, 7/p7) ® H'(B;, Z/p7)
i<j
-

i=1
o P H'(4:,2/p7)® H' (B, Z/pZ).
ij
Counting dimensions yields
dimy, H((G/G,, Z/pZ)* =d* + (d;) + (dz),
dimg, HX(G/G,, Z/pZ)” =d~ +d*d".
Since
d* = rankz, (G)* + dimy, (,G*)*,

we obtain the desired result. O
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PROPOSITION 2.3. Let p # 2 and let G be a finitely generated powerful pro-p-group
with an action by the group A = 7./27.. Then the following inequalities hold.:

() d(G)"d(G)” <d(G)~ +dimy, ,HXG, Q,/Z,)",
(ii) (d<§>*) +(“9") < d(G)* + dimy, ,HXG, ©,/7Z,)".

Proof. Since G is powerful, the 4-invariant homomorphism G/G; AN G,/G3 is
surjective, see [2], Theorem 3.6, and we obtain dime(Gz/G3)jE < d(G)*. Using
Lemma 2.2, this proves the proposition. O

Now we analyze the case where G is a powerful pro-p-group which is a Poincaré
group of dimension 3.

PROPOSITION 2.4. Let p be odd and let P be a finitely generated powerful
pro-p-group with an action of A = 7,/27.

(1) If P is uniform, then

dimg, H(P, Z/pZ)" = <d(;’)+> N <d(§)>’

dimg, H*(P, Z/pZ)~ = d(P)*- d(P)".
(ii) If P is uniform such that P** is finite and d(P)" =1, then
dimg, ,H*(P, Q,/7,)" =0.
(iii) If P is a Poincaré group of dimension 3 such that P is finite, then

dPy" =1 and d(P)y" =2  or
APyt =3 and d(P)” = 0.

Proof. Let P be uniform. By [2], Definition 4.1 and Theorem 4.26, we have

d(P)
y)

dimg, (H' (P2, Z/pZ)")* = d(P)* and dimy, H(P, Z/pZ) = <
Counting dimensions shows that

dimg, H*(P/Ps, Z/pZ) = dimy, H'(P2, Z/pZ)" + dimy, HX(P, Z/p7Z),
and so the sequence

0— H' (P>, 2/pZ)F — H*(P/P>,7/p7) — H*(P,7/pZ)—> 0
is exact. Therefore,

dimg, HX(P, Z/pZ)* = dimy, H*(P/P,, Z/p)* — dimg, (H' (P, Z/pZ)")*,

which proves (i).
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If P is finite, then dimy,(,P**)*" = d(P)*, and so by (i)
dimy, ,H*(P, Q,/Z,)” = dimy, H*(P, Z/pZ)~ — dimy, (,P*")~
=d(P)"-d(P)” —d(P)".

This gives us the desired result (ii).
Now let P be a powerful Poincaré group of dimension 3; in particular, P is
torsionfree and therefore P is uniform, see [2], Theorem 4.8. Since

dimg, H'(P, Z/pZ) = dimy, H*(P, Z/pZ)
and since P is finite, the exact sequence
0—(,P") — HXP, Z/pZ) —,H*(P, )/ Z;) — 0
shows that
(,P") = HX(P,7/pZ).
It follows that
dimg, H*(P, Z/pZ)* = d(P),
and so by (i)
d(P)*-d(P)” =d(P)".
This proves (iii). O

3. On the Fontaine—Mazur Conjecture

We keep the notation of Sections 1 and 2. Let

di = dimy, (CI(k)/p)* = d(G(L(p)Ik))*.

THEOREM 3.1. Let p be an odd prime number and let k be a CM-field such that

() di #0,if n,Zk,
() df #1.

Then, if the Galois group G(L(p)|k) of the maximal unramified p-extension L(p) of k is
powerful, it is finite.

Proof. If di =0, then the theorem follows from Proposition 2.1. Therefore we
assume that o >2 (assumption (ii)). From assumption (i) and Leopoldt’s
Spiegelungssatz, see [8], Theorem 10.11, it follows that d; > 1. From Proposition
2.3 and Corollary 1.2 we obtain the inequality d,"d; < d; + 6 and it follows that
df =2,d; =1 (and 6 = 1), and so d(G(L(p)lk)) = 3.

If P=G(L(p)lk);, i large enough, then P is uniform, [2], Theorem 4.2, and
d(P) < 3,[2], Theorem 3.8. Suppose that P is nontrivial. Then P is a Poincaré group
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of dimension dim(P) = d(P) < 3 (see [5], chap. V, Theorem (2.2.8) and (2.5.8)). But
Poincaré groups of dimension dim(P) <2 have the group Z, as homomorphic
image, and so we can assume that dim(P) = d(P) = 3. Since G(L(p)|k) is powerful,
we have a surjection

G(LP)IK)/ G(LP)IK), —> G(L(P)IK);/ GLP)IK);41-

Furthermore, by [2], Theorem 3.6(ii), G(L(p)|k),., = (G(L(p)|k);), = P>, and so
G(L(p)\k);/G(L(p)|k);.; = P/P>. Therefore, d(P)" =2 and d(P)” =1. By Prop-
osition 2.4(iii) we get a contradiction. O

If u, € k, then d;” = 1is the only remaining case. Here we only get a weaker result.
Let ko be the cyclotomic Z,-extension of k& and denote by k, the nth layer of ko|k.

THEOREM 3.2. Let p # 2 and let k be a CM-field containing ,. Assume that k |k is
not unramified if df = 1. Then the Galois group G(L(p)|k) of the maximal unramified
p-extension L(p) of k is not uniform.

Proof. Suppose that G = G(L(p)|k) is uniform. Using Theorem 3.1, we may assume
that d(G)" = 1, and so, by Proposition 2.4(ii),

dimg, ,H*(G, Q,/Z,)” = 0.
On the other hand, by Theorem 1.1, we have a surjection
HX(G.Q,/Z,)" = H(G. E(L(p)) —> H'(G(KIk). E(K)).

where K|k is a finite unramified Galois p-extension of CM-fields (recall that
d(G)* #0), and so a surjection

(HX(G, Q,/7,)7)" —» H(G(K|k), E(K))".

Since K is of CM-type, it follows that
HY(G(K k), E(K)™ = H(G(K|K), (K)())-

By our assumption, K is disjoint to ks, i.e. (K)(p) = w(k)(p), and so
dimp, H(G(K k), f(K)(p))/p = 1.

It follows that dimp, I,HZ(G, Q,/7,)~ = 1. This contradiction proves the theorem.
]

Remarks. (1) Theorems 3.1 and 3.2 also hold in the following situation: Replace
L(p) by Ls(p) and CI by Cls where S O S is a set of primes which do not split
in the extension k|k*. Use Corollary 1.2 for S instead of S..

(2) Theorem 3.1 is also true, if we replace L(p) by the maximal p-extension kgs(p) of
k which is unramified outside a finite set S which contains Sy, but no prime above p.
Instead of Ci(k) one has to take the ray class group C(k)/C"(k) mod
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m = [],cs b (Which is finite). In order to prove an analog of Corollary 1.2, use the
exact sequence

0 — ES(K) — Js(K) x UL(K) — Cs(K) — C(K)/C™(K) —> 0,

where S’ = S\ S and UL, (K) is the product over the principal units at the places of S’
and ES(K) = ker(E(K) — Us(K)/UL(K)).

Now we consider the Galois groups G(L,(p)lk,) of the maximal unramified
p-extension L,(p) of k, in the p-cyclotomic tower of k.

THEOREM 3.3. Let p # 2 and let k be a CM-field containing w,. Assume that the
Iwasawa p-invariant of the cyclotomic Z,-extension ky |k is zero. Then there exists
a number ny such that for all n = ny the following holds: If the Galois group
G(L,(p)lky,) is powerful, then it is finite.

Proof. Let | —> Goo —> G(Lo(p)lk) — I' —> 1, where G, = G(Loo(p)|koo) is the
Galois group of the maximal unramified p-extension L. (p) of ko and
I' = G(koolk) = (7). Let I', = ("), n >0, be the open subgroups of I' of index
p". By our assumption on the Iwasawa p-invariant G is a finitely generated
pro-p-group.

Let n; be large enough such that all primes of k,, above p are totally ramified in
keolkn, and let () € G(Loo(P)lkn,), j=1,...,s, be the inertia groups of some
extensions of the finitely many primes pq, ...p, of k,, above p.

For n > ny let

My =" =1,...,8) S GLoo(p)lkn)

—ny

be the normal subgroup generated by all conjugates of the elements /fﬂ and

Noi=M,NGoo=0F 977 1 "L glij=1.....5 g € Gx).
Then the commutative exact diagram

1 N, M, I, 1

]

1——> G —> G(Loo(p)|kn) — I, —1

shows that G, /N, = G(L,(p)|k,) and we have canonical surjections
Goo—>> G(Lu(p)|k) —> G(L,(p)lky)

for m > n > n;.
Let ny > ny be large enough such that

Goo/(Goo)3 = G(La(p)Ikn)/(G(Ln(P)Ikn))s
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for all n > ny, i.e.

G(Loo(p)|kn)/(Goo)3
= Goo/(Goo)3 X I'n = G(Lu(p)1kn) /(G(Ln(p)lkn))3 X 'y
Then (yjp-H') acts trivially on G /(Go)s for all j < s and N, is contained in (G );3.

Suppose that G(L,(p)lk,), n = ng, is powerful. Then [Guo, Go] € (Goo)’ N,,. By
assumption on ny the group N, is contained in (Gw)3, and so

[Goo, Gos] € (Goo)'[Goo, [Goo, Gooll-
From this inclusion it follows that [Gy., Goo] € (G ), thus Gy, is powerful.
Using Proposition 2.1, we can assume that

df = dimy, (Cl(ky)/p)" > 1.

Let K|k, be an unramified Galois extension of degree p such that
G(K|k,) = G(K|k,)" and let Ky, = koK. Because of our definition of n; the field
K is not contained in ks and G(L.(p)|Ky) is a mnormal subgroup of
G(Loo(p)lkoo) of index p.

Using results of Iwasawa theory, [6] (11.4.13) and (11.4.8), we obtain

d(G(Loo(p)IKoo))™ = p(d(G(Loo(p)lkoc))” — 1) + 1.
From [2], Theorem 3.8 and the equality above it follows that
d(G(Loo(p)lkoo)) ™ 4 d(G(Loo(p) ko))~
= d(G(Loo(p)lkso))
2 d(G(Los(p)|Kso))
= d(G(Loo(p)|Koo)) " + d(G(Loo(p)| Ke)) ™
= d(G(Loo(p)|K))" + p(d(G(Loo(P)oo))” — 1) + L.

The maximal quotient G(Lo(p)|koo) 4 Of G(Loo(p)|koo) With trivial action of 4 is also
powerful and we have d(G(Loo(p)lkoo),) = d(G(Loo(p)lkoo))t. Using again [2],
Theorem 3.8, we get

d(G(Loo(p)koo))" = d(G(Loo(p) | Ke)) ™

Both inequalities together imply d(G(Lx(p)lks))™ < 1.
Using [6], (11.4.4), we finally obtain

d(G(Loo(p)kso)) ", d(G(Loo(p)lkoo))™ < 1.

It follows that G(L,(p)|k,) is a powerful pro-p-group with d(G(L,(p)lk,)) < 2. If
G(L,(p)lk,) is not finite, then it contains an open subgroup P which is a Poincaré
group (see [5], chap. V, Theorem (2.2.8) and (2.5.8)) of dimension
dim P = d(P) < 2 (use again [2], Theorem 3.8). But these groups have the group
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7, as homomorphic image. By the finiteness of the class number it follows that
G(Lu(p)|k,) is finite. I

Remark. Theorem 3.3 also holds if we replace L(p) by Ls(p) and CI by Cls, where
X = S, US, is the set of Archimedean primes and primes above p, and if we assume
that no prime of S, splits in the extension k|k™.

Now we consider the conjecture for general p-adic analytic groups. Let

]l —D—3Gd—G—1

be an exact sequence of pro-p-groups. For an open normal subgroup H of G we
denote the preimage of H in G by H. Thus we get a commutative exact diagram

R

PROPOSITION 3.4. With the notation as above assume that

(i) G is finitely generated and cd, G < 2,
(i) cd, G < o0,
(iii) the Euler— Poincaré characteristic of G is zero, i.e.

2

1G) = (~1) dimy, H'(G. Z/pZ) = 0.

i=0

Then d(H) is unbounded for varying open normal subgroups H of G or c¢d, G < 2.

Proof. Suppose that dimy, H'(H, 7./p7) is bounded for varying H. Since 3(G) = 0,
the same is true for dimy, H?*(H, 7 /pZ). 1t follows that H'(D, Z/p7Z) is finite for
i =1,2. By [6], Proposition (3.3.7), we obtain

cd,G=1cd,G+cd, D = cd, G.

This proves the proposition. ]

As an application to our problem we get the following result for the maximal
unramified p-extension Li(p) of a number field k.

THEORM 3.5. Let p # 2 and let k be a CM-field containing p,, with maximal totally
real subfield k*. Assume that w, £k} for all primes p of k* above p. Then the following
holds: either

(1) G(Ly+(p)|k™) is finite,
or

(1) G(Lg(p)lk) is not p-adic analytic,
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with other words, if G(Li(p)|k) is p-adic analytic, then G(Ly+(p)|k™) is finite.

Proof. Suppose that (i) and (ii) do not hold. Then the maximal quotient
G(Li+(p)lkT) of the p-adic analytic group G(Li(p)lk) with trivial action by
A = G(k|k*") is an infinite analytic group. Passing to a finite extension of k", we
may assume that G(Lz+(p)|k*) is uniform (our assumptions on k are still valid).
The dimension of G(Li+(p)lk™t) is greater or equal to 3, since otherwise it would
have the group Z, as quotient which is impossible by the finiteness of the class
number.

If kgfp(p) is the maximal p-extension of k™ which is unramified outside p, then
cd, G(k;fp(p)|k+) <2 and ;{(G(kf{p(p)|k+)) =0, see [6], (8.3.17), (8.6.16) and (10.4.8).
Applying Proposition 3.4, we obtain that

dimy, H'(G(k§ (p)|K™), Z/pZ) = dimy, H'(G(ks, ()| K* (1), Z/pZ)*

is unbounded, if K" varies over the finite Galois extension of k™ inside L;+(p). By [6],
Theorem (8.7.3) and the assumption that ,up;(_k;“ for all primes p|p, it follows that

d(G(Le(p)| K" (1)) = dimy, CI(K " (1)) /p
> dimg, (Cls,(K*(u,))/p)~
= dimg, H'(G(ks,()IK* (1)), Z/pZ)* — 1

is unbounded for varying K* inside Li+(p) and therefore G(Li(p)|k) is not p-adic
analytic. This contradiction proves the theorem. O
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