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Abstract

In this paper we consider the class of Lévy processes that can be written as a Brownian
motion time changed by an independent Lévy subordinator. Examples in this class
include the variance-gamma (VG) model, the normal-inverse Gaussian model, and other
processes popular in financial modeling. The question addressed is the precise relation
between the standard first passage time and an alternative notion, which we call the first
passage of the second kind, as suggested by Hurd (2007) and others. We are able to
prove that the standard first passage time is the almost-sure limit of iterations of the first
passage of the second kind. Many different problems arising in financial mathematics
are posed as first passage problems, and motivated by this fact, we are led to consider
the implications of the approximation scheme for fast numerical methods for computing
first passage. We find that the generic form of the iteration can be competitive with other
numerical techniques. In the particular case of the VG model, the scheme can be further
refined to give very fast algorithms.
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1. Introduction

First passage problems are a classic aspect of stochastic processes that arise in many areas of
application. In mathematical finance, for example, first passage problems lie at the heart of such
issues as credit risk modeling, pricing barrier options, and the optimal exercise of American
options. If Xt is any process with initial value X0 = x0, the first passage time to a lower level
b is defined to be the stopping time

t∗b (x0) = inf{t ≥ 0 | Xt ≤ b}.
The distributional properties of t∗ can be easily obtained when the underlying process X is a
diffusion (see [7, pp. 25–27]), but, when X has jumps, the situation is much more challenging.

Results on Wiener–Hopf-type factorizations (see [3, p. 336], [6, pp. 159–166], [15, pp. 145–
158], and [16]) have proved to be very useful for studying first passage time problems for Lévy
processes. Probably the best known result of this type is the following identity (see [6, p. 165]
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and [15, p. 147]):
q

q + ψ(λ)
= �+

q (λ)�
−
q (λ). (1)

Hereψ(λ) is the characteristic exponent ofXt ;�+
q (λ) and�−

q (λ) are characteristic functions of
infinitely divisible random variables Sτ(q) andXτ(q)−Sτ(q), where St = sup{Xs : s ≤ t} is the
supremum process and τ(q) is an exponential random variable with parameter q, independent
of Xt .

We can efficiently recover functions�± using (1) when ψ(λ) is a rational function. A well-
studied class of processes for which this approach works well consists of Lévy processes with
phase-type distributed jumps (see [1], [3], [4, p. 81], and [14]). Phase-type distributions are
defined as the first passage time for a continuous-time, finite-state Markov chain, they form a
dense class in the set of all distributions on R

+, and, most importantly, if a Lévy process has
phase-type jumps, its characteristic exponent is a rational function (though the converse is not
true; see [19]). However, if the jumps of process Xt are not of phase-type, we would need
to approximate the jump measure of Xt with a sequence of phase-type measures. The first
problem with this approach is that there do not exist any efficient algorithms on how to achieve
this. The second problem is that the degree of the polynomial equation q + ψ(λ) = 0 would
necessarily grow to ∞, which will make solving this equation very complicated. Also, see
[3] and [19] for an interesting example of a distribution with rational transform which would
require an infinite-degree phase-type representation.

A second general approach to first passage is to solve the Fokker–Planck equation for the
probability density of Xt conditioned on the set {t∗ > t}. For Lévy processes, this amounts
to solving a certain linear partial integral differential equation (PIDE) with nonlocal Dirichlet
conditions (see [9, Proposition 12.6, Section 12.2] and [10]). In the case of Lévy processes
the PIDE approach has the advantage that we can utilize the fast Fourier transform (FFT) to
perform efficient computation of the convolutions involved; however, the method also involves
the truncation of the state space (the real line in our case) and discretization in the x and t
variables, and the resulting errors are not easy to control.

Our purpose here is to present a new approach to first passage problems applicable whenever
the underlying Lévy process can be realized as a Lévy subordinated Brownian motion (LSBM),
that is, wheneverX can be constructed as W̃◦T , where W̃ is a standard drifting Brownian motion
and T is a nondecreasing Lévy process independent of W̃ . The class of Lévy processes that are
realizable as LSBMs is identified in [9, Theorem 4.3], and is broad enough to include many of
the Lévy processes that have so far been used in finance, such as a four-parameter subclass of
the Kou–Wang model, the variance gamma (VG) model, the normal-inverse Gaussian (NIG)
model, and a four-parameter subclass of the generalized tempered stable process.

The basis for our approach is that, for processes that are realizable as time-changed Brownian
motions, there is an alternative notion that is also relevant, namely, the first time the time change
exceeds the first passage time of the Brownian motion. This notion, called the first passage
of the second kind in [12], shares some characteristics with the usual first passage time and
can be applied in a similar way. The usefulness of this new concept is that it can be computed
efficiently in many cases where the usual first passage time cannot.

In the present paper we study the first passage for LSBMs and show how the first passage
of the second kind is the first of a sequence of stopping times that converges almost surely to
the first passage time. Expressed differently, first passage can be viewed as a stochastic sum
of first passage times of the second kind. This sequence leads to a convergent and computable
expansion for the first passage probability distribution function p∗ in terms of a similar function
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p∗
1 that describes the first passage distribution of the second kind. The outline of the paper is as

follows. In Section 2 we define the objects needed to understand the first passage time, and we
prove the expansion formula for first passage. In Section 3 we demonstrate the usefulness of
this expansion by proving several explicit two-dimensional integral formulae for p∗

1 , the first
passage distribution of the second kind. In Section 4 we provide two proofs of the convergence
of the expansion. The first proof is a proof of convergence in distribution and the second is a
proof of convergence in the pathwise (almost-sure) sense. In Section 5 we focus on the special
case of the VG model. In this important example, the formula for p∗

1 is reduced to a one-
dimensional integral (involving the exponential integral function). In Section 6, the expansion
of the function p∗ is studied numerically, and found to be numerically stable and efficient.

2. First passage for LSBMs

LetXt be a general Lévy process with initial valueX0 = x0 and characteristics (b, c, ν)h with
respect to a truncation function h(x) (see [2] or [13]). This means thatX is an infinitely divisible
process with identical independent increments and cádlág paths (those that are continuous from
the right with left limits) almost surely. Here b, c ≥ 0 are real numbers and ν is a sigma-finite
measure on R \ 0 that integrates the function 1 ∧ x2. By the Lévy–Khintchine formula, the
log-characteristic function of X1 is

log E[exp(iuX1)] = iub − cu2

2
+

∫
R\0
(eiux − 1 − xh(x))ν(dx).

In what follows we will find it convenient to focus on the Laplace exponent of X:

ψX(u) := − log E[exp(−uX1)].
For simplicity of exposition, we specialize slightly by assuming that ν is continuous with
respect to the Lebesgue measure ν(dx) = ν(x) dx, and integrates 1 ∧ |x|, allowing us to take
h(x) = 0. In this setting, the Markov generator of the process Xt applied to any sufficiently
smooth function f (x) is

[Lf ](x) = b∂xf + c

2
∂2
xxf +

∫
R\0
(f (x + y)− f (x))ν(y) dy.

Definition 1. For any b ∈ R, the random variable t∗b = t∗b (x0) := inf{t | Xt ≤ b} is called the
first passage time for level b. When b = 0, we drop the subscript and t∗ := inf{t | Xt ≤ 0} is
simply called the first passage time of X.

Remarks. 1. Since distributions of the increments of X are invariant under time and state
space shifts, we can reduce computations of t∗b (x0) to computations of t∗(x0 − b).

2. A general Lévy process is a mixture of a continuous Brownian motion with drift and a
pure-jump process. We say that ‘downward creeping’ occurs if Xt∗ = 0 and does not occur if
Xt∗ < 0. Under the assumption that ν integrates 1 ∧ |x|, Corollaries 3 and 4 of [21] prove that
there is almost surely no downward creeping if and only if the diffusive part is 0 (i.e. c = 0)
and the drift b ≥ 0. In what follows we will exclude the possibility of downward creeping. In
this case, Xt∗ −Xt∗− �= 0, so X jumps across 0, and we can define the overshoot to be Xt∗ .

The central object of study in this paper is the joint distribution of t∗ and the overshoot Xt∗ ,
in particular the joint probability density function

p∗(x0; s, x1) = Ex0 [δ(t∗ − s)δ(Xt∗ − x1)],
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where we invoke the Dirac delta function δ(·). The marginal density of t∗ is

p∗(x0; s) =
∫ 0

−∞
p∗(x0; s, x1) dx1.

In the introduction we noted that results on the first passage for general Lévy processes, in
particular results on the functions p∗, are difficult to obtain. For this reason, we now focus on a
special class of Lévy processes that can be expressed as a drifting Brownian motion subjected
to a time change by an independent Lévy subordinator. Such LSBMs have been studied in [9,
Section 4.4] and [12]. The general LSBM is constructed as follows.

1. For an initial value x0 > 0 and drift β, let W̃T = x0 +WT + βT be a drifting Brownian
motion.

2. For a Lévy characteristic triple (b, 0, µ) with b ≥ 0 and supp(µ) ⊂ R
+, let the time-

change process Tt be the associated nondecreasing Lévy process (a subordinator), taken
to be independent of W .

3. The time-changed process Xt = W̃Tt is defined to be an LSBM.

So constructed, it is known that Xt is itself a Lévy process. The process Xt will allow
creeping if and only if b > 0: we henceforth assume for simplicity that b = 0. Theorem 4.3
of [9] provides a characterization for Lévy processes that are LSBMs. While, unlike the class
of phase-type Lévy processes, the class of LSBMs is not dense in the class of Lévy processes,
their analytic properties make them a useful and flexible class. It was observed in [12] that, for
any LSBM Xt , we can define an alternative notion of the first passage time, which we denote
here by t̃ .

Definition 2. For any LSBM Xt = W̃Tt , we define the first passage time of W̃ to be T ∗ =
T ∗(x0) = inf{T : x0 +WT + βT ≤ 0}. Note that T ∗(x0) = 0 when x0 ≤ 0. The first passage
time of the second kind of Xt is defined as t̃ = t̃ (x0) = inf{t : Tt ≥ T ∗(x0)}.

This definition of t̃ , and its relation to t∗, is illustrated in Figure 1.
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Figure 1: Three trajectories of the Brownian motionXt with the same T ∗ and the sample path of the time
change Tt that illustrate, in general, t̃ ≤ t∗. On the paths B and C, Xt∗1 = W̃T +

1
≤ 0, and on these paths,

t∗1 = t̃ = t∗. On path A, Xt∗1 = W̃T +
1
> 0 and so t∗1 = t̃ < t∗.
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We now show that t̃ (x0) := t∗1 (x0) is the first of a sequence of approximations {t∗i (x0)}i=1,2,...
to the stopping time t∗. In Figure 1 we illustrate the first excursion overjump, t∗1 , which may
be either t∗ or not. The construction of t∗i (x0, π) is pathwise. We introduce the second
argument π ∈ 
, which denotes a sample path, that is, a pair (ω, τ), where ω is a continuous
drifting Brownian path W̃ and τ is a cádlág sample path of the time changeT . Thus,π : (S, s) →
(ω(S), τ (s))S,s≥0. The natural ‘big filtration’ (Ft )t≥0 for time-changed Brownian motion has

Ft = σ {ω(S), τ (s), S ≤ τ(t), s ≤ t}.
For any t ≥ 0, there is a natural ‘time translation’ operation on paths ρt : (ω, τ) → (ω′, τ ′),
where ω′(S) = ω(S + τ(t)) and τ ′(s) = τ(s + t)− τ(t).

The construction of {t∗i (x0, π)}i=1,2,... for a given sample path π is as follows. Inductively,
for i ≥ 2, we define the time of the ith excursion overjump by

t∗i (x0, π) = inf{t ≥ t∗i−1(x0, π) : Tt − Tt∗i−1
≥ T ∗(Xt∗i−1

, π ′)},
where π ′ = ρt∗i−1

(π) denotes a time-shifted sample path. Note that t∗i (x0, π) = t∗i−1(x0, π) if
and only if Xt∗i−1(x0,π) ≤ 0 or t∗i−1(x0, π) = ∞. At any excursion overjump event t∗i , the time
interval which covers the event has left and right endpoints T −

i = Tt∗i − and T +
i = Tt∗i . Let

p∗
i (x0; s, x) = Ex0 [δ(t∗i − s)δ(Xt∗i − x)]

denote the joint distribution of t∗i (x0) and Xt∗i (x0).
The definition of this sequence of stopping times is summarized by the pathwise equation

t∗i (x0, π) = t∗i−1(x0, π) 1{Xt∗
i−1

≤0} +(t∗1 (Xt∗i−1
, π ′)+ t∗i−1(x0, π)) 1{Xt∗

i−1
>0}, i ≥ 2,

where π ′ = ρt∗i−1
(π). The identical increments property of the LSBM implies that the joint

probability densities satisfy the recursive relation

p∗
i (x0; s, x) = p∗

1(x0; s, x) 1{x≤0} +
∫ ∞

0
dy

∫ s

0
dup∗

1(x0; u, y)p∗
i−1(y; s − u, x), i ≥ 2.

(2)
Similarly, the probability density function (PDF) of the first passage time t∗ satisfies the relation

p∗
i (x0; s) =

∫ 0

−∞
p∗

1(x0; s, x) dx +
∫ ∞

0
dy

∫ s

0
dup∗

1(x0; u, y)p∗
i−1(y; s − u), i ≥ 2.

(3)
We note in passing that when downward creeping is included, the probability function

includes an atom at x = 0, and that when interpreted in that light, (2) and (3) are still correct.

2.1. Examples of LSBMs

We note here three classes of Lévy processes that can be written as LSBMs and have been
used extensively in financial modeling.

1. The exponential model with parameters (a, b, c) arises by taking Tt to be the increasing
process with drift b ≥ 0 and jump measure µ(z) = ce−az, c, a > 0, on (0,∞). The
Laplace exponent of T is

ψT (u) := − log E[exp(−uT1)] = bu+ uc

a + u
.
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We can show using [9, Equation 4.14] that the resulting time-changed processXt := W̃Tt

has triple (βb, b, ρ) with

ρ(y) = c√
β2 + 2a

exp(−(
√
β2 + 2a − β)(y)+ − (

√
β2 + 2a + β)(y)−),

where (y)+ = max(0, y) and (y)− = (−y)+. This forms a four-dimensional subclass
of the six-dimensional family of exponential jump diffusions studied in [14].

2. The VG model [17] arises by taking Tt to be a gamma process with drift defined by the
characteristic triple (b, 0, µ) with b ≥ 0 (usually, b is taken to be 0) and jump measure
µ(z) = (νz)−1e−z/ν, ν > 0, on (0,∞). The Laplace exponent of Tt , t = 1, is

ψT (u) := − log E[exp(−uT1)] = bu+ 1

ν
log(1 + νu).

The resulting time-changed process has triple (βb, b, ρ) with

ρ(y) = 1

ν|y| exp

(
βx −

√
2

ν
+ β2|x|

)
.

3. The NIG model with parameters β̃ and γ̃ [5] arises when Tt is the first passage time for
a second independent Brownian motion with drift β̃ > 0 to exceed the level γ t . Then

ψT (u) = γ̃ (β̃ +
√
β̃2 + 2u),

and the resulting time-changed process has Laplace exponent

ψX(u) = xµ+ γ̃ (β̃ +
√
β̃2 − u2 + 2β̃u).

3. Computing first passage of the second kind

We have just seen that the first passage for LSBMs admits an expansion as a sum of first
passage times of the second kind. In this section we show that this expansion can be useful, by
proving several equivalent integral formulae for computing the structure function p∗

1(x0; s, x1)

for general LSBMs. While the equivalence of these formulae can be demonstrated analytically,
their numerical implementations will perform differently: which formula will be superior in
practice is not a priori clear, but will likely depend on the range of parameters involved. For a
complete picture, we provide independent proofs of the two given formulae.

Theorem 1. Let the time change Tt have b = 0 and Laplace exponent ψ(u), and let W̃ have
drift β �= 0. Then

p∗
1(x0; s, x1) = exp(β(x1 − x0))

4π2

∫∫
R2

ψ(iz1)− ψ(iz2)

i(z1 − z2)

exp(−sψ(iz1))√
β2 − 2iz2

× exp(−x0

√
β2 − 2iz1 − |x1|

√
β2 − 2iz2) dz1 dz2. (4)
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Provided that the time change is not a compound Poisson process, then

p∗
1(x0; s, x1) = −2 exp(β(x1 − x0))

π2 PV
∫∫

(R+)2
dk1 dk2

k2 cos |x1|k1 sin x0k2

k2
1 − k2

2

× exp

(
−sψ

(
k2

1 + β2

2

))
ψ

(
k2

2 + β2

2

)

− exp(β(x1 − x0))

π

∫
R+

sin |x1|k sin x0k

× exp

(
−sψ

(
k2 + β2

2

))
ψ

(
k2 + β2

2

)
dk.

Here PV denotes that the principal value contour is taken.

Remark. The equivalence of these two formulae can be demonstrated directly by performing the
change of variables kj = i(β2 − 2iz2

j )
1/2, j = 1, 2, followed by a deformation of the contours.

Justification of the contour deformation (from the branch of a left–right symmetric hyperbola
in the upper half kj -plane to the real axis) depends on the decay of the integrand and the
computation of certain residues.

3.1. First proof of Theorem 1

For a fixed level h > 0, the first passage time and the overshoot of the process Tt above the
level h are defined to be t̃ (h) = inf{t > 0 | Tt > h} and δ̃(h) = Tt̃(h) − h. The Pecherskii–
Rogozin identity [20] applied to the nondecreasing process T says that∫ ∞

0
exp(−z1h)E[exp(−z2δ̃(h)− z3 t̃ (h))] dh = ψ(z1)− ψ(z2)

z1 − z2
(z3 + ψ(z1))

−1.

Inversion of the Laplace transform in the above equation then leads to

E[exp(−z2δ̃(h)− z3 t̃ (h))] = 1

2π

∫
R

ψ(iz1)− ψ(z2)

iz1 − z2
(z3 + ψ(iz1))

−1 exp(iz1h) dz1.

The first passage time of the Brownian motion with drift is defined as T ∗ = T ∗(x0) =
inf{T > 0 | x0 + WT + βT < 0}. Next, we need to find the joint Laplace transform of
t∗1 = inf{t | Tt > T ∗} = t̃ (T ∗) and the overshoot δ∗ = δ̃(T ∗). Since Tt is independent ofWT ,
we find that

E[exp(−z2δ
∗ − z3t

∗
1 )]

= E[E[exp(−z2δ̃(T
∗)− z3 t̃ (T

∗)) | T ∗]]
= 1

2π

∫
R

ψ(iz1)− ψ(z2)

iz1 − z2
(z3 + ψ(iz1))

−1 E[exp(iz1T
∗)] dz1

= 1

2π

∫
R

ψ(iz1)− ψ(z2)

iz1 − z2
(z3 + ψ(iz1))

−1 exp(−x0(β +
√
β2 − 2iz1)) dz1,

where in the last equality we have used the following well-known result for the characteristic
function of the first passage time of Brownian motion with drift:

E[exp(iz1T
∗(x0))] = exp(−x0(β +

√
β2 − 2iz1)).
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Next we use the Fourier transform of the PDF of the Brownian motion with drift to obtain

E[δ(W̃t − x1)] = exp(−(x1 − βt)2/2t)√
2πt

= exp(βx1)

2π

∫
R

exp(−iz2t)
exp(−|x1|

√
β2 − 2iz2)√

β2 − 2iz2
dz2.

Thus, using the fact that W̃ is independent of t∗1 and δ∗, we obtain

E[exp(−z3t
∗
1 )δ(W̃δ∗ − x1)]

= E[E[exp(−z3t
∗
1 )δ(W̃δ∗ − x1) | δ∗]]

= exp(βx1)

2π

∫
R

E[exp(−z3t
∗
1 − iz2δ

∗)]exp(−|x1|
√
β2 − 2iz2)√

β2 − 2iz2
dz2

= exp(β(x1 − x0))

4π2

∫∫
R2

ψ(iz1)− ψ(iz2)

i(z1 − z2)

(z3 + ψ(iz1))
−1√

β2 − 2iz2

× exp(−x0

√
β2 − 2iz1 − |x1|

√
β2 − 2iz2) dz1 dz2.

Now, the statement of the theorem follows after one additional Fourier inversion:

p∗
1(x0; s, x1) = E[δ(t∗1 − s)(W̃δ∗ − x1)]

= 1

2π

∫
R

exp(iz3s)E[exp(−iz3t
∗
1 )δ(W̃δ∗ − x1)] dz3

= exp(β(x1 − x0))

4π2

∫∫
R2

ψ(iz1)− ψ(iz2)

i(z1 − z2)

exp(−sψ(iz1))√
β2 − 2iz2

× exp(−x0

√
β2 − 2iz1 − |x1|

√
β2 − 2iz2) dz1 dz2,

where we have also used the Fourier integral

1

2π

∫
R

exp(iz3s)

iz3 + ψ(iz1)
dz3 = exp(−sψ(iz1)).

3.2. Second proof of Theorem 1

The strategy of the proof is to compute

I (u) = E0,x0 [1{s<t∗1 ≤s+u} δ(Xs+u − x1)]
and then take the limit of I (u)/u as u → 0+. The key idea is to note thatXs+u = Xs− + W̃ ′

T ′
u
,

where W̃ ′ and T ′ are copies of W̃ and T , independent of the filtration Fs−. We can then perform
the above expectation via an intermediate conditioning on Fs−:

E[δ(Xs+u − x1) 1{s<t∗1 ≤s+u} | Fs−]
= 1{s<t∗1 } E[δ(�+ W̃ ′

Tu
− x1) 1{u≥t ′∗1} | Xs− = �].

To evaluate the expectations that arise, we will need Lemma 1(ii) and (iii), below, that were
stated and proved in [12].
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Lemma 1. ([12].) (i) For any s > 0,

E0,x[1{s<t∗1 } δ(Xs − y)] = 1{y>0}
eβ(y−x)

2π

∫
R

(eiz(x−y) − eiz(x+y))

× exp

(
−sψ

(
z2 + β2

2

))
dz.

(ii) For any s > 0 and ε ∈ R,

E0,x[1{s≥t∗1 } δ(Xs − y)] = eβ(y−x)

2π

∫
R+iε

eiz(x+|y|) exp

(
−sψ

(
z2 + β2

2

))
dz. (5)

(iii) For any k in the upper half-plane,

E0,x[1{s<t∗1 } exp(−βXs + ikXs)]

= e−βx

2π

∫
R

(
i

k − z
− i

k + z

)
eizx exp

(
−sψ

(
z2 + β2

2

))
dz. (6)

First, using (5), we find that

E[δ(Xs+u − x1) 1{s<t∗1 ≤s+u} | Xs− = �]

= 1{s<t∗1 }
exp(β(x1 − �))

2π

∫
R+iε

dk exp(ik(�+ |x1|)) exp

(
−uψ

(
k2 + β2

2

))
.

When we paste this expression into the final expectation over Xs−, we can use Fubini to
interchange the expectation and integral, providing that we choose ε > 0. Then we find that

I = exp(βx1)

2π

∫
R+iε

dk exp(ik|x1|) exp

(
−uψ

(
k2 + β2

2

))
E0,x0 [exp(ikXs − βXs) 1{s<t∗1 }].

We can now use (6) to obtain

I = exp(β(x1 − x0))

(2π)2

∫∫
(R+iε)×R

exp(ik|x1| + izx0)

(
i

k − z
− i

k + z

)

× exp

(
−uψ

(
k2 + β2

2

)
− sψ

(
z2 + β2

2

))
dz dk.

Noting that I (0) = 0 and taking limu→0 I (u)/u now gives

p∗
1(x0; s, x1) = exp(β(x1 − x0))

2π2

∫∫
(R+iε)×R

dk dz
iz

k2 − z2 exp(ik|x1| + izx0)

× exp

(
−sψ

(
z2 + β2

2

))
ψ

(
k2 + β2

2

)
. (7)

Here the arbitrary parameter ε > 0 can be seen to ensure the correct prescription for dealing
with the pole at k2 = z2.
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Finally, the complex integration in (7) can be expressed in the following manifestly real
form:

p∗
1(x0; s, x1) = −2 exp(β(x1 − x0))

π2 PV
∫∫

(R+)2
dk dz

z cos |x1|k sin x0z

k2 − z2

× exp

(
−sψ

(
k2 + β2

2

))
ψ

(
z2 + β2

2

)

− exp(β(x1 − x0))

π

∫
R+

sin |x1|z sin x0z

× exp

(
−sψ

(
z2 + β2

2

))
ψ

(
z2 + β2

2

)
dz,

involving a principal value integral plus explicit half residue terms for the poles k = ±z.

4. The iteration scheme and its convergence

The next theorem shows that (2) can be used to compute p∗(x0; s, x). We define a suitable
L∞ norm for functions f (x0; u, x):

‖f ‖∞ = sup
x0≥0

[∫ ∞

0

∫ ∞

0
|f (x0; u, x)| du dx

]
.

Theorem 2. The sequence (p∗
n)n≥1 converges exponentially in the L∞ norm.

Proof. First we find from (2) that

p∗
n+1(x0; s, x1)− p∗

n(x0; s, x1)

=
∫ ∞

0
dy

∫ s

0
dup∗

1(x0; s − u, y)[p∗
n(y; u, x1)− p∗

n−1(y; u, x1)];

thus,
‖p∗

n+1 − p∗
n‖∞ ≤ C‖p∗

n − p∗
n−1‖∞,

where

C = sup
x0≥0

[∫ ∞

0

∫ ∞

0
p∗

1(x0; u, x) du dx

]
.

The proof is based on the probabilistic interpretation of the constant C. By definition,
p∗

1(x0; u, x) is the joint density of t∗1 and Xt∗1 ; thus, we obtain

C = sup
x0≥0

P(t∗1 < +∞, Xt∗1 > 0 | X0 = x0).

Next, using the fact that W̃T ∗ = 0 (T ∗ is the first passage time of XT and X is a continuous
process) and the strong Markov property of the Brownian motion, we find that

C = P(t∗1 < +∞, W̃Tt∗1
− W̃T ∗ > 0 | W̃0 = x0)

= P(t∗1 < +∞, Wδ∗ + βδ∗ > 0 | W0 = 0),
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where the Brownian motion Wt is independent of Tt and δ∗ = δ∗(x0) = Tt∗1 − T ∗ is the
overshoot of the time change above T ∗. Thus, we need to prove that

C = sup
x0≥0

P(t∗1 < +∞, Wδ∗ + βδ∗ > 0 | W0 = 0) < 1,

where t∗1 = t∗1 (x0), δ∗ = δ∗(x0), and the Brownian motion W is independent of t∗1 and δ∗.
First we will consider the case where β < 0. In this case we obtain

P(t∗1 < +∞, W�∗ + βδ∗ > 0 | W0 = 0)

≤ P(Wδ∗ + βδ∗ > 0 | W0 = 0)

=
∫ ∞

0
P(Wt + βt > 0 | W0 = 0)P(δ∗ ∈ dt)

<

∫ ∞

0

1

2
P(δ∗ ∈ dt)

= 1
2 ,

where we have used the facts that Wt is independent of the overshoot δ∗ and P(Wt + βt >

0 | W0 = 0) < 1
2 for any t and any β < 0. Thus, in the case where the drift β is negative we

obtain an estimate C < 1
2 .

The case where the driftβ is positive is more complicated. We cannot use the same techniques
as before, since the bound P(Wt+βt > 0 | W0 = 0) < 1

2 is no longer true: in fact, P(Wt+βt >
0 | W0 = 0) monotonically increases to 1 as t → ∞.

First we will consider the case where x0 is bounded away from 0: x0 ≥ c > 0. Then
x0 +Wt + βt has a positive probability of escaping to +∞ and never crossing the barrier at 0;
thus,

P(t∗1 < +∞, Wδ∗ + βδ∗ > 0 | W0 = 0) ≤ P(t∗1 (x0) < +∞)

< P(t∗1 (c) < +∞)

= 1 − ε1(c).

Now we need to consider the case where x0 → 0+. The proof in this case is based on the
following sequence of inequalities:

P(t∗1 < +∞, Wδ∗ + βδ∗ > 0 | W0 = 0)

≤ P(Wδ∗ + βδ∗ > 0 | W0 = 0)

= 1 − P(Wδ∗ + βδ∗ < 0 | W0 = 0)

= 1 −
∫ ∞

0
P(Wt + βt < 0 | W0 = 0)P(δ∗ ∈ dt)

< 1 −
∫ τ

0
P(Wt + βt < 0 | W0 = 0)P(δ∗ ∈ dt)

< 1 −
∫ τ

0
P(Wτ + βτ < 0 | W0 = 0)P(δ∗ ∈ dt)

= 1 − P(Wτ + βτ < 0 | W0 = 0)P(δ∗ < τ), (8)

where τ is any positive number and the last inequality is true since P(Wt + βt < 0 | W0 = 0)
is a decreasing function of t .
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Since x0 → 0+, we also have T ∗(x0) → 0+ with probability 1. Since δ∗ is the overshoot of
T ∗, and T ∗ → 0+ as x0 → 0+, we see that the distribution of the overshoot δ∗(x0) converges
either to the distribution of the jumps of Tt if the time-change process Tt is a compound Poisson
process or to the Dirac delta distribution at 0 if Tt has infinite activity of jumps. Therefore, in
the case where Tt is a compound Poisson process with the jump measure ν(dx) we choose τ
such that ν([0, τ ]) > 0, and if Tt has infinite activity of jumps, we can take any τ > 0. Then we
obtain limx0→0+ P(δ∗(x0) < τ) = ξ , where ξ = ν([0, τ ]) in the case of the compound Poisson
process and ξ = 1 in the case of the process with infinite activity of jumps. Using (8), we find
that, as x0 → 0+,

P(t∗1 (x0) < +∞, Wδ∗ + βδ∗ > 0 | W0 = 0) < 1 − P(Wτ + βτ < 0 | W0 = 0)ξ

< 1 − ε2.

To summarize, we have proved that the function

P(x0) = P(t∗1 (x0) < +∞, Wδ∗ + βδ∗ > 0 | W0 = 0)

satisfies the following properties:

• for any c > 0, there exists ε1 = ε1(c) > 0 such that P(x0) < 1 − ε1(c) for all x0 > c,

• there exists ε2 > 0 such that limx0→0+ P(x0) < 1 − ε2.

Therefore, we conclude that there exists ε > 0 such that P(x0) < 1 − ε for all x0 ≥ 0; thus,
C < 1 − ε. This completes the proof in the case where β > 0.

For a complementary point of view, the next result shows that the sequence (t∗i (x0))i≥1
converges pathwise.

Theorem 3. For any time-changed Brownian motion with Lévy subordinator Tt and Brownian
motion with drift β, the sequence of stopping times (t∗i (x0))i≥1 converges almost surely to t∗.

Proof. If t∗ = ∞ then certainly t∗i → ∞, so we suppose that t∗ < ∞. In this case, if
t∗i = t∗i+1 for some i, the sequence converges, and, thus, the only interesting case to analyze is
if t∗ �= t∗i for all i < ∞. Then we have t∗1 < t∗2 < · · · < t∗i < · · ·. Correspondingly, we have
an infinite sequence of excursion overjump intervals which do not overlap: let their endpoints
be T ∗

i− := Tt∗i − < T ∗
i+ := Tt∗i . The following observations lead to the conclusion.

1. By monotonicity and boundedness of the sequences (T ∗
i−) and (T ∗

i+), limi→∞ T ∗
i− =

limn→∞ T ∗
i+ = T∞ exists.

2. x0 +WT∞ + βT∞ = 0 by the continuity of Brownian motion.

3. limi→∞ t∗i = t∞ exists and t∞ ≤ t∗.

4. Jump times are totally inaccessible, so there is no time jump at time t∞ almost surely.
Hence, Tt∞ = T∞.

5. Xt∞ = 0 and so t∞ ≥ t∗; hence, t∞ = t∗.
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5. The VG model

The VG process described in Section 2 is the LSBM where the time-change process Tt is
the Lévy process with jump measure µ(z) = (νz)−1e−z/ν on (0,∞) and Laplace exponent
ψT (u) = (1/ν) log(1 + νu). In this section we take b = 0. This model has been widely
used for option pricing, where it has been found to provide a better fit to market data than the
Black–Scholes model, while preserving a degree of analytical tractability. The main result in
this section reduces the two-dimensional integral representation for p∗

1(x0; s, x1) given in (4)
to a one-dimensional integral and leads to greatly simplified numerical computations.

Theorem 4. Define α = √
2/ν + β2. Then

p∗
1(x0; s, x1) = exp(β(x1 − x0))

2πν

∫
R

(1 + iνz)−s/ν√
β2 − 2iz

exp(−x0

√
β2 − 2iz)

× (exp(|x1|
√
β2 − 2iz)Ei(−|x1|(α +

√
β2 − 2iz))

− exp(−|x1|
√
β2 − 2iz)Ei(−|x1|(α −

√
β2 − 2iz))) dz, (9)

where Ei(x) is the exponential integral function (see [11, p. 883]).

Proof. Consider the function I (z1) which represents the outer integral in (4):

I (z1) = 1

2π

∫
R

log(1 + iνz1)− log(1 + iνz2)

i(z1 − z2)

exp(−|x1|
√
β2 − 2iz2)√

β2 − 2iz2
dz2.

First we perform the change of variables u = i
√
β2 − 2iz2 and obtain

I (z1) = 1

π

∫
R

log(1 + (ν/2)(u2 + β2))− log(1 + iνz1)

u2 + β2 − 2iz1
exp(i|x1|u) du,

where the contour L obtained from R under the map z2 → u = i
√
β2 − 2iz2 is transformed

into the contour R (this is justified since the integrand is an analytic function in this region for
any z1). To complete the proof, we separate the logarithms, i.e.

log

(
1 + ν

2
(u2 + β2)

)
− log(1 + iνz1) = log(u+ iα)+ log(u− iα)− log

(
2

ν
+ 2iz1

)
,

and use the partial fractions decomposition

1

u2 + β2 − 2iz1
= 1

2i
√
β2 − 2iz1

(
1

u− i
√
β2 − 2iz1

− 1

u+ i
√
β2 − 2iz1

)

to obtain six integrals, which can be computed by shifting the contours of integration and using
the following Fourier transform formulae (see [11, Formulae 6.232, p. 639]):∫

iε+R

log

(
1 + iy

b

)
eixy dy

y
= −2π iEi(−bx), b > 0,∫

i(b+ε)+R

log

(
iy

b
− 1

)
eixy dy

y
= −2π iEi(bx), b > 0.

https://doi.org/10.1239/jap/1238592124 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592124


194 T. R. HURD AND A. KUZNETSOV

Remark. Using the change of variables u = i
√
β2 − 2iz and simplifying the expression, we

can obtain a simpler formula for p∗
1(x0; s, x1):

p∗
1(x0; s, x1) = exp(β(x1 − x0))

(ν/2)−s/ν−1

2π i

∫
R

(α2 + y2)−s/ν sin(x0y) exp(i|x1|y)

× Ei(−|x1|(α + iy)) dy.

Applying the Plancherel formula to the above expression gives us the following representation
for p∗

1:

p∗
1(x0; s, x1) = exp(β(x1 − x0)− α(x0 + |x1|)) (να2/2)−s/ν√

πν(x0 + |x1|)
�(s/ν + 1/2)

�(s/ν + 1)

+
√

2α3

π
exp(β(x1 − x0)− α|x1|)

× (αν)−s/ν−1

�(s/ν)

∫ ∞

0
us/ν−1/2Ks/ν−1/2(αu)f (x0, x1; u) du,

where

f (x0, x1; u) = exp(−α(u+ x0))

u+ x0 + |x1| − sgn(u− x0)
exp(−α|u− x0|)
|u− x0| + |x1| − 2

exp(−α(u+ x0))

x0 + |x1| .

The above expression is useful for computations when s is small. In particular, when s = 0,
we find that

p∗
1(x0; 0, x1) = exp(β(x1 − x0)− α(x0 + |x1|))

ν(x0 + |x1|) . (10)

6. Numerical implementation for the VG model

The algorithm for computing the functions p∗(x0; s, x) and p∗(x0; s) can be summarized
as follows.

1. Choose the discretization step sizes δx and δt and the discretization intervals [−X,X] and
[0, T ]. The grid points are ti = iδt , 1 ≤ i ≤ Ns , and xj = (j + 1

2 )δx,−Nx ≤ j ≤ Nx .

2. Compute the three-dimensional array p∗
1(xi; tj , xk). For j > 0, use (9) and, for j = 0,

use explicit formula (10).

3. Iterate (2) or (3). This step can be considerably accelerated if the convolution in the
u-variable is done using FFT methods. We used the midpoint rule for integration in the
y- and u-variables.

Theorem 2 implies that step 3 in the above algorithm has to be repeated only a few times.
In practice, we found that 3–4 iterations were usually enough. An important empirical fact is
that the above algorithm works quite well with just a few discretization points in the x-variable.
We found that if we used a nonlinear grid (which places more points xi near x = 0) then the
above algorithm produced reasonable results with values of Nx as small as 10 or 20.

We compared our algorithm for the PDF p∗(x0; s) to a finite-difference method that was
implemented as follows. First we approximated the first passage time by its discrete counterpart:

t̂∗ = t̂∗(x) = min{ti : Xti < 0 | X0 = x},
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Figure 2: The density of the first passage time for the two sets of parameters. The circles show the ‘exact’
result and the three solid lines show the first three approximations.

where ti = iδt , 0 ≤ i ≤ nt , is the discretization of the interval [0, T ]. The probabilities
fi(x) = P(t̂∗ > ti | X0 = x) satisfy the iteration

fi+1(x) = 1{x>0}
∫

R

p(δt , x − y)fi(y) dy, i ≥ 1, (11)

with f0(x) = 1{x>0}, and can be computed numerically with the following steps.

1. Discretize the space variables x = iδx and y = jδx, 0 < i, j < nx .

2. Compute the array of transitional probabilities p̂i = p(δt , xi), and normalize p̂0 so that∑
i p̂i = 1.

3. Use the convolution (based on the FFT) to iterate (11) nt times.

4. Compute the approximation of the first passage time density

p̂∗
(
x, ti + δt

2

)
= fi+1(x)− fi(x)

δt
.

The big advantage of this method is that it is explicit and unconditionally stable: we can
choose the number of discretization points in x-space and t-space independently. This is not
true in general explicit finite-difference methods, where we would solve the Fokker–Planck
equation by discretizing the Markov generator and the time derivative, since δt and δx have to
lie in a certain subset in order for the methods to be stable.

Figure 2 summarizes the numerical results for the PDF p∗(x0; s) over the time interval [0, 5]
for the VG model with the following two sets of parameters.

Set I. x0 = 0.5, β = 0.2, and ν = 1.

Set II. x0 = 0.5, β = −0.2, and ν = 2.

The number of grid points used was Nt = 50 and Nx = 10. The circles correspond to
the solution obtained by a high-resolution finite-difference PIDE method as described above
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Figure 3: The error, log10(‖p∗ − p∗
i ‖L1), for the new approach plotted against the number of iterations.

The left-hand plot has Nx = 10, the right-hand plot has Nx = 20, and Nt ∈ {10, 25, 50, 100, 200}.

Table 1: Computation time (seconds) for the new approach.

Nt
Nx

10 25 50 100 200

Precomputing time 10 0.0313 0.0259 0.0324 0.0461 0.0687
Each iteration 0.0006 0.0008 0.0011 0.0021 0.0046

Precomputing time 20 0.0645 0.0612 0.0745 0.0868 0.1298
Each iteration 0.0037 0.0045 0.0066 0.0120 0.0269

(with nt = 1000 and nx = 10 000), and the black lines show successive iterations p∗
i (x0, t)

converging top∗(x0, t). As we see, three iterations of (3) provide a visually acceptable accuracy
in a running time of less than 0.1 seconds (on a 2.5GHz laptop).

Figure 3 illustrates the convergence of our method and Table 1 shows the computation times
(on the same 2.5GHz laptop). We used the parameters of set II for the VG process, and the PIDE
method with nt = 1000 and nx = 10 000 to compute the ‘exact’ solution p∗(x0, t). Figure 3
shows the log10 of the error

‖p∗ − p∗
i ‖L1 =

∫ T

0
|p∗(x0, t)− p∗

i (x0, t)| dt

on the vertical axis and the number of iterations on the horizontal axis; different curves corre-
spond to a different number of discretization points in t-space. The number of discretization
points in x-space is fixed at Nx = 10 for the left-hand plot and Nx = 20 for the right-hand
plot. We see that initially the error decreases exponentially and then flattens out. The flattening
indicates that our method converges to the wrong target (which is to be expected since there
is always a discretization error coming from Nx and Nt being finite). However, increasing Nt
and Nx brings us closer to the ‘target’. In Table 1 we show the precomputing time needed
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Figure 4: The error, log10(‖p∗ − p̂∗‖L1), for the finite-difference method is plotted against the number
of grid points nx for the values nt = 50, 100, and 200.

Table 2: Computation time (seconds) for the finite-difference approach.

nx
Nt

1150 2300 3450 4600 5750

50 0.0756 0.2935 0.9582 1.8757 2.9967
100 0.1456 0.5821 1.9397 3.7409 6.0026
200 0.2870 1.1478 3.8833 7.4768 11.9935

to compute the three-dimensional array p∗
1(xi; tj , xk) and the time needed to perform each

iteration (3).
To put these results into perspective, Figure 4 and Table 2 show similar results for the finite-

difference method. In Figure 4 we show the same logarithm of the error on the vertical axis
and the number of discretization points nx on the horizontal axis. Different curves correspond
to nt ∈ {50, 100, 200}. The running time presented in Table 2 includes only the time needed to
perform nt convolutions (11) using the FFT. As we can see by comparing Figures 3 and 4, even
with a relatively large number of discretization points, nx = 5750 and nt = 200, the accuracy
produced by a finite-difference method is an order of magnitude worse than the accuracy
produced by our method (with much fewer discretization points). Moreover, we can see that
the running times of the PIDE method are consistently orders of magnitude larger.

7. Conclusions

First passage times are an important modeling tool in finance and other areas of applied
mathematics. The main result of this paper is the theoretical connection between two distinct
notions of first passage time that arise for LSBMs. This relation leads to a new way to compute
true first passage for these processes that is apparently less expensive than finite-difference
methods for a given level of accuracy. Our paper opens up many avenues for further theoretical
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and numerical work. For example, the methods we describe are certainly applicable for a much
broader class of time-changed Brownian motions and time-changed diffusions. Finally, it will
be worthwhile to explore the use of the first passage of the second kind as a modeling alternative
to the usual first passage time.
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