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Abstract. Fontaine andMazur conjecture that anumber ¢eld khas no in¢niteunrami¢edGalois
extension such that its Galois group is a p-adic analytic pro-p-group.We consider this conjecture
for the maximal unrami¢ed p-extension of a CM-¢eld k.
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Introduction

In [3] Fontaine andMazur conjecture (as a consequence of a general principle) that a
number ¢eld k has no in¢nite unrami¢ed Galois extension such that its Galois group
is a p-adic analytic pro-p-group. A counter-example to this conjecture would
produce an unrami¢ed Galois representation with in¢nite image, that could not
‘come from geometry’. Some evidence for this conjecture is shown in [1] and [4].
Since every p-adic analytic pro-p-group contains an open powerful resp. uniform

subgroup, one is led to the question whether a given number ¢eld possesses an in¢nite
unrami¢ed Galois p-extension with powerful resp. uniform Galois group. With
regard to this problem, we would like to mention a result of Boston [1] :

Let p be a prime number and let kjk0 be a ¢nite cyclic Galois extension of degree
prime to p such that p does not divide the class number of k0. Then, if the Galois
group GðMjkÞ of an unrami¢ed Galois p-extension M of k, Galois over k0, is
powerful, it is ¢nite.

In this paper we will prove a statement which is in some sense weaker as the above
and in another sense stronger (and in view of the general conjecture very weak):

Let p be odd and let k be a CM-¢eld with maximal totally real sub¢eld kþ

containing the group mp of pth roots of unity. Let M ¼ LðpÞ be the maximal
unrami¢ed p-extension of k. Assume that the p-rank of the ideal class group
ClðkþÞ of kþ is not equal to 1. Then, if the Galois group GðLðpÞjkÞ is powerful,
it is ¢nite.
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If the p-rank of ClðkþÞ is equal to 1, we have two weaker results. First, replacing
the word powerful by uniform and assuming that the ¢rst step in the p-cyclotomic
tower of k is not unrami¢ed, then the above statement holds without any condition
on ClðkþÞ. Secondly, we consider the conjecture in the p-cyclotomic tower of the
number ¢eld k. Denote the nth layer of the cyclotomic Zp-extension k1 of k by
kn and let GðLnðpÞjknÞ be the Galois group of the maximal unrami¢ed p-extension
LnðpÞ of kn. Then the following statement holds.

Let p 6¼ 2 and let k be a CM-¢eld containing mp. Assume that the Iwasawa
m-invariant of k1jk is zero. Then there exists a number n0 such that for all
nX n0 the following holds: If the Galois group GðLnðpÞjknÞ is powerful, then
it is ¢nite.

Similar results hold for the maximal unrami¢ed p-extension LSðpÞ which is com-
pletely decomposed at all primes in S, and for the maximal p-extension kSðpÞ of
k which is unrami¢ed outside S, if S contains no prime above p.
Of course, our main interest is the conjecture for general p-adic analytic groups.

We will prove the following result.

Let p 6¼ 2 and let k be a CM-¢eld containing mp with maximal totally real
sub¢eld kþ and assume that mp�= kþp for all primes p of kþ above p. Then,
if GðLkðpÞjkÞ is p-adic analytic, GðLkþðpÞjkþÞ is ¢nite.

Unfortunately, we do not have Boston’s result for general analytic pro-p-groups.
Otherwise, in the situation above it would follow that GðLkðpÞjkÞ is not an in¢nite
p-adic analytic group.

1. A Duality Theorem

We use the following notation:

p is a prime number,
k is a number field,
S1 is the set of Archimedean primes of k;
S is a set of primes of k containing S1;
ESðkÞ is the group of S-units of k;
ClSðkÞ is the S-ideal class group of k;
LS is the maximal unramified extension of k

which is completely decomposed at S;
LSðpÞ is the maximal p-extension of k inside LS;
L is the maximal unramified extension of k;
LðpÞ is the maximal p-extension of k inside L:

We write EðkÞ for the group ES1ðkÞ of units of k and ClðkÞ for the ideal class group
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ClS1ðkÞ of k. Obviously,

L ¼ LS1 ; if k is totally imaginary;

LðpÞ ¼ LS1ðpÞ; if p 6¼ 2 or k totally imaginary:

If K is an in¢nite algebraic extension of Q, then ESðKÞ ¼ lim
	!k

ESðkÞ where k runs
through the ¢nite subextensions of K .
For a pro¢nite group G, a discrete G-module M and any integer i the ith Tate

cohomology is de¢ned by

ĤHiðG;MÞ ¼ HiðG;MÞ for iX 1

and

ĤHiðG;MÞ ¼ lim
 	

U; def

ĤHiðG=U;MU Þ for iW 0;

where U runs through all open normal subgroups of G and the transition maps are
given by the de£ation (see [7]).

THEOREM 1.1. Let S be a set of primes of k containing S1. Then the following holds:

(i) There are canonical isomorphisms

ĤHiðGðLSjkÞ;ESðLSÞÞ ffi ĤH2	iðGðLSjkÞ;Q=ZÞ_

for all i 2 Z. Here _ denotes the Pontryagin dual.
(ii) There are canonical isomorphisms

ĤHiðGðLSðpÞjkÞ;ESðLSðpÞÞÞ ffi ĤH2	iðGðLSðpÞjkÞ;Qp=ZpÞ
_

for all i 2 Z.

Proof.LetCSðLSÞ be the S-idele class group of LS. The subgroupC0SðLSÞ ofCSðLSÞ

given by the ideles of norm 1 is a level-compact class formation for GðLSjkÞ with
divisible group of universal norms. From the duality theorem of Nakayama-Tate
we obtain the isomorphisms

ĤHiðGðLSjkÞ;CSðLSÞÞ ffi ĤH2	iðGðLSjkÞ;ZÞ
_; i 2 Z;

since ĤHiðGðLSjkÞ;CSðLSÞÞ ffi ĤHiðGðLSjkÞ;C0SðLSÞÞ, see [7], Proposition 4.
Let Kjk be a ¢nite Galois extension inside LS. From the exact sequence

0	!ESðKÞ 	! JSðKÞ 	!CSðKÞ 	!ClSðKÞ 	! 0;

where JSðKÞ denotes the group of S-ideles of K , which is a cohomological trivial
GðK jkÞ-module (K jk is completely decomposed at S), we obtain isomorphisms

ĤHiþ1ðGðK jkÞ;ESðKÞÞ ffi ĤHiðGðK jkÞ;DðKÞÞ;
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where DðKÞ denotes the kernel of the surjection CSðKÞ	!! ClSðKÞ, and a long exact
sequences

	! ĤHiðGðK jkÞ;DðKÞÞ 	! ĤHiðGðK jkÞ;CSðKÞÞ	! ĤHiðGðKjkÞ;ClSðKÞÞ 	! :

IfK 0 is the maximal Abelian extension of K in LS, then GðLSjK 0Þ is an open subgroup
of GðLSjKÞ by the ¢niteness of the class number of K. The commutative diagram

shows, since can is the zero map, that

ClSðK 0Þ 	!
norm

ClSðKÞ

is trivial. It follows that

lim
 	
K

ĤHiðGðK jkÞ;ClSðKÞÞ ¼ 0 for iW 0:

Since all groups in the exact sequence above are ¢nite, we can pass to the projective
limit and we obtain isomorphisms

lim
 	
K

ĤHiðGðK jkÞ;DðKÞÞ ffi ĤHiðGðLSjkÞ;CSðLSÞÞ for iW 0;

and therefore isomorphisms

ĤHiþ1ðGðLSjkÞ;ESðLSÞÞ ffi ĤHiðGðLSjkÞ;CSðLSÞÞ for iW 	 1:

The last assertion also holds for i ¼ 0: from the commutative diagram

ĤH0ðGðK 0jkÞ;DðK 0ÞÞ �	!
d

H1ðGðK 0jkÞ;ESðK 0ÞÞ????ydef

????y
ĤH0ðGðK jkÞ;DðKÞÞ �	!

d
H1ðGðK jkÞ;ESðKÞÞ;

where k � K � K 0 are ¢nite Galois extensions inside LS, it follows that the limit
lim
 	 K

H1ðGðK jkÞ;ESðKÞÞ exists. Since

H1ðGðK jkÞ;ESðKÞÞ � H1ðGðLSjkÞ;ESðLSÞÞ ffi ClSðkÞ

344 KAY WINGBERG

https://doi.org/10.1023/A:1015599123235 Published online by Cambridge University Press

https://doi.org/10.1023/A:1015599123235


and

lim
 	
K

ĤH0ðGðK jkÞ;DðKÞÞ ffi ĤH0ðGðLSjkÞ;CSðLSÞÞ ffi H2ðGðLSjkÞ;ZÞ
_

ffi H1ðGðLSjkÞ;Q=ZÞ_ ¼ GðLSjkÞ
ab
ffi ClSðkÞ;

the projective limit lim
 	 K

H1ðGðK jkÞ;ESðKÞÞ becomes stationary and is equal to
H1ðGðLSjkÞ;ESðLSÞÞ.
For iX 1 the exact sequence

0	!ESðLSÞ 	! JSðLSÞ 	!CSðLSÞ 	! 0

induces isomorphisms

HiðGðLSjkÞ;CSðLSÞÞ ffi Hiþ1ðGðLSjkÞ;ESðLSÞÞ:

Putting all together, we obtain canonical isomorphisms

ĤHiþ1ðGðLSjkÞ;ESðLSÞÞ ffi ĤH2	iðGðLSjkÞ;ZÞ
_
ffi ĤH1	iðGðLSjkÞ;Q=ZÞ_

for all i 2 Z. The proof for the ¢eld LSðpÞ is analogous. &

Let k be a number ¢eld of CM-type with maximal totally real sub¢eld kþ and let
D ¼ GðkjkþÞ ¼ hsi ffi Z=2Z. If p 6¼ 2, we put as usual

M ¼ ð1� sÞM

for a Zp½D�-module M. For a Zp-module N let pN ¼ fx 2 N j px ¼ 0g.

COROLLARY 1.2. Let p be an odd prime number and let k be a CM-¢eld. Let S be a
set of primes of kþ containing S1 and assume that no prime of S splits in the extension
kjkþ. Then

dimFp pH2ðGðLSðpÞjkÞ;Qp=ZpÞ
	
W d;

where d is equal to 1 if k contains the group mp of p-th roots of unity and otherwise equal
to 0.

Proof. By Theorem 1.1, there is a D-invariant surjection

ESðkÞ 	!! ĤH0ðGðLSðpÞjkÞ;ESðLSðpÞÞÞ ffi H2ðGðLSðpÞjkÞ;Qp=ZpÞ
_

and so a surjection

ðESðkÞ=pÞ
	
	!! ðpH

2ðGðLSðpÞjkÞ;Qp=ZpÞ
	
Þ
_:

Since no prime of S splits in the extension kjkþ, we have ðESðkÞ=pÞ
	
ffi mpðkÞ which

gives us the desired result. &
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2. Powerful Pro-p-Groups with Involution

Let p be a prime number. For a pro-p-group G the descending p-central series is
de¢ned by

G1 ¼ G; Giþ1 ¼ ðGiÞ
p
½Gi;G� for iX 1:

If a group D ffi Z=2Z acts on G and p is odd, then we de¢ne

dðGÞ� ¼ dimFp ðG=G2Þ
�
¼ dimFp H

1ðG;Z=pZÞ�:

The following proposition also follows from Boston result (resp. its proof ), but in
our situation, where only an involution acts on G, we will give a simple proof.

PROPOSITION 2.1. Let p 6¼ 2 and let G be a ¢nitely generated powerful pro-p-group
with an action by the group D ffi Z=2Z. Then the following holds:

If dðGÞþ ¼ 0, then G is Abelian.

In particular, if dðGÞþ ¼ 0 and Gab is ¢nite, then G is ¢nite.
Proof. Since G is powerful, we have

½G;G�=H � GpH=H where H ¼ ð½G;G�Þp½G;G;G�:

From G=G2 ¼ ðG=G2Þ
	 it follows that

½G;G�=H ¼ ð½G;G�=HÞþ and GpH=H ¼ ðGpH=HÞ	;

since G=½G;G� ¼ ðG=½G;G�Þ	 and Gp ¼ fxp j x 2 Gg, ([2], Theorem 3.6(iii)), and so

ðxpÞs � x	p mod H for 1 6¼ s 2 D and x 2 G:

We obtain

½G;G� � ð½G;G�Þp½G;G;G�:

This implies ½G;G� ¼ 1. &

LEMMA 2.2. Let p 6¼ 2 and let G be a ¢nitely generated pro-p-group with an action by
the group D ffi Z=2Z. Then the following inequalities hold:

dðGÞþ � dðGÞ	W dimFpðG2=G3Þ
	
	rankZp ðG

abÞ
	
þ dimFp pH2ðG;Qp=ZpÞ

	;

dðGÞþ

2

� �
þ

dðGÞ	

2

� �
W dimFpðG2=G3Þ

þ
	rankZp ðG

abÞ
þ
þ dimFp pH2ðG;Qp=ZpÞ

þ:
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Proof. Let d� ¼ dðGÞ�. From the exact sequences

0	!H1ðG=G2;Z=pZÞ 	!� H1ðG;Z=pZÞ 	!H1ðG2;Z=pZÞG

	!H2ðG=G2;Z=pZÞ 	!H2ðG;Z=pZÞ

and

0	!ðpG
abÞ
_
	!H2ðG;Z=pZÞ 	! p H2ðG;Qp=ZpÞ 	! 0

we obtain the inequalities

dimFp H
2ðG=G2;Z=pZÞ�

W dimFp ðG2=G3Þ
�
þ dimFp ðpG

abÞ
�
þ dimFp pH

2ðG;Qp=ZpÞ
�:

Let

G=G2 ffi A1 � � � � � Adþ � B1 � � � � � Bd	

be a D-invariant decomposition into cyclic groups of order p such that Ai ¼ Aþi
and Bj ¼ B	j . For H2ðG=G2;Z=pZÞ we obtain the D-invariant Kˇnneth decom-
position:

H2ðG=G2;Z=pZÞ ffi
Mdþ
i¼1

H2ðAi;Z=pZÞ

�
M
i<j

H1ðAi;Z=pZÞ �H1ðAj;Z=pZÞ

�
M
i<j

H1ðBi;Z=pZÞ �H1ðBj;Z=pZÞ

�
Md	
i¼1

H2ðBi;Z=pZÞ

�
M
i;j

H1ðAi;Z=pZÞ �H1ðBj;Z=pZÞ:

Counting dimensions yields

dimFp H
2ðG=G2;Z=pZÞþ ¼ dþ þ

dþ

2

� �
þ

d	

2

� �
;

dimFp H
2ðG=G2;Z=pZÞ	 ¼ d	 þ dþd	:

Since

d� ¼ rankZp ðG
abÞ
�
þ dimFp ðpG

abÞ
�;

we obtain the desired result. &
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PROPOSITION 2.3. Let p 6¼ 2 and let G be a ¢nitely generated powerful pro-p-group
with an action by the group D ffi Z=2Z. Then the following inequalities hold:

(i) dðGÞþ� dðGÞ	W dðGÞ	 þ dimFp pH2ðG;Qp=ZpÞ
	,

(ii) dðGÞþ

2

� �
þ dðGÞ	

2

� 	
W dðGÞþ þ dimFp pH2ðG;Qp=ZpÞ

þ.

Proof. Since G is powerful, the D-invariant homomorphism G=G2 	!
p
! G2=G3 is

surjective, see [2], Theorem 3.6, and we obtain dimFp ðG2=G3Þ
�
W dðGÞ�: Using

Lemma 2.2, this proves the proposition. &

Now we analyze the case where G is a powerful pro-p-group which is a Poincare¤
group of dimension 3.

PROPOSITION 2.4. Let p be odd and let P be a ¢nitely generated powerful
pro-p-group with an action of D ffi Z=2Z.

(i) If P is uniform, then

dimFp H
2ðP;Z=pZÞþ ¼

dðPÞþ

2

� �
þ

dðPÞ	

2

� �
;

dimFp H
2ðP;Z=pZÞ	 ¼ dðPÞþ� dðPÞ	:

(ii) If P is uniform such that Pab is ¢nite and dðPÞþ ¼ 1, then

dimFp pH2ðP;Qp=ZpÞ
	
¼ 0:

(iii) If P is a Poincare¤ group of dimension 3 such that Pab is ¢nite, then

dðPÞþ ¼ 1 and dðPÞ	 ¼ 2 or

dðPÞþ ¼ 3 and dðPÞ	 ¼ 0:

Proof. Let P be uniform. By [2], De¢nition 4.1 and Theorem 4.26, we have

dimFpðH
1ðP2;Z=pZÞPÞ� ¼ dðPÞ� and dimFp H

2ðP;Z=pZÞ ¼
dðPÞ
2

� �
:

Counting dimensions shows that

dimFp H
2ðP=P2;Z=pZÞ ¼ dimFp H

1ðP2;Z=pZÞP þ dimFp H
2ðP;Z=pZÞ;

and so the sequence

0	!H1ðP2;Z=pZÞP	!H2ðP=P2;Z=pZÞ 	!H2ðP;Z=pZÞ 	! 0

is exact. Therefore,

dimFp H
2ðP;Z=pZÞ� ¼ dimFp H

2ðP=P2;Z=pZÞ� 	 dimFp ðH
1ðP2;Z=pZÞPÞ�;

which proves (i).
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If Pab is ¢nite, then dimFpðpP
abÞ
�
¼ dðPÞ�, and so by (i)

dimFp pH2ðP;Qp=ZpÞ
	
¼ dimFp H

2ðP;Z=pZÞ	 	 dimFp ðpP
abÞ
	

¼ dðPÞþ � dðPÞ	 	 dðPÞ	:

This gives us the desired result (ii).
Now let P be a powerful Poincare¤ group of dimension 3; in particular, P is

torsionfree and therefore P is uniform, see [2], Theorem 4.8. Since

dimFp H
1ðP;Z=pZÞ ¼ dimFp H

2ðP;Z=pZÞ

and since Pab is ¢nite, the exact sequence

0	!ðpP
abÞ
_
	!H2ðP;Z=pZÞ 	!pH2ðP;Qp=ZpÞ 	! 0

shows that

ðpP
abÞ
_
	!� H2ðP;Z=pZÞ:

It follows that

dimFp H
2ðP;Z=pZÞ� ¼ dðPÞ�;

and so by (i)

dðPÞþ� dðPÞ	 ¼ dðPÞ	:

This proves (iii). &

3. On the Fontaine^Mazur Conjecture

We keep the notation of Sections 1 and 2. Let

d�k ¼ dimFpðClðkÞ=pÞ
�
¼ dðGðLðpÞjkÞÞ�:

THEOREM 3.1. Let p be an odd prime number and let k be a CM-¢eld such that

(i) d	k 6¼ 0, if mp�= k,
(ii) dþk 6¼ 1.

Then, if the Galois group GðLðpÞjkÞ of the maximal unrami¢ed p-extension LðpÞ of k is
powerful, it is ¢nite.

Proof. If dþk ¼ 0, then the theorem follows from Proposition 2.1. Therefore we
assume that dþk X 2 (assumption (ii)). From assumption (i) and Leopoldt’s
Spiegelungssatz, see [8], Theorem 10.11, it follows that d	k X 1. From Proposition
2.3 and Corollary 1.2 we obtain the inequality dþk d

	
k W d	k þ d and it follows that

dþk ¼ 2, d
	
k ¼ 1 (and d ¼ 1), and so dðGðLðpÞjkÞÞ ¼ 3.

If P ¼ GðLðpÞjkÞi, i large enough, then P is uniform, [2], Theorem 4.2, and
dðPÞW 3, [2], Theorem 3.8. Suppose that P is nontrivial. Then P is a Poincare¤ group
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of dimension dimðPÞ ¼ dðPÞW 3 (see [5], chap. V, Theorem (2.2.8) and (2.5.8)). But
Poincare¤ groups of dimension dimðPÞW 2 have the group Zp as homomorphic
image, and so we can assume that dimðPÞ ¼ dðPÞ ¼ 3. Since GðLðpÞjkÞ is powerful,
we have a surjection

GðLðpÞjkÞ=GðLðpÞjkÞ2 	!! GðLðpÞjkÞi=GðLðpÞjkÞiþ1:

Furthermore, by [2], Theorem 3.6(ii), GðLðpÞjkÞiþ1 ¼ ðGðLðpÞjkÞiÞ2 ¼ P2, and so
GðLðpÞjkÞi=GðLðpÞjkÞiþ1 ¼ P=P2. Therefore, dðPÞþ ¼ 2 and dðPÞ	 ¼ 1. By Prop-
osition 2.4(iii) we get a contradiction. &

If mp � k, then dþk ¼ 1 is the only remaining case. Here we only get a weaker result.
Let k1 be the cyclotomic Zp-extension of k and denote by kn the nth layer of k1jk.

THEOREM 3.2. Let p 6¼ 2 and let k be a CM-¢eld containing mp. Assume that k1jk is
not unrami¢ed if dþk ¼ 1. Then the Galois group GðLðpÞjkÞ of the maximal unrami¢ed
p-extension LðpÞ of k is not uniform.

Proof. Suppose thatG ¼ GðLðpÞjkÞ is uniform. Using Theorem 3.1, we may assume
that dðGÞþ ¼ 1, and so, by Proposition 2.4(ii),

dimFp pH2ðG;Qp=ZpÞ
	
¼ 0:

On the other hand, by Theorem 1.1, we have a surjection

H2ðG;Qp=ZpÞ
_
ffi ĤH0ðG;EðLðpÞÞÞ 	!! ĤH0ðGðK jkÞ;EðKÞÞ;

where K jk is a ¢nite unrami¢ed Galois p-extension of CM-¢elds (recall that
dðGÞþ 6¼ 0), and so a surjection

ðH2ðG;Qp=ZpÞ
	
Þ
_
	!! ĤH0ðGðK jkÞ;EðKÞÞ	:

Since K is of CM-type, it follows that

ĤH0ðGðK jkÞ;EðKÞÞ	 ffi ĤH0ðGðK jkÞ; mðKÞðpÞÞ:

By our assumption, K is disjoint to k1, i.e. mðKÞðpÞ ¼ mðkÞðpÞ, and so

dimFp ĤH
0ðGðK jkÞ; mðKÞðpÞÞ=p ¼ 1:

It follows that dimFp pH2ðG;Qp=ZpÞ
	
¼ 1. This contradiction proves the theorem.

&

Remarks. (1) Theorems 3.1 and 3.2 also hold in the following situation: Replace
LðpÞ by LSðpÞ and Cl by ClS where S � S1 is a set of primes which do not split
in the extension kjkþ. Use Corollary 1.2 for S instead of S1.
(2) Theorem 3.1 is also true, if we replace LðpÞ by the maximal p-extension kSðpÞ of

k which is unrami¢ed outside a ¢nite set S which contains S1 but no prime above p.
Instead of ClðkÞ one has to take the ray class group CðkÞ=CmðkÞ mod
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m ¼
Q

p2S p (which is ¢nite). In order to prove an analog of Corollary 1.2, use the
exact sequence

0	!ESðKÞ 	! JS1ðKÞ �U1
S0 ðKÞ 	!CSðKÞ 	!CðKÞ=CmðKÞ 	! 0;

where S0 ¼ SnS1 andU1
S0 ðKÞ is the product over the principal units at the places of S

0

and ESðKÞ ¼ kerðEðKÞ!US0 ðKÞ=U1
S0 ðKÞÞ.

Now we consider the Galois groups GðLnðpÞjknÞ of the maximal unrami¢ed
p-extension LnðpÞ of kn in the p-cyclotomic tower of k.

THEOREM 3.3. Let p 6¼ 2 and let k be a CM-¢eld containing mp. Assume that the
Iwasawa m-invariant of the cyclotomic Zp-extension k1jk is zero. Then there exists
a number n0 such that for all nX n0 the following holds: If the Galois group
GðLnðpÞjknÞ is powerful, then it is ¢nite.

Proof. Let 1	!G1	!GðL1ðpÞjkÞ 	!G	! 1, where G1 ¼ GðL1ðpÞjk1Þ is the
Galois group of the maximal unrami¢ed p-extension L1ðpÞ of k1 and
G ¼ Gðk1jkÞ ¼ hgi. Let Gn ¼ hgp

n
i, nX 0, be the open subgroups of G of index

pn. By our assumption on the Iwasawa m-invariant G1 is a ¢nitely generated
pro-p-group.
Let n1 be large enough such that all primes of kn1 above p are totally rami¢ed in

k1jkn1 and let hgji � GðL1ðpÞjkn1 Þ, j ¼ 1; . . . ; s, be the inertia groups of some
extensions of the ¢nitely many primes p1; . . . ps of kn1 above p.
For nX n1 let

Mn ¼ ðg
pn	n1
j ; j ¼ 1; . . . ; sÞ � GðL1ðpÞjknÞ

be the normal subgroup generated by all conjugates of the elements gp
n	n1

j and

Nn :¼Mn \ G1 ¼ ðg
pn	n1
i g	p

n	n1

j ; ½gp
n	n1

j ; g�; i; j ¼ 1; . . . ; s; g 2 G1Þ:

Then the commutative exact diagram

shows that G1=Nn ffi GðLnðpÞjknÞ and we have canonical surjections

G1	!! GðLmðpÞjkmÞ 	!! GðLnðpÞjknÞ

for mX nX n1.
Let n0X n1 be large enough such that

G1=ðG1Þ3 	!
� GðLnðpÞjknÞ=ðGðLnðpÞjknÞÞ3
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for all nX n0, i.e.

GðL1ðpÞjknÞ=ðG1Þ3
¼ G1=ðG1Þ3 � Gn ffi GðLnðpÞjknÞ=ðGðLnðpÞjknÞÞ3 � Gn:

Then hgp
n	n1

j i acts trivially on G1=ðG1Þ3 for all jW s and Nn is contained in ðG1Þ3.
Suppose that GðLnðpÞjknÞ, nX n0, is powerful. Then ½G1;G1� � ðG1ÞpNn. By

assumption on n0 the group Nn is contained in ðG1Þ3, and so

½G1;G1� � ðG1Þ
p
½G1; ½G1;G1��:

From this inclusion it follows that ½G1;G1� � ðG1Þp; thus G1 is powerful.
Using Proposition 2.1, we can assume that

dþkn ¼ dimFp ðClðknÞ=pÞ
þ
X 1:

Let K jkn be an unrami¢ed Galois extension of degree p such that
GðK jknÞ ¼ GðK jknÞ

þ and let K1 ¼ k1K . Because of our de¢nition of n1 the ¢eld
K is not contained in k1 and GðL1ðpÞjK1Þ is a normal subgroup of
GðL1ðpÞjk1Þ of index p.
Using results of Iwasawa theory, [6] (11.4.13) and (11.4.8), we obtain

dðGðL1ðpÞjK1ÞÞ
	
¼ pðdðGðL1ðpÞjk1ÞÞ

	
	 1Þ þ 1:

From [2], Theorem 3.8 and the equality above it follows that

dðGðL1ðpÞjk1ÞÞ
þ
þ dðGðL1ðpÞjk1ÞÞ

	

¼ dðGðL1ðpÞjk1ÞÞ

X dðGðL1ðpÞjK1ÞÞ

¼ dðGðL1ðpÞjK1ÞÞ
þ
þ dðGðL1ðpÞjK1ÞÞ

	

¼ dðGðL1ðpÞjK1ÞÞ
þ
þ pðdðGðL1ðpÞjk1ÞÞ

	
	 1Þ þ 1:

The maximal quotient GðL1ðpÞjk1ÞD of GðL1ðpÞjk1Þ with trivial action of D is also
powerful and we have dðGðL1ðpÞjk1ÞDÞ ¼ dðGðL1ðpÞjk1ÞÞ

þ. Using again [2],
Theorem 3.8, we get

dðGðL1ðpÞjk1ÞÞ
þ
X dðGðL1ðpÞjK1ÞÞ

þ:

Both inequalities together imply dðGðL1ðpÞjk1ÞÞ
	
W 1.

Using [6], (11.4.4), we ¢nally obtain

dðGðL1ðpÞjk1ÞÞ
þ; dðGðL1ðpÞjk1ÞÞ

	
W 1:

It follows that GðLnðpÞjknÞ is a powerful pro-p-group with dðGðLnðpÞjknÞÞW 2. If
GðLnðpÞjknÞ is not ¢nite, then it contains an open subgroup P which is a Poincare¤
group (see [5], chap. V, Theorem (2.2.8) and (2.5.8)) of dimension
dimP ¼ dðPÞW 2 (use again [2], Theorem 3.8). But these groups have the group
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Zp as homomorphic image. By the ¢niteness of the class number it follows that
GðLnðpÞjknÞ is ¢nite. &

Remark. Theorem 3.3 also holds if we replace LðpÞ by LSðpÞ and Cl by ClS, where
S ¼ S1 [ Sp is the set of Archimedean primes and primes above p, and if we assume
that no prime of Sp splits in the extension kjkþ.
Now we consider the conjecture for general p-adic analytic groups. Let

1	!D	!G	!G	! 1

be an exact sequence of pro-p-groups. For an open normal subgroup H of G we
denote the preimage of H in G by H. Thus we get a commutative exact diagram

PROPOSITION 3.4. With the notation as above assume that

(i) G is ¢nitely generated and cdp GW 2,
(ii) cdp G <1,
(iii) the Euler^Poincare¤ characteristic of G is zero, i.e.

wðGÞ ¼
X2
i¼0

ð	1Þi dimFp H
iðG;Z=pZÞ ¼ 0 :

Then dðHÞ is unbounded for varying open normal subgroups H of G or cdp GW 2.
Proof. Suppose that dimFp H

1ðH;Z=pZÞ is bounded for varyingH. Since wðGÞ ¼ 0,
the same is true for dimFp H

2ðH;Z=pZÞ. It follows that HiðD;Z=pZÞ is ¢nite for
i ¼ 1; 2. By [6], Proposition (3.3.7), we obtain

cdp G ¼ cdp Gþ cdpDX cdp G:

This proves the proposition. &

As an application to our problem we get the following result for the maximal
unrami¢ed p-extension LkðpÞ of a number ¢eld k.

THEORM 3.5. Let p 6¼ 2 and let k be a CM-¢eld containing mp with maximal totally
real sub¢eld kþ. Assume that mp�= k

þ
p for all primes p of kþ above p. Then the following

holds: either

(i) GðLkþðpÞjkþÞ is ¢nite,

or

(ii) GðLkðpÞjkÞ is not p-adic analytic,
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with other words, if GðLkðpÞjkÞ is p-adic analytic, then GðLkþðpÞjkþÞ is ¢nite.
Proof. Suppose that (i) and (ii) do not hold. Then the maximal quotient

GðLkþðpÞjkþÞ of the p-adic analytic group GðLkðpÞjkÞ with trivial action by
D ¼ GðkjkþÞ is an in¢nite analytic group. Passing to a ¢nite extension of kþ, we
may assume that GðLkþðpÞjkþÞ is uniform (our assumptions on k are still valid).
The dimension of GðLkþðpÞjkþÞ is greater or equal to 3, since otherwise it would
have the group Zp as quotient which is impossible by the ¢niteness of the class
number.
If kþSp

ðpÞ is the maximal p-extension of kþ which is unrami¢ed outside p, then
cdp GðkþSp

ðpÞjkþÞW 2 and wðGðkþSp
ðpÞjkþÞÞ ¼ 0, see [6], (8.3.17), (8.6.16) and (10.4.8).

Applying Proposition 3.4, we obtain that

dimFp H
1ðGðkþSp

ðpÞjKþÞ;Z=pZÞ ¼ dimFp H
1ðGðkSp ðpÞjK

þðmpÞÞ;Z=pZÞþ

is unbounded, if Kþ varies over the ¢nite Galois extension of kþ inside LkþðpÞ. By [6],
Theorem (8.7.3) and the assumption that mp�= kþp for all primes pjp, it follows that

dðGðLkðpÞjKþðmpÞÞ ¼ dimFp ClðK
þðmpÞÞ=p

X dimFp ðClSpðK
þðmpÞÞ=pÞ

	

¼ dimFp H
1ðGðkSp ðpÞjK

þðmpÞÞ;Z=pZÞþ 	 1

is unbounded for varying Kþ inside LkþðpÞ and therefore GðLkðpÞjkÞ is not p-adic
analytic. This contradiction proves the theorem. &
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