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SUMMARY

A diffusion model was developed to investigate the effect of a mutant
substitution by natural selection on heterozygosity at a linked neutral
locus. Using this theory, we made extensive numerical analyses to com-
pute the expected total heterozygosity (i.e. the sum of the fraction of
heterozygotes over all generations until fixation or loss) at the neutral
locus. It was shown that the hitch-hiking effect is generally unimportant
as a mechanism for reducing heterozygosity. The effect becomes significant
only when the recombination fraction between the selected and the neutral
marker loci is smaller than the selection coefficient. In order to check the
validity of the mathematical theory, Monte Carlo experiments were
performed, and the results were in agreement. It has been suggested that
linkage is important only in transient small populations such as at the
time of speciation.

1. INTRODUCTION

The first persons to investigate the ' hitch-hiking' effect, whereby the path of a
weakly selected mutant on its way to eventual loss or fixation is influenced by
linkage to a strongly selected locus, were Kojima & Schaffer (1967). More recently,
Maynard Smith & Haigh (1974) studied the effect of a selected allele at one locus on
the heterozygosity of a neutral allele at a linked locus and concluded that in popula-
tions of 106 or more the hitch-hiking effect is more important than random drift.
Their treatment was deterministic and we believe that it overemphasizes the link-
age effect.

In this paper we treat the problem stochastically. Using a diffusion model we
shall formulate a relevant equation which enables us to compute the amount of
decrease in heterozygosity at a neutral locus in a finite population as influenced by
the hitch-hiking effect of a definitely advantageous mutant. To corroborate the
theoretical treatment, we also performed Monte Carlo experiments, and the results
will be presented in this paper.

* Contribution no. 1041 from the National Institute of Genetics, Mishima, Shizuoka-ken,
411, Japan.
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314 T. OHTA AND M. KIMUKA

2. BASIC THEORY

We consider a random mating diploid population of the effective size Ne, and
assume a pair of selectively neutral alleles A and a in the first locus. In the second
locus we assume that an advantageous mutant B is in the process of replacing its
allele b.

We propose to investigate how much the sum of the heterozygosity at the neutral
locus over all generations (from the initial appearance of the mutant until its com-
plete fixation or loss by random drift) is influenced by selected gene substitution at
the second locus. Since the frequency of heterozygotes is a quadratic function of the
gene frequencies under random mating, it is necessary to obtain the second moments
as well as the first moments of the gene frequencies at the neutral locus. A complete
treatment which takes stochastic elements into account at both loci is very difficult,
so we make the simplifying assumption that, although the change at the neutral
locus is subject to random drift, the change at the selected locus by natural selection
can be treated deterministically with enough accuracy. Such an assumption is
realistic if the selective advantage of allele B (over b) is large and if its frequency is
not extremely close to either 0 or 1. Thus, if we denote by yt the frequency of allele
B in the ith generation, then yt satisfies the differential equation;

•yt), .U)

so that we have

2/0

where s is the selective advantage of B.
In order to investigate the effect of the selected locus on the neutral one, we

conceptually divide the population into two parts: a part consisting of chromosomes
carrying the advantageous mutant B and another part carrying the disadvantageous
allele b. We shall denote by xx the frequency of allele A at the first locus among
chromosomes carrying B, and by x2 the frequency of A among chromosomes
carrying b. Then, as we shall soon show, for a function / which is an arbitrary
polynomial in xx and x2, we have the equation

where c is the recombination fraction between the two loci, and E stands for the
operator for taking the expectation with respect to gene frequency distribution.
The above equation is a special case of a more general equation

(4)
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where L is the differential operator of the Kolmogorov backward equation that, in
the case of n random variables (xltx2, ...,xn), takes the form

in which M, V and W designate respectively, the mean, the variance and the covari-
ance of the rate of change of the random variables that appear as subscripts. The
present method as developed by Ohta & Kimura (1969, 1971a) has proved to be
particularly useful in evaluating the moments of the distribution for two linked
loci. For details concerning the derivation and application of equation (4), readers
are invited to consult Kimura & Ohta (1971, pp. 183-190). Then, derivation of
equation (3) as a special case of equation (4) is straightforward: in generation t,
there are 2Neyt chromosomes carrying B in the population, and the variance of
change in xx by random sampling is x1(l—x1)/(2Neyt), which leads to the first term
in the right hand side of equation (3). Similarly the third term can be derived by
noting that there are 2Ne(l — yt) chromosomes carrying b. The second and the fourth
terms represent the effects of crossing-over on the mean changes in xx and x2. Finally
we note that equation (3) is valid even if the right-hand side depends on t through yt,
since equation (4) holds for non time-homogeneous processes.

Let us calculate the moments of gene frequencies at the neutral locus using equa-
tion (3), starting with the first moment. Letting/ = xv equation (3) yields

dt
Similarly for/ = x2 we get

dE(x2)
~~dT~

,-xJ. (5a)

= cytE(x1-x2). (56)

Solving this set of equations, we obtain the following formulae for the first moments
of xx and x2 in the tth. generation:

JJ^l^e-^r, (6a)

E(x2,t) = x^ + dx^-x^jl _ ^ _ d T . (66)

In these equations E(xlt) and E(x2t) stand for the expected value of x1 and x2 in the
tth generation, and x10 and x20 are the initial values. For example, if we consider
a situation in which a single neutral mutant appears in the population in which
gene substitution by natural selection is taking place, we put either x10 = ll(2Ney0)
and x2j0 = 0, or x1Q = 0 and x20 = 1/(22^(1— y0)}, depending on whether the
initial mutant is linked to the advantageous allele or the disadvantageous allele.
The above results are essentially equivalent to those obtained by Maynard Smith &
Haigh (1974), who treated the problem deterministically bj' using a discrete genera-
tion model. We now proceed to obtain the second moments of xx and x2, as they
are essential to compute the level of heterozygosity as influenced by ' hitch-hiking'.
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Letting successively / = x\, f = xxx2 and / = x\ in our basic equation (3), we
obtain

^ { ^ ^ } . (7a)
—Vjps} = E{c( 1 - yt) (x2 - Xj) x2 + cyt{xx - x2) xt}, (76)

xl) w( x2(l-x2) . \ ._ .

= E{^+2cyx^xA (7c)

From the solutions to (6) and (7) we can write the total heterozygosity as

'°E{2xt(l-xt)}dt,r
Jo
I 0

-yt).
Since the analytical solution of this set of equations appears to be difficult, we

resorted to numerical solution in conjunction with (5a) and (56) by a computer.
This can be done readily by replacing the differential quotients in the left-hand side
of (7a)—(7c) and (5a) and (56) by corresponding finite differences, taking one
generation as the unit step. Then the total heterozygosity can be computed as the
sum of 2x(l — x) with x = yx1 + (l — y)xz over all generations. Detailed analysis
based on this method under various combinations of parameters will be presented
in the next section.

For the special case of complete linkage (c = 0), the equations can readily be
integrated, and we obtain

^ ? , t ) = J i , o + (4o-^,o)e-A l ( t ) . (8a)

E(*l,tX2,t) = ^1,0*2,0 (8&)

a n d E(x%t) = x2> 0 + (*«, „ - *2, o) e~x*(t)> (8 c)

where

and (

These formulae can also be derived by noting that with complete linkage (c = 0),
the population can be regarded as split into two independent subpopulations, one
consisting of chromosomes carrying B and another carrying 6. The former sub-
population consists of 2NeyT chromosomes in generation T SO that the rate of de-
crease of heterozygosity in this generation is l/(2NeyT). Thus the expected heterozy-
gosity in the tth generation is

which leads to the same formula as (8 a) if we put

VT \ Vo
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in the integrand, and note that E(xx) = x10 under no recombination. Formulae
(8c) as well as (86) can also be derived in a similar way.

The total heterozygosity over all generations, is

rE{2x(l-x)}dt = 2^,0(1-^,0) f"jtfe-
Jo Jo

0 + ^ 0 - 2*1.0*2,0)

+ 2x^0(1-^,0) f"(l-yt)*e-*rf»cU. (8d)
Jo

The second term on the right follows from (1), since

y(l-y)6t = -\ dy = -^-°. (8e)
C 00

JO

3. NUMERICAL ANALYSIS

We shall investigate the total heterozygosity-that is, the sum of the fraction of
heterozygotes over all generations - contributed by a single neutral mutant as in-
fluenced by the hitch-hiking effect. Clearly, the total heterozygosity will be increased
by hitch-hiking if the initial mutant happens to be linked with advantageous allele
B (as compared with the case of no hitch-hiking), while it will be decreased if it
happens to be linked with disadvantageous allele b. Note that the average value of
the total heterozygosity contributed by a single neutral mutant is approximately 2
(Kimura & Crow, 1963; Kimura, 1969; Maruyama, 1971). More generally, if p is the
initial frequency of a neutral allele, the expected value of the total heterozygosity
without the hitch-hiking effect in a random mating population is

HT = £ 2p(l -p) ( l —±Y = ±Nep(l -p), (9)
n=0 \ Z i ve /

since heterozygosity decreases each generation at the rate of l/(2Ne) on the average
due to random sampling of gametes. Therefore we can use the above value, i.e.
2, as a standard, and we shall compare the corresponding values under hitch-hiking
obtained numerically by using the method presented in the previous section.

We designate the total heterozygosity as HT(+) when the initial mutant is linked
with the advantageous allele (to be called positive hitch-hiking) and as HT(_) when
the initial mutant is linked with a disadvantageous allele (negative hitch-hiking).

In calculating the total heterozygosity, the moments of gene frequency at the
neutral locus were computed throughout until the 104-th generation. This was
considered to be sufficient for our purpose since in practice the mutant allele is com-
pletely lost or fixed during this period with the population size, i.e. 100 or 200 as-
sumed in this analysis. (Note that in the diffusion models, the distribution of gene
frequencies is determined by the products Nec and Nes rather than the individual
parameters j \ ^ , c and s separately.) We also adopt the following approximation pro-
cedure; after the frequency of the advantageous allele becomes so close to 1 that the

22 GRH 25
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product of the frequency of the disadvantageous allele and the population size is
equal to or less than unity (Ne(l — yt) ^ 1), the neutral mutant is treated as if it were
independent of hitch-hiking. We have also tried several values of Ne{l — yt), such
as 5 or 10, after which this procedure was started, and found that the effects of such
an approximation are negligible.

01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9

HT(_)

Fig. 1. Relationship between the total heterozygosity of a neutral mutant and the
initial frequency of the advantageous allele at the linked locus (y0). HT(+) is the value
for positive hitch-hiking and HT(_, is that for negative hitch-hiking. Parameters
are Nes = 20 and three levels oiNec as shown in the figure.

We shall first examine how the initial frequency of the advantageous allele in-
fluences the total heterozygosity at the neutral locus. Fig. 1 shows the relationship
between the total heterozygosity and the initial frequency of the advantageous
allele at the second locus (y0) for various values of Nec. In this figure Nes is assumed to
be 20. Curves above the flat line (HT = 2) represent the cases of positive hitch-
hiking, that is, when the neutral mutant occurs on the chromosome carrying the
advantageous allele (HT(+)), and curves below the line represent the cases of negative
hitch-hiking (HT(_)). As seen from the figure, positive hitch-hiking is more effective
with smaller y0 and it may be quite pronounced for extremely small y0. The negative
hitch-hiking effect is not greatly influenced by y0, yet it is more effective with larger
y0. Fig. 2 shows the relationship between the total heterozygosity and y0 for various
values of Nes under complete linkage (Nec = 0). The way by which the total heterozy-
gosity depends on y0 for the case Nes = co may be interpreted as follows: the increase
of the advantageous allele by selection is so rapid as compared with its change by
random drift that the heterozygosity of a neutral mutant is determined by the
effective initial frequency which is equal to the frequency of the mutant among
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chromosomes carrying the advantageous allele at the time of occurrence. Hence HT(+)

is almost inversely proportional to y0. By taking the value of Nes larger, we have
actually found that the total heterozygosity approaches the limiting value 2/t/0.
Therefore this curve represents the maximum effect of positive hitch-hiking.

HT(+)

HT(-) Nes=5

01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9

Fig. 2. Relationship between the total heterozygosity of a neutral mutant and y0
for various values of Nes as shown in the figure. Nec is assumed to be 0.

Next, we shall investigate the dependence of the total heterozygosity on Nec, the
product of the recombination fraction and the population size. Fig. 3 illustrates
this for various values of Nes including Nes = oo, assuming y0 = 0-1. From the figure,
we can see that the hitch-hiking effect rapidly decreases as Nec increases.

So far we have examined the positive and the negative hitch-hiking effects
separately. However, the real interest lies in the average behaviour of the plus and
minus effects and therefore we shall evaluate the average of the total hetero-
zygosity by assuming that a neutral mutant has equal chance of occurring on each
chromosome irrespective of whether the chromosome carries an advantageous or
disadvantageous allele at the second locus.

Fig. 4 shows the relationship between the average total heterozygosity and y0

for some values of Nes and Nec. I t is interesting to note that the average total hetero-
zygosity is always smaller than two and that it is not greatly different from two even
when the individual positive and negative effects are large. It might be thought from
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Fig. 4 that the total heterozygosity will continue to decrease as y0 approaches 1/2N.
However, this is an artifact of our deterministic assumption. At the limit of a single
mutant (y0 = 1/2N) the value becomes very close to 2. This is easily understood as
follows. The probability is 1/2N that the mutant will occur in a favoured chromo-
some in which case the total heterozygosity is approximately 4 (Kimura, 1969),
and 1 — 1/2IV that it will occur in one of the remaining chromosomes in which case

N,s=oo

HT ( + )

H T ( - )

001 -

00 10 20 30 40 50 60 70 80 90

Nec

Fig. 3. Total heterozygosity of a neutral mutant with hitch-hiking as a function of
Nec. Parameters are y0 = 0-1 and various levels of Nes as shown in the figure.

the total heterozygosity is roughly 2; so the average is about 2. So the curves in Fig.
5 eventually start to curve upward as y0 becomes smaller, the exact shape depending
on the extent to which there is stochastic variation in the selected locus.

Fig. 5 illustrates the average total heterozygosity as a function of Nes for some
values of Nec, assuming y0 = 0-1. It is again interesting to find that the average
total heterozygosity is not greatly influenced by hitch-hiking. In particular, for a
given Nec there is a certain value of Nes at which the hitch-hiking effect becomes
maximum with at most 43 % reduction of average heterozygosity when y0 = 0-1.
For smaller y0, the maximum reduction may get larger, yet one can conclude that
the hitch-hiking effect is quite small even for very tight linkage, since only under
quite restricted conditions does the amount of reduction in the average heterozy-
gosity become pronounced. Also an interesting result that has emerged from the
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above analysis is that for Nec = 0 and at the limit Nes -»-oo, the plus and minus effects
cancel each other and the average total heterozygosity approaches 2. This may be
understood by noting that for such a case the total heterozygosity is contributed

20

10

00
01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9

Fig. 4. Total heterozygosity of a neutral mutant as the average of HT(+) and HT(_,.
Parameters are (a) Nes = 5, Nec = 0; (6) N,s = 20, N.e = 0; (c) Nes = 20,
Nec = 5;{d) Nes = 5, Nec = 5.

20

HT 1-0

00 I I

100 100 200

Fig. 5. Total heterozygosity of a mutant (as the average of HT(+) and
function of Nes. The value of y0 is assumed to be 0-1.

,.,) as a

solely from the positively hitch-hiking mutant and that the heterozygosity due to
that mutant is inversely proportional to y0 as explained before, while the relative
frequency of the neutral mutant occurring on a chromosome carrying the advan-
tageous mutant is y0.

We shall now investigate the effect of hitch-hiking by asking a slightly different
question: To what extent is the existing heterozygosity at the neutral locus reduced
by the spreading of an advantageous allele at a linked locus? This is nearer to the
approach used by Maynard Smith & Haigh (1974). We again calculate the total
heterozygosity by generating moments and compare the results with what is ex-
pected for an independent neutral allele. The latter can be obtained from equation
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(9). The solution for s = OisH(p) = iNp(l-p), which is 2NhQ> where h0 is the initial
heterozygosity. To simplify the treatment, we assume that the advantageous allele,
after its appearance by mutation in a chromosome carrying A, rapidly increased its
frequency to reach y0 and thereafter can be treated deterministically. We further
assume that the initial increase to reach y0 is so rapid that the recombination
between the two loci concerned has not taken place during that period. Then we
can use the same procedure, by setting xlQ = 1-0 and x20 = (xo-yo)l(l-0-y0) as
the initial condition for generating the moments, where x0 (^ y0) is the initial
frequency of the neutral allele A, and y0 is that of B. Note that the initial frequency

10

I 0 5

00

Nts=l0

10
N.c.

20

Fig. 6. Total heterozygosity at a neutral locus with hitch-hiking expressed as a
fraction of what is expected at an independent locus, i.e. 4Jsfex0(l — xQ), where z0 is
the initial frequency of the neutral allele. Four curves represent the ratio of total
heterozygosities with and without hitch-hiking, as functions of Nec for four levels
of Nes as shown in the figure.

of AB is y0, while aB does not exist at the start. In studying the hitch-hiking effects,
we have found that the symmetric case (xQ = 0-5) may be regarded as representative
since the plus and minus effects tend to cancel each other even if we assume an
asymmetric situation (such as x0 = 0-1 vs x0 = 0-9 or x0 = 0-2 vs x0 = 0-8). Therefore
only results from the symmetric case will be presented here. The value of y0 has
been chosen as 0-1 in the numerical study; however, as long as y0 is small enough, the
following results will not be changed much.

Fig. 6 shows the expected total heterozygosity as a fraction of what is expected
at an independent neutral locus. The abscissa represents Nec and the ordinate the
ratio of the expected total heterozygosities with and without hitch-hiking. Four
curves correspond to the cases of Nes = 10, 20, 40 and 80 respectively. The figure
suggests that the hitch-hiking effect is negligible if c > s, and that the effect is mostly
determined by the ratio s/c. For example, when sjc = 2, the ratio is about 0-87 when
Nec = 5, 0-88 when Nec = 10 and 0-89 when Nec = 20. In general the probability
is rather low that an advantageous mutant occurs at a locus so tightly linked to a
particular neutral locus that c < s is satisfied. Therefore, the hitch-hiking effect is
likely to be generally unimportant in reducing the pre-existing heterozygosity.
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Table 1. The total heterozygosity due to a single neutral mutant

(Observed values are from Monte Carlo experiments assuming N, = 100.)

323

Positive hitch-hiking Negative hitch-hiking

8

0-05

0 1

c

0 0

0 1

0 0

0-1

2/o

0-1
0-2
0-5

0 1
0-2
0-5

0 1
0-2
0-5

0 1
0-2
0-5

Observed

5-74
4-83
3-38

305
2-49
2-53

8-84
6-07
3-87

4-41
3-93
2-80

Expected

7-33
5-94
3-39

2-97
2-74
2-34

10-91
7-37
3-62

4-24
3-52
2-61

Observed

0-757
0-459
0-291
1-724
1-896
1-613

0-320
0-215
0142

1-782
1-451
1-604

Expected

0-478
0-389
0-287
1-862
1-779
1-606

0-258
0-210
0160

1-681
1-551
1-319

4. MONTE CARLO EXPERIMENTS

In order to check the validity of our mathematical treatments, we performed
extensive Monte Carlo experiments. In simulating the process, we started each
experiment by setting the initial condition in terms of gametic frequencies, and
whenever the neutral mutants become either lost or fixed in the population, we
started again from the same initial condition. Each experiment was continued 105

generations and the total heterozygosity, the frequency of loss or fixation of the
mutant, etc. were counted during the experiment. Thus, we obtain the total hetero-
zygosity per neutral mutant.

Each generation of the experiments consisted of crossing over, selection and
sampling of gametes. Crossing-over and selection were carried out deterministically
using the following formulae:

&9i = {(wi -™)9\- cD)lw, Ag2 = {(w2 -w)g2 + cD}/w,

&9z = {(ws ~w)9z + cD}/w, Agr4 = {(w4 - w) gr4 - cD}/w,

where gt's stand for gametic frequencies, w^s are the fitnesses in terms of selective
values, w is the average population fitness and D is the coefficient of linkage dis-
equilibrium (cf. Kimura, 1956; Lewontin & Kojima, 1960). Sampling of zygotes
was performed folio wing a simple scheme which we have used previously (Ohta &
Kimura, 1971a).

Table 1 shows the results of simulation experiments for the total heterozygosity
per mutant together with the theoretical values obtained by numerical analysis for
comparison. Ne was assumed to be 100 and the observed values are the averages of
3023 ~ 20 472 trials, which means that a neutral mutant was supplied 3023 ~ 20472
times in a single experiment. As seen from the table, the agreement between the
observed and the expected total heterozygosity is satisfactory.

https://doi.org/10.1017/S0016672300015731 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300015731


324 T. OHTA AND M. KIMTTRA

5. DISCUSSION

Our approach is essentially different from that of Maynard Smith & Haigh
(1974), who treated the problem deterministically and who concentrated on the
ratio of the initial to the final heterozygosities at the neutral marker locus when the
gene substitution by natural selection takes place at a linked locus. Rather than
looking just at the end-points of the process, we have evaluated the total heterozy-
gosity at the neutral marker locus during the whole process. We believe that our
treatment is more suitable for judging the effect of hitch-hiking on heterozygosity.

We have shown that the hitch-hiking effect is generally unimportant as a mechan-
ism for reducing heterozygosity. It may be significant only when the recombination
fraction is smaller than the selection coefficient. Such a situation must be quite
rare at least in sexually reproducing organisms. In this regard, the phenomenon
known as periodic selection in micro-organisms (Atwood, Schneider & Ryan, 1951;
Koch, 1974) may represent a special case of large selection pressure and extremely
small recombination fraction. It is usually observed in chemostat experiments, but
the significance of this phenomenon in nature is not clear even in micro-organisms.
A large reduction in heterozygosity depends on the mutant arising at a time when
the favourable gene has a relatively low frequency, but with absolute numbers large
enough to behave essentially deterministically. At other times the effect is small and
if several favourable mutants are being selected simultaneously the average effect
cannot be very large. Another situation where hitch-hiking may be important is
with group selection, such as may have occurred among ancient human groups.
Here the fates of mutant genes are associated with the expansion or extinction of the
groups, since all genes within a group are effectively linked.

Together with our previous studies on linkage disequilibrium (Ohta & Kimura,
19716; Ohta, 1973), our analyses indicate that linkage is important only in small
and transient populations such as those at the time of speciation, and not in large
and stable populations. In small populations, linkage disequilibrium due to random
drift may have significant effects on the behaviour of surrounding genes. However,
the average effects are rather small even if the individual effect may get large. In this
respect, linkage only makes chance effects somewhat larger in transient populations.
Lewontin (1974) seems to be overemphasizing the role of linkage, especially since,
except where inversions are involved, linkage disequilibrium is rarely found (Mukai,
Watanabe & Yamaguchi, 1974). For large and stable populations, the concept of
quasi-linkage equilibrium (Kimura, 1965; Nagylaki, 1974) together with the single
locus theory is sufficient to treat most problems realistically.

Maynard Smith & Haigh (1974) have argued that the adaptive gene substitutions
at many loci, simultaneously occurring, may reduce the heterozygosity at other loci
drastically if the population size is large. They suggested that this may explain
why the observed average heterozygosity per locus is not much different among
various species. Unfortunately for the neutral theory we have to deny their conclu-
sion and state our belief that the total size of the species is the most important para-
meter that determines the amount of random drift. Then we have to search for
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another explanation for the relative uniformity of average heterozygosity among
various species. I t is possible, as proposed by one of us (Ohta, 1974), that the very
slight negative selection based on functional constraints of the protein molecule
becomes effective in very large populations leading to mutation-selection balance
at many loci and this prevents the level of heterozygosity from increasing in-
definitely as the population size increases. On the other hand, random drift prevails
in relatively small populations.

We thank Dr J. F. Crow for reading the manuscript and offering suggestions for
improving the presentation.
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