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Introduction: basics of QCD perturbation theory

Quantum chromodynamics (QCD) is the theory of strong interactions. This is an exciting
physical theory, whose Lagrangian deals with quark and gluon fields and their interactions.
At the same time, quarks and gluons do not exist as free particles in nature but combine
into bound states (hadrons) instead. This phenomenon, known as quark confinement, is one
of the most profound puzzles of QCD. Another amazing feature of QCD is the property of
asymptotic freedom: quarks and gluons tend to interact more weakly over short distances
and more strongly over longer distances.

This book is dedicated to another QCD mystery: the behavior of quarks and gluons in
high energy collisions. Quantum chromodynamics is omnipresent in high energy collisions
of all kinds of known particles. There are vast amounts of high energy scattering data
on strong interactions, which have been collected at accelerators around the world. While
these data are incredibly diverse they often exhibit intriguingly universal scaling properties,
which unify much of the data while puzzling both experimentalists and theorists alike. Such
universality appears to imply that the underlying QCD dynamics is the same for a broad
range of high energy scattering phenomena.

The main goal of this book is to provide a consistent theoretical description of high
energy QCD interactions. We will show that the QCD dynamics in high energy collisions
is very sophisticated and often nonlinear. At the same time much solid theoretical progress
has been made on the subject over the years. We will present the results of this progress by
introducing a universal approach to a broad range of high energy scattering phenomena.

We begin by presenting a brief summary of the tools needed to perform perturbative
QCD calculations. Since much of the material in this chapter is covered in standard field
theory and particle physics textbooks, we will not derive many results, simply summarizing
them and referring the reader to the appropriate literature for detailed derivations.

1.1 The QCD Lagrangian

Quantum chromodynamics is an SU(3) Yang–Mills gauge theory (Yang and Mills 1954)
describing the interactions of quarks and gluons. The QCD Lagrangian density is

LQCD =
∑

flavors f

q̄
f
i (x)
[
iγ μDμ − mf

]
ij
q

f
j (x) − 1

4 Fa
μνF

aμν (1.1)
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2 Introduction: basics of QCD perturbation theory

where q
f
i (x) and q̄

f
i (x) are the quark and antiquark spin-1/2 Dirac fields of color i, flavor

f , and mass mf , with q̄ = q†γ 0. A field Aa
μ(x) describes the gluon, which has spin equal

to 1, zero mass, and color index a in the adjoint representation of the SU(3) gauge group.
Summation over repeated color and Lorentz indices is assumed, with i, j = 1, 2, 3 and
a = 1, . . . , 8. The covariant derivative Dμ is defined by

Dμ = ∂μ − igAμ = ∂μ − igtaAa
μ. (1.2)

The ta are the generators of SU(3) in the fundamental representation (ta = λa/2, where the
λa are the Gell-Mann matrices). The non-Abelian gluon field strength tensor Fa

μν is defined
by

Fμν = taF a
μν = i

g

[
Dμ,Dν

]
(1.3)

or, equivalently, by

Fa
μν = ∂μAa

ν − ∂νA
a
μ + gf abcAb

μAc
ν, (1.4)

where f abc are the structure constants of the color group SU(3).
We work in natural units, with h̄ = c = 1. Our four-vectors are xμ = (t, �x), the partial

derivatives are denoted ∂μ = ∂/∂xμ, and the metric in t, x, y, z coordinates is gμν =
diag(+1,−1,−1,−1).

The Lagrangian of Eq. (1.1) was proposed by Fritzsch, Gell-Mann, and Leutwyler
(1973), Gross and Wilczek (1973, 1974), and Weinberg (1973). The form of the QCD
Lagrangian is based on two assumptions confirmed by experimental observations: all
hadrons consist of quarks and quarks cannot be observed as free particles. The first obser-
vation leads to a new quantum number for quarks: color. Indeed, without this quantum
number we cannot build the wave functions for baryons. For example the �− hyperon has
spin 3/2 and consists of three s-quarks. This means that the spin and flavor parts of its
wave function are symmetric with respect to interchange of the identical valence s-quarks.
Owing to the Pauli exclusion principle the full wave function of the three identical quarks
has to be antisymmetric. If spin and flavor were the only quantum numbers, it would appear
that the spatial wave function of the three s-quarks would have to be antisymmetric. How-
ever, this would contradict the fact that �− is a stable particle and is, therefore, a ground
state of the three s-quark system. The spatial wave function of a ground state has to be
symmetric. To resolve this conundrum we need to introduce a new quantum number that
should have at least three different values to make the three strange quarks different in the
�− hyperon. This quantum number is the quark color.

We then need to determine which particle is responsible for interactions between the
quarks forming quark bound states, the hadrons. The interactions between the quarks in
mesons and baryons have to be attractive, which indicates that they should depend on
quark color: if one introduced interactions between quarks using some global (not gauged)
non-Abelian color symmetry then one would not be able to obtain attractive interactions
between the quark and the antiquark in a meson and between a pair of quarks in a baryon
simultaneously, at least not in the lowest nontrivial order in the interaction. One therefore
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1.2 A review of Feynman rules for QCD 3

concludes that the non-Abelian color symmetry has to be gauged by introducing a non-
Abelian vector boson responsible for quark interactions. Moreover, as we will see below,
the high energy scattering data confirms this conclusion as it demonstrates that the particle
responsible for quark interactions has spin equal to 1.

The second experimental observation needed for the construction of the QCD
Lagrangian, that quarks are never seen as free particles, means that the forces between
quarks should be stronger at longer distances to prevent quarks from leaving a hadron.
For point-like particles our best chance of getting such forces is by assuming that quark
interactions are mediated by a massless particle. For such a particle the lowest-order quark–
antiquark interaction potential decreases at long distances roughly as to 1/r , where r is the
distance between the quarks. (Indeed in a full QCD calculation this behavior changes to
∼ r , that of a confining potential.) Massive particles would give an exponentially decreas-
ing potential, which would have a shorter range than the potential in the massless case.
We therefore conclude that the particle responsible for quark interactions is a non-Abelian
massless vector boson, a gluon.

However, particle interactions may generate a mass even for a particle that is massless at
the Lagrangian level. To protect the zero mass of the gluon from higher-order corrections we
have to assume the existence of gauge symmetry in our Lagrangian. Namely, the Lagrangian
should be invariant with respect to

q(x) → S(x) q(x), (1.5a)

q̄(x) → q̄(x) S−1(x), (1.5b)

Aμ(x) → S(x)Aμ(x)S−1(x) − i

g

[
∂μS(x)

]
S−1(x), (1.5c)

where we have defined a unitary 3 × 3 matrix

S(x) = eiαa (x) ta , (1.6)

where the αa(x) are arbitrary real-valued functions; summation over repeated color indices
a is again implied. The form of the Yang–Mills Lagrangian (1.1) can be derived directly
from the gauge symmetry in Eqs. (1.5) (see e.g. Peskin and Schroeder (1995)).

1.2 A review of Feynman rules for QCD

To derive the Feynman rules from the Lagrangian (1.1) we need to define the functional
integral (the QCD partition function)

ZQCD =
∫

DADq Dq̄ exp

{
i

∫
d4x LQCD (A, q, q̄)

}
. (1.7)

One can see that this integral is divergent since its integrand has the same value for an infinite
set of fields related to each other by all possible gauge transformations (1.5). However, the
values of physical observables are given by the expectation values of operators. For an
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arbitrary gauge-invariant operator O we have the vacuum expectation value

〈O〉 ≡
∫ DADq Dq̄ O exp

{
i
∫

d4xLQCD

}∫ DADq Dq̄ exp
{
i
∫

d4x LQCD

} (1.8)

The divergences caused by integrations over gauge directions in the numerator and in
the denominator of Eq. (1.8) cancel each other. Faddeev and Popov (1967) suggested a
procedure allowing one to see such cancellations in the most economic way by multiplying
the definition (1.7) with the functional integral identity1

1 =
∫

Dα δ(α) =
∫

Dα δ(G(Aα)) det

(
δG(Aα)

δ α

)
, (1.9)

where the integral runs over all gauge transformations labeled by αa (see Eq. (1.6)), Aα

is a gauge field related to the original one by the gauge transformation defined by αa , and
G(A) = 0 is the gauge-fixing condition. (For instance, G(A) = ∂μAμ in a covariant gauge.)
Let us restrict ourselves to gauges in which the functional determinant det[δG(Aα) /δα] is
independent of αa for a given Aα . Using Eq. (1.9) the expectation values of the operators
can be written as

〈O〉 =
(∫ Dα

) ∫ DADq Dq̄ O δ(G(A)) det
(

δG(Aα)
δ α

)
exp
{
i
∫

d4x LQCD

}
(∫ Dα

) ∫ DADq Dq̄ δ (G(A)) det
(

δG(Aα)
δ α

)
exp
{
i
∫

d4x LQCD

} , (1.10)

where we have relabeled the integration variable Aα as A everywhere except in the deter-
minants, in which one should put αa = 0 after differentiation thus turning Aα into A. The
infinities in the numerator and the denominator of Eq. (1.10) are clearly identifiable as
being due to the integration over αa . As nothing else in the integrands of Eq. (1.10) depends
on α we can simply cancel the Dα integrations, writing

〈O〉 =
∫ DADq Dq̄ O δ(G(A)) det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x LQCD

}
∫ DADq Dq̄ δ(G(A)) det

(
δG(Aα )

δ α

)
exp
{
i
∫

d4x LQCD

} . (1.11)

To obtain the Feynman rules we have to put all the A-dependence in the integrands in
Eq. (1.11) into the exponents. We start with the delta functions and first note that making
the replacement in Eq. (1.11)

δ(G(A)) → δ(G(A) − r(x)) , (1.12)

where r(x) is some arbitrary function of xμ, would not change the values of the functional
integrals in the numerator and the denominator and would therefore leave 〈O〉 unchanged.
Indeed different choices of r(x) correspond to different choices of the gauge defined
by the G(A) = r(x) gauge condition. Thus the replacement (1.12) simply modifies the
function defining the gauge condition: G(A) → G(A) − r(x). Since our initial gauge-
defining function G(A) is arbitrary, and as neither of the integrals in the numerator and the
denominator of Eq. (1.11) depends on G(A), we conclude that nothing in the numerator

1 In discussing the Faddeev–Popov method we will follow closely the presentations in Peskin and Schroeder (1995) and
in Sterman (1993).
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or the denominator of Eq. (1.11) changes if we perform the replacement (1.12). Moreover,
the resulting expression,

〈O〉 =
∫ DADq Dq̄ O δ(G(A) − r(x)) det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x LQCD

}
∫ DADq Dq̄ δ(G(A) − r(x)) det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x LQCD

} , (1.13)

is independent of r(x) for the same reasons. We can integrate the numerator and the
denominator separately over r(x) by multiplying them with

1 = N (ξ )
∫

Dr exp

{
−i

∫
d4x

r2(x)

2ξ

}
, (1.14)

where N (ξ ) is a normalization function defined by Eq. (1.14) and ξ is an arbitrary number.
Multiplying both the numerator and the denominator of Eq. (1.13) by Eq. (1.14), canceling
N (ξ ), and performing the r-integrals with the help of the delta functions, we obtain

〈O〉 =
∫ DADq Dq̄ O det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x
(
LQCD − 1

2ξ
[G(a)]2

)}
∫ DADq Dq̄ det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x
(
LQCD − 1

2ξ
[G(a)]2

)} . (1.15)

Finally, in order to remove the determinants of Eq. (1.15) into the exponents one intro-
duces the (unphysical) Faddeev–Popov ghost field ca(x), whose values are complex Grass-
mann numbers (Faddeev and Popov 1967, Feynman 1963, DeWitt 1967). The ghost field is
a Lorentz scalar in the adjoint representation of SU(3). With the help of the Faddeev–Popov
ghost field we write

det

(
δG (Aα)

δ α

)
=
∫

DcDc∗ exp

{
−i

∫
d4x c∗ δG (Aα)

δ α
c

}
(1.16)

with c∗ the complex conjugate of the c field. Using Eq. (1.16) in Eq. (1.15) we obtain

〈O〉 =
∫ DADq Dq̄ DcDc∗ O exp

{
i
∫

d4x L(A, q, q̄, c, c∗)
}∫ DADq Dq̄ DcDc∗ exp

{
i
∫

d4x L(A, q, q̄, c, c∗)
} , (1.17)

where we have defined an effective Lagrangian

L(A, q, q̄, c, c∗) ≡ LQCD − 1

2ξ
[G(A)]2 − c∗ δG(Aα)

δ α
c. (1.18)

Now we are ready to derive the Feynman rules for QCD.
In this book we will employ two main gauge choices. One is the Lorenz gauge, defined

by the gauge condition

∂μAa μ = 0. (1.19)

Inserting G(A) = ∂μAa μ into Eq. (1.18), after some straightforward algebra (see e.g. Peskin
and Schroeder (1995)) we end up with

L = LQCD − 1

2ξ

(
∂μAa

μ

)2 + (∂μca ∗)(δac ∂μ + gf abcAb
μ

)
cc. (1.20)
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6 Introduction: basics of QCD perturbation theory

Using Eq. (1.20) we can derive the Feynman rules for QCD by substituting the Lagrangian
(1.20) into Eq. (1.7) in place of LQCD .

The other gauge choice that we will be using frequently throughout the book is the light
cone gauge, defined by

η · Aa = ημAa
μ = 0, (1.21)

with ημ a constant four-vector that is light-like, so that η2 = ημ ημ = 0. One can show that,
in the light cone gauge, det[δG (Aα)/δ α] does not depend on Aμ when we take the limit
ξ → 0. From Eq. (1.18) one can see that in this case the ghost field would not couple to
the gluon field and so can be integrated out in the functional integrals of Eq. (1.17). Hence
there is no ghost field in the light cone gauge. The effective Lagrangian (1.18) in the light
cone gauge becomes

L = LQCD − 1

2 ξ

(
ημAa

μ

)2
(1.22)

(with an implied ξ → 0 limit).
Below we list the Feynman rules for QCD, in the Lorenz and light cone gauges, which

follow from the Lagrangians in Eqs. (1.20) and (1.22). We use the standard notation for
a product of two four-vectors u · v = uμv

μ and for the square of a single four-vector
vμv

μ = v2. The Dirac gamma matrices in the standard Dirac representation, which we will
use here, are defined by

γ 0 =
(

1 0
0 −1

)
, γ i =

(
0 σ i

−σ i 0

)
, (1.23)

where 1 is a unit 2 × 2 matrix, i = 1, 2, 3, and σ i are the Pauli matrices

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0
0 −1

)
. (1.24)

As usual, we will write v/ = γ μvμ. Arrows on the quark and ghost propagators (see below)
indicate the flow of the particle number and, in the cases of the quark propagator and the
ghost–gluon vertex, they also indicate the momentum flow. As ghost fields do not exist in the
light cone gauge, the Feynman rules for ghosts listed below apply only in the Lorenz gauge.

1.2.1 QCD Feynman rules

Quark propagator: ij p = i(p/ + mf )

p2 − m2
f + iε

δij , (1.25)

Ghost propagator: ab k = i

k2 + iε
δab, (1.26)

Gluon propagator:
ab k

μν
= −iDμν(k)

k2 + iε
δab, (1.27)
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1.3 Rules of light cone perturbation theory 7

where in the Lorenz gauge (∂ · Aa = 0)

Dμν(k) = gμν − (1 − ξ )
kμkν

k2
; (1.28)

the choice ξ = 0 is referred to as the Landau gauge and the choice ξ = 1 is called the
Feynman gauge. In the light cone gauge η · Aa = 0 with ξ → 0 one has

Dμν(k) = gμν − ημkν + ηνkμ

η · k
. (1.29)

Quark–gluon vertex:

i

j aμ
= igγ μ (ta)ji , (1.30)

Ghost–gluon vertex
(Lorenz gauge only):

c

b aμ

p

p + k

= g(p + k)μf abc (1.31)

Three-gluon vertex
(all momenta flow
into the vertex):

c

b
a
μ ν

ρ

k1

k2
k3

= −gf abc [(k1 − k3)νgμρ

+ (k2 − k1)ρgμν + (k3 − k2)μgνρ]
(1.32)

Four-gluon vertex:

a

b

c
d

μ
ν

ρ

σ

=
−ig2

[
f abe f cde (gμρ gνσ − gμσ gνρ)
+ f ace f bde (gμν gρσ − gμσ gνρ)
+ f ade f bce (gμν gρσ − gμρ gνσ )

]
(1.33)

The Feynman rules that are standard for all field theories, such as the conservation of
four-momentum in the vertices and the inclusion of a factor −1 for each fermion loop or
of proper symmetry factors, apply to QCD as well and will not be explicitly spelled out
here.

1.3 Rules of light cone perturbation theory

Many calculations in this book will not be performed using the Feynman rules. Instead we
will use light cone perturbation theory (LCPT), following the rules introduced by Lepage
and Brodsky (1980) (see Brodsky and Lepage (1989) and Brodsky, Pauli, and Pinsky (1998)
for a detailed derivation of the LCPT rules). We begin by introducing the light cone notation.
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For any four-vector vμ we define

v+ = v0 + v3, v− = v0 − v3. (1.34)

With this notation we see immediately that

v2 = v+v− − �v 2
⊥, (1.35)

where we have defined a vector of transverse components �v⊥ = (v1, v2). A product of two
four-vectors vμ and uμ in light cone notation is

u · v = 1

2
u+v− + 1

2
u−v+ − �u⊥ · �v⊥. (1.36)

The metric has nonzero components g+− = g−+ = 1/2, g11 = g22 = −1. This gives

v− = v0 + v3

2
= v+

2
, v+ = v0 − v3

2
= v−

2
. (1.37)

Note also that ∂+ = (1/2) ∂− and ∂− = (1/2) ∂+.
Light cone perturbation theory is similar to time-ordered perturbation theory, except that

the light cone x+-direction plays the role of time. (For a good presentation of time-ordered
perturbation theory see Sterman (1993).) Our discussion of LCPT here will closely follow
Lepage and Brodsky (1980) and Brodsky and Lepage (1989). We will work in the particular
light cone gauge

A+ = 0, (1.38)

which can be obtained from Eq. (1.21) by choosing ημ = (0, 2, �0⊥), in the (+,−,⊥)
notation. Of the remaining A− and Ai

⊥ components of the gluon field (i = 1, 2), only
the transverse components Ai

⊥ are independent. The component A− can be expressed in
terms of the Ai

⊥ using the equations of motion for the QCD Lagrangian (1.1). The quark
field, which we will denote by q(x), dropping the flavor label, is separated into two spinor
components q+ and q− defined by

q±(x) = �± q(x), (1.39)

where the projection operators �± are given by

�± = 1

2
γ 0 γ ± (1.40)

and the Dirac matrix γ ± = γ 0 ± γ 3. Note that, just like any other projection operators,
�± obey the following relations: �+ �− = 0, �2

± = �±, and �+ + �− = 1. The two
projections q+ and q− are not independent and can also be related using the constraint part
of the equations of motion. The dependent field operators A− and q− are expressed in terms
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1.3 Rules of light cone perturbation theory 9

of Ai
⊥ and q+ as (see Lepage and Brodsky (1980))2

A− = − 2

∂+ ∂⊥ j · A
j
⊥ + 2g

(∂+)2

{[
i∂+A

j
⊥, A

j
⊥
]

+ 2q
†
+taq+ta

}
, (1.41)

q− = 1

i∂+ γ 0
(
−i γ

j
⊥D⊥ j + m

)
q+ (1.42)

where j = 1, 2. Next one defines free gluon and quark fields Ãμ and q̃ by

Ãμ = (0, Ã−, �A⊥), (1.43)

in the (+,−,⊥) notation, with

Ã− ≡ − 2

∂+ ∂⊥ j · A
j
⊥ (1.44)

and

q̃ ≡ q+ + 1

i∂+ γ 0
(
−iγ

j
⊥∂⊥ j + m

)
q+. (1.45)

The light cone Hamiltonian H is defined as the minus component of the four-momentum
vector, P −. It can be written as the sum of free and interaction terms:

H = P − = H0 + Hint , (1.46)

where (Lepage and Brodsky 1980, Brodsky and Lepage 1989, Brodsky, Pauli, and Pinsky
1998)

H0 = 1

2

∫
dx− d2x⊥

(
¯̃q γ + m2 − ∇2

⊥
i∂+ q̃ − Ãa

μ ∇2
⊥Ã

a μ

)
(1.47)

is the free part of the Hamiltonian, while the interaction part is given by

Hint =
∫

dx−d2x⊥

[
−2g tr

(
i∂μÃν[Ãμ, Ãν]

)− g2

2
tr
(
[Ãμ, Ãν][Ãμ, Ãν]

)
− g ¯̃qγ μAμq̃ + g2 tr

(
[i∂+Ãμ, Ãμ]

1

(i∂+)2
[i∂+ Ãν, Ãν]

)

+ g2 ¯̃qγ μAμγ + 1

2i∂+ γ νAνq̃ − g2¯̃qγ +
(

1

(i∂+)2
[i∂+Ãμ, Ãμ]

)
q̃

+ g2

2
q̄γ +taq

1

(i∂+)2
q̄γ +taq

]
. (1.48)

Quantizing the theory by expanding Ai
⊥ and q+ in terms of creation and annihilation

operators while treating the x+ light cone direction as time, one can construct light cone
time-ordered perturbation theory with the help of the light cone Hamiltonian H . The rules
of LCPT for the calculation of scattering amplitudes are given in the following subsection
(Lepage and Brodsky 1980, Brodsky and Lepage 1989, Zhang and Harindranath 1993,
Brodsky, Pauli, and Pinsky 1998).

2 Our notation in Eqs. (1.1), (1.2), and (1.4), and therefore throughout the book, can be obtained from that of Lepage
and Brodsky (1980) and Brodsky and Lepage (1989) by making the replacement g → −g.

https://doi.org/10.1017/9781009291446.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.002


10 Introduction: basics of QCD perturbation theory

1.3.1 QCD LCPT rules

1. Draw all diagrams for a given process at the desired order in the coupling constant,
including all possible orderings of the interaction vertices in the light cone time x+. Assign
a four-momentum kμ to each line such that it is on mass shell, so that k2 = m2 with m

the mass of the particle. Each vertex conserves only the k+ and �k⊥ components of the
four-momentum. Hence for each line the four-momentum has components as follows:

kμ =
(

k+,
�k2
⊥ + m2

k+ , �k2
⊥

)
. (1.49)

2. With quarks associate on-mass-shell spinors in the Lepage and Brodsky (1980)
convention:

uσ (p) = 1√
p+
(
p+ + mγ 0 + γ 0 �γ⊥ · �p⊥

)
χ (σ ), (1.50)

vσ (p) = 1√
p+
(
p+ − mγ 0 + γ 0 �γ⊥ · �p⊥

)
χ (−σ ), (1.51)

with

χ (+1) = 1√
2

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ , χ (−1) = 1√

2

⎛
⎜⎜⎝

0
1
0

−1

⎞
⎟⎟⎠ . (1.52)

Gluon lines come with a polarization vector ε
μ
λ (k). In the A+ = 0 gauge this vector is

given by

ε
μ
λ (k) =

(
0,

2 �ε λ
⊥ · �k⊥
k+ , �ε λ

⊥

)
(1.53)

with transverse polarization vector

�ε λ
⊥ = − 1√

2
(λ, i) , (1.54)

where λ = ±1. Equation (1.53) follows from requiring that ε+
λ = 0 and ελ(k) · k = 0.

3. For each intermediate state there is a factor equal to the light cone energy denominator

1∑
inc

k− − ∑
interm

k− + i ε
(1.55)

where the sums run respectively over all incoming particles present in the initial state in
the diagram (“inc”) and over all the particles in the intermediate state at hand (“interm”).
According to rule 1 above, for each particle we have k− = (�k2

⊥ + m2)/k+. Since the k−

momentum component is not conserved at the vertices the intermediate states are not on
the “energy shell” and the light cone denominator in (1.55) is nonzero. Note that the light
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1.3 Rules of light cone perturbation theory 11

cone energy is conserved for the whole scattering process:
∑

inc k− is equal to
∑

out k
−,

where “out” stands for all outgoing particles.3

4. Include a factor

θ (k+)

k+ (1.56)

for each internal line, where k+ flows in the future light cone time direction.
5. For vertices include factors as follows (we assume that the light cone time flows from

left to right).
Quark–gluon vertex (i and j are quark color indices):

i j

a
q

p p + qσ σ

= −gūσ ′j (p + q) ε/λ(q) (ta)ji uσ i(p). (1.57)

Three-gluon vertex (all momenta flow into the vertex; asterisks denote complex
conjugation):

c

b
a k1

k2
k3

λ1

λ2λ3

=
−igf abc [(k1 − k3) · ε∗

λ2
(k2) ελ1 (k1) · ελ3 (k3)

+ (k2 − k1) · ελ3 (k3) ελ1 (k1) · ε∗
λ2

(k2)
+ (k3 − k2) · ελ1 (k1) ελ3 (k3) · ε∗

λ2
(k2)].

(1.58)

Four-gluon vertex:

a

b

c
d

λ1

λ2

λ3

λ4

=
g2
[
f abef cde (ελ1 · ελ3 ε∗

λ2
· ε∗

λ4
− ελ1 · ε∗

λ4
ελ3 · ε∗

λ2
)

+ f acef bde(ελ1 · ε∗
λ2

ελ3 · ε∗
λ4

− ελ1 · ε∗
λ4

ελ3 · ε∗
λ2

)
+ f adef bce(ελ1 · ε∗

λ2
ελ3 · ε∗

λ4
− ελ1 · ελ3 ε∗

λ2
· ε∗

λ4
)
]
.

(1.59)

In addition to the above vertices, which are (up to some trivial factors due to a different
convention) identical to the same vertices in the Feynman rules, there are instantaneous
terms in the light cone Hamiltonian giving the four vertices below. Again, light cone time
flows to the right while the momentum flow direction is indicated by arrows. Instant-
aneous quark and gluon lines are denoted by regular quark and gluon lines with a short

3 This light cone energy conservation condition does not apply to light cone wave functions, to be discussed shortly, as
they represent only part of the scattering process.
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12 Introduction: basics of QCD perturbation theory

line crossing them.

p1, σ1

p2, σ2
k1

k2

a λ1 b λ2

= g2 ūσ2j (p2) ε/λ1
(k1)

γ +

2(p+
1 − k+

2 )
ε/∗
λ2

(k2)

× (ta tb)ji uσ1i(p1), (1.60)

p1, σ1 p2, σ2

i j

k l
p3, σ3 p4, σ4

= g2 ūσ2j (p2) γ + (ta)ji uσ1i(p1)

× ūσ4l(p4) γ + (ta)lk uσ3k(p3)
1

(p+
1 − p+

2 )2
, (1.61)

p1, σ1 p2, σ2

k1, λ1 k2, λ2

i j

a b

= − g2 ūσ2j (p2) γ + (t c)ji uσ1i(p1)

× k+
1 + k+

2

(k+
1 − k+

2 )2
if abcε∗

λ2
· ελ1 , (1.62)

k3, λ3 k4, λ4

k1, λ1 k2, λ2

c d

a b

= g2f abef cdeε∗
λ2

· ελ1 ε∗
λ4

· ελ3

× (k+
1 + k+

2 ) (k+
3 + k+

4 )

(k+
1 − k+

2 )2
. (1.63)

6. For each independent momentum kμ integrate with the measure∫
dk+ d2k⊥

2(2π )3
. (1.64)

Sum over all internal quark and gluon polarizations and colors.
Again, standard parts of the rules, common to both LCPT and Feynman diagram calcu-

lations, such as symmetry factors and a factor −1 for fermion loops and for fermion lines
beginning and ending at the initial state, are assumed implicitly.

The rules of LCPT are supplemented by tables of Dirac matrix elements in appendix
section A.1. These tables are very useful in the evaluation of LCPT vertices.

1.3.2 Light cone wave function

An important quantity in LCPT, which is hard to construct in the standard Feynman diagram
language, is the light cone wave function. Its definition is similar to that of the wave function
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1.3 Rules of light cone perturbation theory 13

in quantum mechanics. In our presentation of the light cone wave function we will follow
Brodsky, Pauli, and Pinsky (1998). Imagine that we have a hadron state |�〉. In general this
is a superposition of different Fock states∣∣nG, nq

〉 ≡ ∣∣nG, {k+
i , �ki ⊥, λi, ai}; nq, {p+

j , �pj ⊥, σj , αj , fj }
〉
, (1.65)

where a particular Fock state has nG gluons and nq quarks (and antiquarks). The gluon
momenta are labeled k+

i , �ki⊥, with polarizations λi and gluon color indices ai where
i = 1, . . . , nG. (As usual in LCPT k−

i = �k 2
i ⊥/k+

i , as all particles are on mass shell.) The
quark momenta are labeled p+

j , �pj ⊥, with helicities σj , colors αj , and flavors fj where
j = 1, . . . , nq .

The Fock states form a complete basis such that∑
nG,nq

∫
d�nG+nq

|nG, nq〉〈nG, nq | = 1, (1.66)

where the phase-space integral is defined by∫
d�nG+nq

= 2P + (2π )3

Sn

∫ nG∏
i=1

∑
λi ,ai

dk+
i d2ki ⊥

2k+
i (2π )3

nq∏
j=1

∑
σj ,αj ,fj

dp+
j d2pj ⊥

2p+
j (2π )3

× δ

(
P + −

nG∑
l1=1

k+
l1

−
nq∑

l2=1

p+
l2

)
δ2

(
�P⊥ −

nG∑
m1=1

�km1 ⊥ −
nq∑

m2=1

�pm2 ⊥

)

(1.67)

with symmetry factor Sn = nG! nQ! nQ̄!. Here nQ and nQ̄ are respectively the numbers
of quarks and antiquarks in the wave function, so that nq = nQ + nQ̄. The delta functions
in Eq. (1.67) represent the conservation of the “plus” and transverse components of the
momenta, according to rule 1 of LCPT. The incoming hadron has longitudinal momentum
P + and transverse momentum �P⊥. We assume that each Fock state is normalized to 1, so
that 〈nG, nq |nG, nq〉 = 1.

Using Eq. (1.66) we can write∣∣�〉 = ∑
nG,nq

∫
d�nG+nq

∣∣nG, nq

〉 〈
nG, nq

∣∣�〉. (1.68)

The quantity

�(nG, nq) = 〈nG, nq

∣∣�〉 (1.69)

is called the light cone wave function. It is a multi-particle wave function, describing a Fock
state in the hadron with nG gluons and nq quarks.

Note that requiring that the state |�〉 is normalized to unity, 〈�|�〉 = 1, and using
Eq. (1.68) we can write

1 = 〈�∣∣�〉 = ∑
nG,nq

∫
d�nG+nq

∣∣�(nG, nq )
∣∣2. (1.70)
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14 Introduction: basics of QCD perturbation theory

qq

l

q − l

Fig. 1.1. A Feynman diagram in the φ3-theory considered here. The arrows indicate the
momentum flow.

We see that each light cone wave function �(nG, nq) is normalized to a number less than
or equal to 1.

1.4 Sample LCPT calculations

While we expect that the reader has a fluent knowledge of Feynman rules, we realize that
it is less likely that he or she is equally fluent with LCPT rules. Therefore, to help the
reader become more familiar with LCPT, here we will perform two LCPT calculations. We
will first “cross-check” LCPT by calculating a sample scattering amplitude using both the
Feynman and LCPT rules and showing that we obtain the same result. We will then set up
the rules for calculating light cone wave functions, by considering an example of a basic
wave function containing 1 → 2 particle splitting.

1.4.1 LCPT “cross-check”

We begin by calculating a simple amplitude in a real scalar φ3 field theory in two ways:
using standard Feynman rules and using the rules of LCPT. We will show that the two ways
give identical results. This demonstrates that LCPT is indeed equivalent to the standard
Feynman diagram approach.

The process we consider is illustrated in Fig. 1.1. We consider a field theory for a real
massive scalar field φ with Lagrangian

L = 1

2
∂μφ ∂μφ − m2

2
φ2 − λ

3!
φ3. (1.71)

The contribution of the diagram in Fig. 1.1 (henceforth labeled A) can be written down
using the Feynman rules for the real scalar field theory having Lagrangian (1.71) (see e.g.
Sterman (1993) on Peskin and Schroeder (1995)):

−i� = (−iλ)2

2!

∫
d4l

(2π )4

i

l2 − m2 + iε

i

(q − l)2 − m2 + iε
. (1.72)

Here 1/2! is a symmetry factor and m is the mass of the scalar particles.
Working in the light cone variables

qμ = (q+, q−, �q⊥), lμ = (l+, l−, �l⊥), (1.73)
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1.4 Sample LCPT calculations 15

we write l2 = l+ l− − �l2
⊥ and (q − l)2 = (q+ − l+) (q− − l−) − (�q⊥ − �l⊥)2. Equa-

tion (1.72) can now be rewritten as

−i� = λ2

4

∫
dl+ dl− d2l⊥

(2π )4

1

l+l− − �l2
⊥ − m2 + iε

× 1

(q+ − l+)(q− − l−) − (�q⊥ − �l⊥)2 − m2 + iε
. (1.74)

Now we need to integrate over l−. In the complex l−-plane the integrand in Eq. (1.74) has
two poles,

l−1 =
�l2
⊥ + m2 − iε

l+
and l−2 = q− − (�q⊥ − �l⊥)2 + m2 − iε

q+ − l+
. (1.75)

The l−-integral is nonzero only if these two poles lie in different half-planes. This happens
for either (i) l+ > 0, q+ − l+ > 0 or (ii) l+ < 0, q+ − l+ < 0. As the incoming particle
with momentum q is physical we have q+ > 0, which makes case (ii) impossible to achieve,
as there one has q+ < l+ < 0. We are left with case (i). Closing the l−-integration contour
in the lower half-plane we pick up the pole at l−1 , obtaining

� = λ2

2

∫
dl+ d2l⊥
2(2π )3

θ (l+) θ (q+ − l+)

l+ (q+ − l+)

× 1

q− −
�l2
⊥ + m2 − iε

l+
− (�q⊥ − �l⊥)2 + m2 − iε

q+ − l+

= λ2

2!

∫
dl+ d2l⊥
2(2π )3

θ (l+) θ (q+ − l+)

l+ (q+ − l+)

× 1

q− −
�l2
⊥ + m2

l+
− (�q⊥ − �l⊥)2 + m2

q+ − l+
+ iε

. (1.76)

We observe that Eq. (1.76) is identical to what one would obtain for the diagram in
Fig. 1.1 if one calculated it using the rules of LCPT from Sec. 1.3 (modified for a scalar
particle), as illustrated in Fig. 1.2. Indeed Eq. (1.76) can be obtained by assigning

θ (l+)

l+
and

θ (q+ − l+)

q+ − l+
(1.77)

for each internal line (LCPT rule 4), including an energy denominator

1∑
inc

k− − ∑
interm

k− + i ε
= 1

q− −
�l2
⊥ + m2

l+
− (�q⊥ − �l⊥)2 + m2

q+ − l+
+ iε

(1.78)
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16 Introduction: basics of QCD perturbation theory

qq

l

q − l

A B

l

q − l

q

q

Fig. 1.2. Light cone perturbation theory diagrams in the φ3-theory corresponding to the
Feynman diagram in Fig. 1.1. Time flows to the right. The arrows indicate the momentum
direction. The vertical dotted line indicates an intermediate state.

for the intermediate state (denoted by the dotted line in Fig. 1.2A), according to LCPT
rule 3, and integrating over the internal momentum l with the integration measure

∫
dl+ d2l⊥
2(2π )3

, (1.79)

as prescribed by LCPT rule 6. In LCPT each vertex gives a factor λ (a modification of rule
5 for φ3-theory) and one has to include the symmetry factor 1/2! as well. (Scalar particles
obviously have no polarization. Neither do they have instantaneous terms.)

We have demonstrated that starting from the Feynman diagram amplitude expression
(1.72) we can reduce it to the result that one would obtain by the rules of LCPT. Hence the
two approaches in the end give identical expressions for the amplitudes, as expected.

A few words of caution are in order here. In principle the Feynman diagram in Fig. 1.1
corresponds to the two LCPT diagrams A and B shown in Fig. 1.2, which correspond to
two different orderings of the vertices (see LCPT rule 1). The two graphs A and B in
fact correspond to cases (i) and (ii) considered after Eq. (1.75). Our argument above was
simplified by the fact that diagram B in Fig. 1.2 is zero as, according to the LCPT rules, it
comes with a factor θ (−l+) θ (l+ − q+), which is zero for q+ > 0. The physical meaning
of this is quite clear: one cannot generate three particles with positive plus momenta out of
nothing (see the lower vertex in Fig. 1.2B). Conversely, three particles with positive plus
momenta cannot combine to give nothing (see the upper vertex in Fig. 1.2B). Because of
this simplification, we have a one-to-one correspondence between the Feynman diagram in
Fig. 1.1 and the LCPT diagram in Fig. 1.2A. In general, each Feynman diagram corresponds
to a sum of all the LCPT diagrams with the same topology, including all possible time-
orderings and instantaneous terms. A general derivation of an LCPT diagram starting from
a Feynman diagram does not simply involve integration over the minus components of the
internal momenta; one has to assign each vertex an x+-coordinate and Fourier transform
the diagram (by integrating over the minus momenta) into x+ coordinate space. One then
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1.4 Sample LCPT calculations 17

p

k1

k2

0⊥

2⊥

1⊥

Fig. 1.3. Light cone wave function for a scalar particle splitting into two. The vertical dotted
line denotes an intermediate state.

has to integrate over all the x+-coordinates of the vertices, imposing different orderings:
each ordering will lead to a different LCPT diagram.

1.4.2 A sample light cone wave function

Let us calculate, using the rules of LCPT, a sample light cone wave function. The calculation
will be instructive, as the wave function we will calculate is similar to certain light cone
wave functions that we will use throughout the book. In this calculation we will also
illustrate in more detail what is actually meant by the light cone wave function definition
(1.69) and will set up the rules for wave function calculations.

The sample wave function is depicted in Fig. 1.3. Again we are working in φ3 real scalar
field theory, with the Lagrangian (1.71). The wave function describes a single incoming
particle splitting into two. For the scalar field theory only rules 1, 3, 4, and 6 from Sec. 1.3
apply. On top of these rules there is a factor equal to the coupling λ coming from the vertex.
In calculating light cone wave functions one has to treat the “outgoing” state on the right of
the diagram (the state denoted by the dotted line in Fig. 1.3) as an intermediate state. The
reason is that, in describing a scattering process, the light cone wave function is thought of
as a part of a larger diagram in which this “outgoing” state in fact undergoes subsequent
interactions with other particles and therefore is truly an intermediate state. Our definition
of the boost-invariant integration measure (1.67) dictates a slight modification of LCPT
rule 4 as well, when calculating light cone wave functions: we treat the incoming lines (the
external lines on the left, e.g. line p in Fig. 1.3) as “internal” and include a factor 1/p+ for
them, while the outgoing lines (the lines on the right, e.g. lines k1 and k2 in Fig. 1.3) will
be treated as “external” and so will not bring in such factors.

To summarize, when calculating the light cone wave function using LCPT one should
follow the rules stated in Sec. 1.3, with the following modifications.

(i) The outgoing state on the right of a diagram is treated as an internal state and brings
in an energy denominator according to LCPT rule 3.

(ii) At the same time the outgoing external lines on the right of the diagram bring in only
factors θ (k+), in modification of LCPT rule 4. (As usual, light cone time flows to the
right.)
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18 Introduction: basics of QCD perturbation theory

(iii) The incoming external lines on the left of a diagram bring in factors 1/p+, i.e., LCPT
rule 4 is extended to apply to those lines. (We will drop θ (p+ > 0) as incoming lines
always have positive p+ momentum.)

According to the above-stated rules, the light cone wave function depicted in Fig. 1.3 is

�(k1, k2) = 1

p+
λ

p− − k−
1 − k−

2

= 1

p+
λ

�p2
⊥ + m2

p+ −
�k2

1 ⊥ + m2

k+
1

−
�k2

2 ⊥ + m2

k+
2

, (1.80)

where we have omitted the regulator iε for simplicity (in fact we will not need it below).
Before we simplify this expression, let us note that, as can be seen from Eq. (1.70), the
probability of finding such a configuration in a general “dressed” state |�〉 of the incoming
particle is ∫

d�2

∣∣�(k1, k2)
∣∣2, (1.81)

where, as follows from Eq. (1.67), the phase-space integral for two identical particles is
given by ∫

d�2 = 2p+ (2π )3

2!

∫
dk+

1 d2k1 ⊥
2k+

1 (2π )3

dk+
2 d2k2 ⊥

2k+
2 (2π )3

δ
(
p+ − k+

1 − k+
2

)
× δ2
(

�p⊥ − �k1 ⊥ − �k2 ⊥
)

= 1

2!

∫
dk+

1 d2k1 ⊥
2k+

1 (2π )3

p+

p+ − k+
1

. (1.82)

We see that k+
2 = p+ − k+

1 and �k2 ⊥ = �p⊥ − �k1 ⊥. Using these to replace k+
2 and �k2 ⊥ in

Eq. (1.80) and doing some algebra yields

�(k1, p − k1) = − λz1(1 − z1)

(�k1 ⊥ − z1 �p⊥)2 + m2 [1 − z1(1 − z1)]
, (1.83)

where

z1 = k+
1

p+ (1.84)

is the longitudinal fraction of the original particle’s momentum p carried by the particle k1,
which will be identified as a Feynman-x variable in the next chapter. Equation (1.83) gives
us the momentum-space two-particle light cone wave function at the lowest order in λ.

Substituting the wave function (1.83) into Eq. (1.81) and using Eq. (1.82) for the phase-
space integration measure, one obtains the probability for one particle to fluctuate into two

https://doi.org/10.1017/9781009291446.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.002


1.5 Asymptotic freedom 19

particles:

λ2

2!

∫
dz1 d2k1⊥

2(2π )3

z1(1 − z1){
(�k1 ⊥ − z1 �p⊥)2 + m2 [1 − z1(1 − z1)]

}2 ∼ λ2

m2
. (1.85)

Thus the probability of the configuration in Fig. 1.3 is proportional to the coupling constant
squared. As the coupling in φ3-theory has the dimension of the mass, the factor m2 in the
denominator of Eq. (1.85) makes the expression dimensionless. We note in passing that
the effective dimensionless coupling constant for the perturbative expansion of φ3-theory
is λ/m.

It is also instructive to Fourier-transform the wave function (1.83) into transverse coor-
dinate space. The transverse coordinates of the lines are shown in Fig. 1.3. The Fourier
transform is accomplished by integrating over the independent transverse momenta, assign-
ing a factor ei�k⊥·�x⊥ for each line, with k the net outgoing momentum carried by the line. For
the two-particle wave function (1.83) we have

�(�x1 ⊥, �x2 ⊥, �x0 ⊥, z1)

=
∫

d2k1 ⊥ d2p⊥
(2π )4

ei�k1 ⊥·�x1 ⊥+i�k2 ⊥·�x2 ⊥−i �p⊥·�x0 ⊥ �(k1, p − k1)

=
∫

d2k1 ⊥ d2p⊥
(2π )4

ei�k1 ⊥·(�x1 ⊥−�x2 ⊥)−i �p⊥·(�x0 ⊥−�x2 ⊥) �(k1, p − k1). (1.86)

Substituting Eq. (1.83) into Eq. (1.86) and integrating yields (see Eq. (A.11))

�(�x1 ⊥, �x2 ⊥, �x0 ⊥, z1) = − λ

2π
z1(1 − z1) K0

(
|�x12| m

√
1 − z1(1 − z1)

)
× δ2(�x0⊥ − z1 �x1⊥ − (1 − z1)�x2⊥) , (1.87)

where �xij ≡ �xi ⊥ − �xj ⊥. Equation (1.87) gives us the 1 → 2 splitting wave function shown
in Fig. 1.3 in coordinate space. Even though this wave function has been obtained for
the scalar φ3-theory case it has a feature valid for theories with higher spin: it contains
a delta function insuring that �x0⊥ = z1 �x1⊥ + (1 − z1)�x2⊥. This means that the transverse
coordinate positions of the two produced particles are indeed related to each other (Kope-
liovich, Tarasov, and Schafer 1999): both the original particle and the two new particles
lie on one straight line in transverse coordinate space, and x02 : x01 = z1 : (1 − z1) where
xij = |�xij |. The transverse coordinate space structure of the wave function (1.87) is illus-
trated in Fig. 1.4. The same constraint on the transverse plane locations of the produced
particles as derived here for the φ3-theory applies to the splittings of particles in quantum
electrodynamics (QED) and in QCD.

1.5 Asymptotic freedom

A remarkable property of QCD, known as asymptotic freedom, is the fact that the running
QCD coupling tends to be small at short distances (corresponding to large values of the
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2 1

z 1 − z1

0

1~ ~

Fig. 1.4. The 1 → 2 splitting wave function pictured in transverse coordinate space. The
circles represent particles and the numbers label these particles in agreement with the
diagram in Fig. 1.3: 0 labels the original particle, while 1 and 2 label the produced particles.

relevant four-momentum squared, q2 = −Q2 with Q a real number). The running of the
QCD coupling constant is given by (Gross and Wilczek 1973, Politzer 1973)4

αs(Q
2) = αs(μ2)

1 + αs(μ2) β2 ln(Q2/μ2)
, (1.88)

where

β2 = 11Nc − 2Nf

12π
(1.89)

with Nc = 3 the number of colors and Nf the number of quark flavors. The QCD beta
function is given by

βQCD(α) = −β2 α2 + O(α3). (1.90)

While Nf = 6 in the Standard Model of particle physics, the effective number of flavors
relevant for a given physical process depends on the momentum scale Q and may be
smaller than six. One can clearly see from Eq. (1.88) that αs(Q2) → 0 as Q2 → ∞: the
strong coupling is small at large momenta. Thus quarks and gluons interact weakly at
asymptotically short distances; this is asymptotic freedom.

Such behavior is in striking contrast with the running of the coupling in quantum
electrodynamics (QED), where β2 is negative, making the QED coupling grow with Q2

(Landau, Abrikosov, and Halatnikov 1956). The main difference between QED and QCD is
in the non-Abelian interactions between the gluons. Owing to these interactions the gluon
propagator receives corrections not only from quark loops (which are quite similar to the
electron loops in QED) but also from gluon loops. The polarizations of virtual gluons in
these loops can be either transverse or longitudinal. The transverse gluon and quark loops
generate terms tending to make the QCD beta function positive (and β2 < 0). Owing to a
large contribution from the longitudinal gluon in the loop, however, the resulting QCD beta
function is negative (and β2 > 0), leading to asymptotic freedom (see Khriplovich (1969),
Gribov (1978), and Dokshitzer and Kharzeev (2004) for more details).

The quantity μ in Eq. (1.88) is an arbitrary scale (known as the renormalization point):
physical observables should not depend on its value. In fact Eq. (1.88) can be rewritten as

αs(Q
2) = 1

β2 ln(Q2/�2
QCD)

(1.91)

4 The QCD beta function was also calculated by ’t Hooft but the result was not included in t’ Hooft (1972).
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Fig. 1.5. The experimental data on the running QCD coupling from deep inelastic scattering
(DIS) experiments at HERA. The dashed line with a band around it is the theoretical predic-
tion for the strong coupling. (Reprinted with permission from H1 and ZEUS collaboration
(2008). Copyright 2008 by IOP Publishing.) A color version of this figure is available
online at www.cambridge.org/9780521112574.

where �QCD ≈ 200−300 MeV is the fundamental scale of QCD. (The exact value of
�QCD depends on the renormalization scheme used.) The strong coupling constant αs(Q2)
becomes large near Q ≈ �QCD , leading to strong forces between the quarks and gluons.
These strong forces presumably contribute to the confinement of quarks and gluons within
hadrons.

For the purposes of this book the most important implication of Eq. (1.88) is that at
short distances (large transverse momenta) the strong coupling is small. This small value
of the dimensionless running QCD coupling gives the naturally small parameter needed
to develop perturbation theory. Therefore the rules are simple: as we probe shorter and
shorter distances inside the hadron perturbative QCD calculations become better justified,
providing more theoretical control over the problem at hand.

Figure 1.5 shows a compilation of the data on the strong coupling constant determined
from deep inelastic electron–proton scattering experiments at a single collider, the Hadron
Electron Ring Accelerator (HERA) at the Deutsches Elektronen-Synchrotron (DESY) lab-
oratory in Hamburg, Germany. The dashed line with a narrow band around it in Fig. 1.5
represents our theoretical knowledge of αs(Q2), which is based on Eq. (1.88) along with
several higher-order corrections (up to three loops). The agreement between theory and data
shown in Fig. 1.5 is quite remarkable and is a major triumph in our attempts to understand
how QCD works.
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