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Abstract

A number of Kuhn-Tucker type sufficient optimality criteria for a class of varia-
tional problems under weaker invexity assumptions are presented. As an applica-
tion of these optimality results, various Mond-Weir type duality results are proved
under a variety of generalised invexity assumptions. These results generalise many
well-known duality results of variational problems and also give a dynamic ana-
logue of certain corresponding (static) results relating to duality with generalised
invexity in mathematical programming.

1. Introduction

Hanson [6] extended the Wolfe duality results of mathematical programming
to a class of functions subsequently called invex. Since that time, it has been
shown [2, 4, 5, 9] that many results in mathematical programming previously
established for convex functions actually hold for the wider class of invex
functions. Recently Mond, Chandra and Husain [8] extended the concept
of invexity to continuous functions and used it to generalise earlier Wolfe
duality results for a class of variational problems.

In [1] Bector, Chandra and Husain presented a dual to a variational prob-
lem in the spirit of Mond and Weir [11] different from that formulated by
Mond and Hanson [10] in order to weaken the convexity conditions. In the
present exposition, we present sufficient optimality conditions for variational
problems under weaker convexity assumptions than those studied by Mond
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[2] Variational problems with invexity 109

and Hanson. As an application of these criteria, we prove various Mond-Weir
type duality theorems under a variety of generalised invexity conditions. We
also establish a Mangasarian type strict converse duality theorem. It is also
indicated that our duality theorems can be considered as dynamic general-
isations of certain corresponding (static) duality theorems of mathematical
programming.

2. Notations and preliminaries

Let / = [a,b] be a real interval; let / : / x Rn x R" -* R be a continu-
ously differentiable function. Consider f(t,x(t),x(t)), where x: I —> R" is
differentiable with derivative x. Denote the partial derivative of / by

f f = \M M Ml
Jt, Jx | 9 , , dx2'--' Qxn

Denote by X the space of piecewise smooth functions x: I —> R", with the
norm ||jc|| = ||x||oo + ||X>JC||OO, where the differentiation operator D is given by

{t) = a+ u{s) ds,
Ja

where a is a given boundary value; thus D = j^ except at discontinuities. For
notational convenience f(t,x{t),x(t)) will be written f(t,x,x).

LetF:X-+R denned by F{X) = /fl* f{t,x(t), x(t)) dt be Frechet differen-
tiable. In the subsequent analysis, no notational distinction is made between
row and column vectors.
DEFINITION 1. Invex

The function F is invex with respect to q if there exists a differentiable
vector function rj(t,x,X) with r](t,x,x) = 0 such that for all x,xeX

F(x) - F(X) > J L(t,x,X)fx(t,X,x) + (JLri(t,x,X)\ Mt,X,X)\ dt.

DEFINITION 2. Pseudoinvex (PIX)
The function F is PIX with respect to r\ if there exists a differentiable

vector function rj(t,x,X) with rj(t,x,x) = 0 such that for all x, X e X,

^T,(t,x,x)Mt,X,X)+^r,(t,x,X)^ /*(*,*,*)J dt > O^F(x) > F(x)

or equivalently

F(x) < F(X)

=> J U{t,x,x)fx{t,x,x) + (J-tri(t,x,x)\ Mt,x,x)\ dt < 0.
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110 B. Mond and I. Husain [3]

DEFINITION 3. Strictly Pseudoinvex (SPIX)
The functional F is SPIX with respect to rj if there exists a differentiable

vector function r](t,x,X) with t\{t,x,x) = 0 such that for all x, X e X,

f {tl(t,x,x)fx(t,x,x)+(~-ri(t,x,x)S) Mt,X,X)\ dt > 0^F(x) > F(X)

or equivalently,

F(x)<F(x)=>J U(t,x,x)Mt,x,x)+(^ti(t,x,x)\Mt,x,x)\ dt<0.

DEFINITION 4. Quasi-invex (QIX)
The functional F is QIX with respect to t\ if there exists a differentiable

vector function rj(t,x,x) with tj(t,x,x) = 0 such that

l^n(t,x,X)Mt,X,X)+ (jfii(t,x,X)) fAt,X,X)} dt > 0=>F(x) > F(X)

or equivalently,

{ ( f ) } dt<o.

f

In the above definitions, dtj/dt is the vector whose ith component is
(d/dt)t]'(t,x,X). It is to be noted here that these definitions are very much
in the spirit of Hanson [6] and Bector, Chandra and Husain [1]. Here if /
is independent of /, definitions (1-4) reduce to the definitions of invexity,
pseudoinvexity, strict-pseudo invexity and quasi-invexity of the static case
[6] respectively. In [6] the author does not require ri(x,x) = 0, but this is
usually satisfied in most examples for r\ (see [2, 5]). As is known [2, 4, 5],
pseudoinvexity, strict-pseudo-invexity and quasi-invexity are generalisations
of pseudoconvexity, strict pseudo-convexity and quasiconvexity respectively.

Now consider the determination of a piecewise smooth extremal x = x{t),
a < t < b, for the following problem:

PROBLEM I. (Primal) = P

rb
Minimise<f>{x) = / f(t,x(t),x(t))dt (1)

subject to
x(a) = a, x(b) = fi (2)

and
g(t,x(t),x(t))<Q, tel (3)
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Consider also the determination of an nt + n dimensional extremal {u,y) =
(u(t), y(t)), t e I, for the following maximisation problem:

PROBLEM II. (Dual) = D

rb

Maximise w(u,y)= / {f(t,u,u)+y(t)g{t,u,u)}dt (4)
Ja

subject to

u(a) = a, u{b) = P (5)

fu(t,u,u) + y(t)gu(g,u, it) = -jiUuit, u, u) + y{t)ga{t, u, «)} (6)

y(t)>0, / € / (7)

Here u(t) is an n-dimensional piecewise smooth function and y{t) is an
m-dimensional function continuous except possibly for the values of / corre-
sponding to corners of u{t). For values of t corresponding to corners of u(t),
(6) must be satisfied for right and left hand limits. The equation (6) means

(=1 / u\ I \l"=l

W=l J ul \ \/=l

Mond, Chandra and Husain [8] have established the following results.

THEOREM 1 (Weak Duality). If f and g are invex for some function n, then
the infimum of{P) is greater than or equal to the supremum of{D).

THEOREM 2 (Strong Duality). Assume that an appropriate constraint qualifi-
cation is satisfied and that f and g are invex for the same function n. If the
function x*(t) minimises the primal problem (P), then there exists ay*(t) such
that (x* (t), y* (t)) maximises the dual problem (D) and the extreme values of
(P) and (D) are equal.

Let H denote the set of all feasible solutions of the problem (P); that is,
let H = {xe X\g(t,x(t),x(t)) < 0, t e /}.
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For any x* e H, let M{x*) denote the index set of all the binding inequality
constraints at (x*(t), x*{t))\ that is, let

Let gM(-x"> denote the vector function having components g' with i e

3. Kuhn-Tucker type sufficient optimality theorems

In this section, we present some sufficient optimality criteria of the Kuhn-
Tucker type for the problem (P).

THEOREM 3. Let x* G H and assume that <j) is PIX at x* with respect to n
and that for each i e M(x*), g' is QIX at x* with respect to n. If there exists
a piecewise smooth y*: I —» Rm such that (x*(t),y*(t)) satisfies the conditions

(8)

y*(t)g(t,x*(t),x*(t)) = O, t e l , (9)

/ ( / ) > 0 , t e l , (10)

then x* is a global optimal solution of Problem (P).

PROOF. Since for any x G X,

gM^'\t,x{t),x{t)) < 0 = gM^\t,x*{t),x'{t)), t e I,

by the quasi-invexity assumption, we have that for t el, i e M(x*),

n(t x x*\e'(t x* x*\ + I —nit x x*\ I e'(t x* x*\ < 0

and hence, by taking y'' (t) = 0 for i $ M(x*),

{ri(t,x,x')y'(t)gx(t,x\x*)

> J } t < 0 , forallxe/f. (11)
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From (8), we have

/ n{t,x,x*){fx{t,x*,x*) + y*(t)gx(t>x\xt)}dt
Ja

= 1 r,(t,x,x*)£-t(Mt,x\x*)+y*(t)gx(t,x*,x*))dt

= r,(t,x,x')(fx(t,x*,x*) + y*{t)gx{t,x*,x*))\l=»a

x(t,x'

(integrating by parts).

Thus,
rb
I ri{t,x,x*){fx{t,x\x*)+y*{t)gx{t,x*,x*)}dt

Ja

j-tt1(t,x,x*)(Mt,x*,x*)+y*(t)gx(t,x\x*))dt = O

(using (2), (5) and n{t,x,x) = 0). From (12), we have

(j-^t^^*)} fx{t,X* ,X*)}dt

(13)

From (13) and (11), we have

{r}(t,x,x*)fx(t,x',x*)+ (J-(ri(t,x,x*f)Mt,x*,x*)} dt>0. (14)

Now (14) in view of the pseudoinvexity of <f> yields

/ f(t,x,x)dt> f f(t,x*,x*)dt, Vxetf;
Ja Ja

that is, x* is a global optimal solution of (P).
The next two theorems show that global optimality is maintained if, in-

stead of the individual constraint function g', a certain function, denned in
terms of g', has an appropriate weak invexity property.

THEOREM 4. Let x* € H and suppose that 4> is pseudoconvex at x* with respect
to r\. If there exists a piecewise smooth y*: I -> Rm such tht {x* ,y*) satisfies
(8)-(10) and if the function e(-,y*): X^R defined by

e(x,y*)= [by*(t)g(t,x(t),x{t))dt
Ja
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is QIX at x*. with respect to n, then x* is a global optimal solution of the
problem (P).

PROOF. For any xeX,

( y'(t)g(t,x(t),x(t))dt<0= f y*{t)g(t,x*{t),x*{t))dt (15)
Ja Ja

which, in view of the quasi-invexity of Q(-,y*) implies for all x e H

j {r,(t,x,x*)y'(t)gx(t,x*(t),x*(t))
} dt <0.

This is just (11) which, as in the proof of the previous theorem, implies

J ^r,{t,x,x*)fx{t,x',x*)+{~tn{t,x,x*)\ fx(t,x*,x*)} dt>0,VxeH

which, by pseudoinvexity of <f> at x* (with respect to H), yields

f f{t,x\x*)dt< f f(t,x,x)dt, VxeH.
Ja Ja

Thus x* is a global optimal solution of (P).

THEOREM 5. Let x* e H and suppose that <t> is QIX at x* with respect to rj.
If there exists a piecewise smooth function y*\ I —> Rm such that (8)-(10) are
satisfied and if the function 6(-,y*) is SPIX at x* with respect to n, then x*
is a global optimal solution of the problem (P).

PROOF. In view of strict-pseudoinvexity of 0(-,y*), from (15), it follows that

T {n(t,x,x*)y*(t)g(t,x',x*)

+ (J-tti{t,x,x')jy*(t)gjt{t,x*,i*)\dt<0, Vx e H

which, in a manner analogous to the proof of the previous two theorems,
implies

jf f^(t,x,x*)Mt,x\x*)+(J-tr1(t,x>x^fx(t,x*,x^dt>0, Vxei/.

This inequality in view of the quasi-invexity of 4> at JC* implies

f(t,x',x*)dt< f f(t,x,x)dt, VxeH.
Ja

Lastly we formulate a global criterion in which only the Lagrangian func-
tion associated with (P) is assumed to be pseudoinvex.
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[8] Variational problems with invexity 115

THEOREM 6. Let x* e H. If there exists a piecewise smooth y*\ I -> Rm such
that {x*{t),y*(t)) satisfies (8)-(10), and if the Lagrangian function y/(x,y*):
X -> R, defined by

rb

V(x,y*) = / {f(t,x,x)+y*(t)g(t,x,x)}dt
Ja

is PIX at x* with respect to n, then x* is a global optimal solution of{P).

PROOF. The equation (8) yields (13), i.e.,

^ {n{t,x,x*){fx{t,x*,x*) + y*{t)gx{t,x\x*))

+j-ttl{t,x,x*){fx{t,x\x')+y\t)gx{t,x\x*))\ dt = O, VxeH,

which, by the pseudo-invexity assumption for if/{-,y*) gives

that is,

,x*,x*) + y*(t)g(t,x\x*)}dt< f\nt,x,x)+y'(t)g(t,x,x)}dt.
J a

By (3), (9) and (10), this inequality leads to

/ f(t,x*,x*)dt< f f(t,x,x)dt, VxGtf,
a J a

which means that x* is a global optimal solution of (P).
REMARK. Although not explicitly stated, in the last four theorems, the stated
invexity and weakened invexity requirements need only hold at x* for all
feasible x of (P).

4. Mond-Weir type duality

We now establish duality between the problem (P) and the following
Mond-Weit type dual (Do), formulated by Bector, Chandra and Husain [1].

PROBLEM III. (Dual) = Do

fb
Maximise / f(t,u{t),u(t))dt (15)

Ja
subject to

u(a) = a, u(b) = 0, (16)
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/„(/ , u, it) + y(t)gu(t,u, it) = j-tUu(t, u,it)+ y{t)gu{t, u,it)}, (17)

rb

J y(t)g(t,u,u)dt>O, (18)

"y(t)>o, tei. (19)

THEOREM 7 (Weak Duality). If for all x e X and (u,y) e Z, the feasible set
of the dual {DQ), there exists a differentiable vector function r\ with r\(t,x,x) =
0 such that, for all feasible (x,u,y)

(I) (j> and ©(•, y) are respectively PIX and QIX at u, or
(II) <t> and 6(-, y) are respectively QIX and SPIX at u,

with respect to the same n, then / j " f(t, x, x) dt > f* f(t, u, it) dt.

PROOF. Since x e H and (u,y) e Z, we have, from (3), (19) and (18),
rb rb

/ y{t)g{t,x,x)dt< I y{t)g{t,u,u)dt. (20)
Ja Ja

(I) The inequality (20) and quasi-invexity of 6(-,y) imply

j L(t,x,u)y(t)gu(t,u,u)+(jtri(t,x,u)\y(t)gu(t,u,u)\dt<O. (21)

The constraint (17), as earlier, is equivalent to

ln(t,x,u)fu(t,u,u)+ (jtri{t,x,u)\fu{t,u,u)\ dt

ln(t,x,u)y(t)gu(t,u,u) + (j-tn{t,x,u)\y(t)gu(t,u,it)J dt = 0

that is,

J lt](t,x,u)fu(t,u,u)+ (jtn(t,x,u)J Mt,u,u)\ dt

= - j lrj(t,x,u)y(t)gu{t,u,u)+ lj-tri(t,x,u))y(t)gu(t,u,u)\ dt.

Using (21), this inequality yields
rb f / d \ 1

U(t,x,u)fu(t,u,it)+lj-tr](t,x,u)jMt,u,u)\dt>O. (23)

This inequality along with pseudo-invexity of 4> yields

/ f(t,x,x)dt> f f(t,u,u)dt.
Ja Ja
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(II) The inequality (20), in view of strict-pseudo invexity of 6(-,}>) implies

J L(t,x,u)y(t)gu(t,u,u)+(jtri(t,x,u)\y(t)gu(t,u,u)jdt<O. (24)

Now (17) along with (24) yields

J ln(t,x,u)fu(t,u,u)+ (j-tn(t,x,u)\fu(t,u,u)\ dt>0,

which, in view of the quasi-invexity of <f> implies

/

b rb

f(t,x,x)dt> / f(t,u,u)dt.
THEOREM 8 (Strong Duality). Let x* be a normal [1, 10] solution of (P).
Assume that a differentiate vector function t}, with n(t,x,x) = 0, exists such
that the hypotheses of Theorem 7 are satisfied. Then there exists a piecewise
smooth y*: I —* Rm such that (x*,y*) solves (Do) and

Minimum (P) — Maximum (Do).

PROOF. Since x* solves (P) and is normal [1, 10], from Valentine necessary
conditions [12] or Kuhn-Tucker type optimality conditions [3] it follows that
there exists a piecewise y*: I —> Rm such that (x*,y*) satisfies

/
y*{t)g(t,x*,x*)dt = 0,

a
y(t) > 0, t e / .

Thus, from the above relations, it follows that ( x ' j ' j e Z ,
Obviously, the objective functionals of (P) and (Do) are equal, so the value

of (P) equals the value of (Do) at x*. Optimality follows by invoking weak
duality, Theorem 7.

THEOREM 9 (Strict Converse Duality). Let x* be an optimal solution of(P)
and be normal [1, 10]. Assume that there exists a nondifferentiable vector
function n with n(t, x,x) = 0 such that the hypotheses of Theorem 1 hold for
all x e H and (u,y) e Z. If(tt,y)isan optimal solution of (Do) and, with
respect to n at u,

(i) y/(-,y) isSPIX, or
(ii) <f> is SPIX and S(-,y) is QIX, or
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(iii) <f> is QIX and G(-,y) is SPIX,

then u = x*, that is u is a global optimal solution of{P).

PROOF. Suppose that x* ^ u. Since x* is an optimal solution of (P) and
is normal, it follows from Theorem 8 that there exists a piecewise smooth
y: I -* Rm such that (x*,y) is an optimal solution of (Do). Since [U,y) is
also an optimal solution of (Do), it follows that

f{t,x\x*)dt = f f{t,U,u)dt (25)

I y(t)g(t,U,tl)dt>O. (26)
Jaa

(i) The equation (17) is equivalent to

rb
/ (!/(/,*•, u){fu(t, a , 6 ) + p(t)gu(t,a, a)}

Ja

+ -^nit^x*, u){fu{t, a, 6) + y(t)gu(t, a, ft}) dt = 0. (27)

This, with strict-pseudo-invexity of <//(•,y) implies

f {f(t,x*,x')+y{t)g{t,x\x*))dt> f {f(t,u,u)+y(t)g(t,Q,u)}dt.

(28)
From j>{t) >0,teIandg(t,x*,x*)<0,te I, we get

f V{t)g{t,x\x*)dt<0. (29)
Ja

Now (25), (26) and (28) contradict (29). Hence *•(/) = u{t), t e / .
(ii) For all x 6 X and (u,y) € Z,

f y(t)g(t,x,x)dt< f y{t)g{t,u,u)dt (30)
Ja Ja

and, by quasi-invexity of 8(-,^) at u, we have

f U(t,x,u)y(t)gu(t,u,u)+ (j-tn(t,x,u)jy(t)gu(t,u,u)\ dt<0.

The inequality (22) along with this yields

J lt}(t,x,u)fu(t,u,u)+(£-ri(t,x,u)\fu(t,u,u)\dt>0. (31)
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[12] Variational problems with invexity 119

From (31) and strict-pseudo invexity of <f> at Q, we have

lr}(t,x,a)fu(t,G,a)+ (j.ri(t,x,a)\ fu(t,n,u)\ dt>0

rb rb
=> f{t,x,x)dt> I f(t>u,a)dt, for all xeH,

Ja Ja

and since x* e H, we have

rb
f f(t,x\x*)dt> f f{t,a,u)dt,

Ja Ja

contradicting (25). Hence x*(t) = Q(t), t c I.
(iii) From (30) along with strict-pseudo invexity of &(-,y), we have

/ L(t,x,u)y(t)gu(t,u,ii)+ (j-tri(t,x,uUy(t)gu(t,u,u)\ dt<0.

This inequality, along with (22), yields

rb
I \r\{t,x,u)fu{t,u,U) + I-T-M^X^) )Mt,u,u)\ dt>0.
Ja I \ a t / )

In view of the quasi-invexity of (f> at U,

fb ( / d \ )
/ <tj(t,x,a)fu(t,u,u)+ -rt](t,x,u)) fu{t,u,a)} dt>0

Ja I \«' / J

=> I f(t,x,x)dt> f f{t,tt,6)dt, for all x e H.

As in (ii), we have

I f{t,x\x*)dt> I f{t,u,u)dt,
Ja Ja

a contradiction to (25).

5. Related problems

The duality results here can be extended to corresponding variational prob-
lems with natural boundary values rather than fixed end points.
Primal (/»,): Minimise /* f(t,x,x)dt

subject to g(t, x, x) < 0, t€ I.
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Dual (Dl): Maximise /* f(t,u,u)dt
subject to

fu(t,u,u)+y(t)gu(t,u,u) = j-t{Mt,u,u) + y(t)gu(t,u,ii)},

/

b

y(t)g(t,u,u)dt>0, y(t)>0, tel,

fu(t,u,u)+y(t)git(t,u)u)\t=a = 0, (32)

Mt,u, ii)+y(t)gu(t, u, u)\l=b = 0. (33)

By U(t, u, it) + y(t)gu(t,u,u)\t=a<b, we mean that fu(t, u, u) + y(t)gu(t, u, u)
is evaluated at t = a and t = b.

We shall not repeat the proof of Theorems 3-10 but merely point out
the modification in the arguments that are required for the theorems to re-
main valid. In the proofs of theorems in the preceding sections, (2), (5) or
(16) and t](t,x,x) = 0 were utilised to guarantee that the integrated part
r}(t,x,u)(fu + y(t)gu)\',Za i s z e r 0- It i s obvious that even though (2) and
(16) are lacking in the problems with natural boundary values, the terms
tj(t,x, u){fu + y(t)gu)\',=a still vanish by virtue of (32) and (33). If only one
end point is fixed, say x(a) = a, the corresponding boundary condition (32)
is omitted. The proofs given here are easily modified along the lines of the
discussion in this section so that duality results hold.

If (P) and (Do) or (Pi) and (D\) are independent of t, they reduce to the
dual mathematical programming problems

minf(x), subject to g(x) < 0
max/(«) , subject to /„(«) + y'gu(u) = 0,y'g(u) > 0, y > 0

first considered by Mond and Weir [11].
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