Can. J. Math., Vol. XXXIV, No. 2, 1982, pp. 319-348

RICH PROXIMITIES AND COMPACTIFICATIONS
STEPHAN C. CARLSON

1. Introduction. Each Hausdorff compactification of a given Tychonoff
space is the Smirnov compactification associated with a compatible
proximity on the space. Also each realcompactification of a given
Tychonoff space is the underlying topological space of the completion of
a compatible uniformity on the space. But if T is a realcompactification
of a Tychonoff space X which is contained in a particular compactifica-
tion Z of X, then it is not always possible to find a compatible uniformity
% on X such that T is the underlying topological space of the completion
of (X, %) and % induces the proximity on X associated with Z. We shall
call a Hausdorff compactification Z of a Tychonoff space X a rich com-
pactification of X (and the associated proximity on X a rich proximaity) if
every realcompactification of X contained in Z can be obtained as the
underlying topological space of the completion of a compatible uniformity
on X which induces the proximity on X associated with Z. Questions
concerning the rich compactifications of Tychonoff spaces were originally
communicated by Marlon Rayburn of the University of Manitoba.

For any Tychonoff space X the Stone-Cech compactification of X isarich
compactification of X. Since a realcompact and pseudocompact space is
compact, every Hausdorff compactification of a pseudocompact Tychonoft
space is a rich compactification. But when X is a realcompact, noncompact
Tychonoff space, the existence of rich compactifications of X besides the
Stone-Cech compactification is not clear. In this paper we shall construct
such compactifications for spaces belonging to a certain class of locally
compact, noncompact spaces.

In fact, this construction occurs in a more general setting. Realcompact-
ness is a special case of E-compactness in the sense of Engelking and
Mréwka {7]. A Hausdorff compactification Z of a Tychonoff space X is
called an E-rich compactification of X (and the associated proximity on X
an E-rich proximaty) if every E-compactification of X contained in Z can
be obtained as the underlying topological space of the uniform completion
of a compatible uniformity on X which induces the proximity on X
associated with Z. For a certain class of Tychonoff spaces E: (1) we show
that every E-completely regular space has an E-completely regular, E-
rich Hausdorff compactification which turns out to be the projective
maximum among all its E-completely regular Hausdorff compactifica-
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tions, and (2) we construct an E-completely regular, E-rich Hausdorff
compactification (which is not the projective maximum of (1)) for each
member of a certain class of locally compact, noncompact E-completely
regular spaces. When E is the real line, the projective maximum of (1) is
the Stone-Cech compactification, and, when E is the countably infinite
discrete space, it is the Banaschewski zero-dimensional compactification
[2]. We note here that uniformities on E-completely regular spaces have
been discussed (especially when E is zero-dimensional) in 1], [2], and [5],
and E-completely regular Hausdorff compactifications for general spaces
E are discussed in [11], [14], and [15].

By uniformity we shall mean separated diagonal uniformity, and the
collection of pseudometrics associated with a uniformity (which is called
a uniform structure in [9]) shall be called the gauge structure associated
with the uniformity. We shall use R to denote the set of real numbers
and N to denote the set of positive integers, and, when used as topological
spaces, they shall be assumed to possess their usual topologies. If f: X = R
is a real-valued function on a set X, then

Yrlx,y) = [flx) — fy)] (x, 3 € X)

defines a pseudometric on X. For @ = D € R¥, {y,: f € D} is a subbase
for a gauge structure & (D) on X. A gauge structure & (and its associated
uniformity) on X is called functionally determined if for some @ % D C R¥|
9 = Z(D). As usual, for a Tychonoff space X, % (X) will denote
2(C(X)) and ¥*(X) will denote D (C*(X)).

A uniform space (X, %) may be completed as follows. Let X denote
the set of minimal %-Cauchy filters on X and identify x € X with the
neighborhood filter A4, € #X. For U € U, set

U ={(#,9) € UX XUX:forsome FEF NG F X FC U},

and let Z* be the uniformity on X generated by the uniform base
{U* U € U}. Then (UX, U*) is a complete, separated uniform space,
U*y = U, and X is 1(U*)-dense in UX. If & is the gauge structure
on X associated with %, we shall denote the gauge structure on X
associated with Z* by *, and % X may be denoted by X .

By proximity we shall mean separated Efremovi¢ proximity. If § is a
proximity on X, we let II1(§) denote the set of uniformities on X which
induce 5. There is a one-to-one correspondence between the compatible
proximities on a Tychonoff space X and the Hausdorff compactifications
of X. Given a compatible proximity 6 on X the associated Hausdorff
compactification 6X (called the Smirnov compactification of (X, §)) may
be constructed as follows. Let X denote the set of maximal §-round
filters on X, and identify x € X with A/, € 6X. For 4 C X, set

0(4) = (F €6X: 4 ¢ F)
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and declare (for Ey, Es C 6X) E, ¢* E, if and only if thereare 4,, 4, C X
with A;d Asand E; C 0(4;) (z = 1, 2). Then §* is a separated proximity
on 06X, 6*x = 8, X is 7(6%)-dense in 6X, and 7(8*) is compact and Haus-
dorff. Since a compact Hausdorff space admits a unique proximity, we
have (for 4,, 4. € X) 4,8 4, if and only if

Clax A1 M Cl@X A2 # 0.

Note also that for # ¢ 6X, |0(4): 4 € F#} is a 7(6*)-neighborhood
base at % .

If 6 is a proximity on X and % € I1(8), then every minimal %-Cauchy
filter is a maximal 8-round filter. So X € %X C 6X. Moreover, §(%Z*) =
8*|gx and so 7(#*) = 7(§*)|qx. It is a consequence of Shirota’s Theorem
[9, p. 229] that, assuming the nonexistence of measurable cardinals, Z X
is realcompact as a topological space.

Also, if % € T1(5) is functionally determined by D C R¥, then a filter#
on X is %-Cauchy if and only if for each ¢ > 0 and finite subset
{fi, ..., fa}l € D, thereis F € & such that whenever x, y € F and
Ecil,...,n},

(@) — fe)] = &

for 4, BC X, 4 ¢ Bif and only if thereisn € N, f1,..., f, € D, and
¢ > 0 such that if x € 4 and ¥y € B then for some &k € {1, ..., n},

Ifi(x) — fi(y)] = e

If Z, and Z, are Hausdorff compactifications of a Tychonoff space X,
we write Z; Zx Z; and say Z; is projectively larger than Z, if there is a
continuous surjection f: Z; — Zs such that f(x) = x forall x € X. We
write Z; =x Z. and say Z is isomorphic to Z, if there is a homeomorphism
h: Z, — Z,such that h(x) = x for all x € X. We let £ (X) denote the set
of all isomorphism classes of Hausdorff compactifications of X. Then
(A (X), =x) is a complete upper semilattice and is a complete lattice
when X is locally compact. When 6; and 4§, are compatible proximities on
X, 6, C 8, if and only if ;X =y §:X. We write §; = §, when §; C 8, so
that the set of compatible proximities on X, partially ordered by =, is
order-isomorphic to (4 (X), Zx).

Some other concepts will be recalled in later sections. The reader may
find references to [16], [9], [17], or [18] helpful. The work presented in
this paper was initiated in the author’s Ph.D. dissertation (4], and the
author wishes to thank Jack R. Porter for invaluable aid and encourage-
ment during its preparation.

2. Proximities on E-completely regular spaces. Let 6 be a com-

patible proximity on a Tychonoff space X. If T is a realcompactification
of X, then % (T') corresponds to a complete compatible uniformity ¥  on
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T, in which case (T, 7") is the completion of (X, ¥ |x). We can ask
further: when is there a compatible complete uniformity ¥~ on T such
that 8(¥ |x) = 8? Of course, if II(§) contains only the totally bounded
member, then the answer is: only when 7" =y 6X, the Smirnov compacti-
fication of (X, §).

Definition. Let 6 be a compatible proximity on a Tychonoff space X,
and let 7 be a Tychonoff extension of X. We say that X is §-completable
to T if there is a compatible complete uniformity ¥~ on 7T such that
3(4 |x) = 6.

We note that if X is §-completable to 7', then (without loss of generality)
1" is an extension of X contained in 6X and (assuming the nonexistence of
measurable cardinals) T is realcompact.

We call a filter % on a topological space X fixed if

N{cly F: FEF} #0,

and free otherwise. The fixed minimal %-Cauchy filters on a uniform
space (X, %) are the (% )-neighborhood filters.

2.1. PROPOSITION. Let § be a compatible proximity on a Tychonoff space
X,andlet X C T C 6X. The following are equivalent:

(a) X is d-completableto T.

(b) There is a compatible complete uniformity ¥ on T such that §(¥") =
0*| r, where 8* is the unique compatible proximity on 8X.

(c) Thereis U € T1(8) such that T is the set of minimal U -Cauchy filters
on X.

(d) Thereis U € M(6) such that T\X 1s the set of free minimal U -Cauchy
Jfilters on X.

Proof. We shall prove only (a) = (b). Suppose there is a compatible
complete uniformity %" on T such that 6(¥ |x) = §. Let¥”, be the unique
totally bounded uniformity on T such that §(¥ ;) = 8(¥"), and let?” ; be
the unique totally bounded uniformity on 7 such that §(%",) = &% r.
Then §(¥ 1|x) = & and 6(¥ 2|x) = &. So, since ¥ 1|x and ¥ 4|x are both
totally bounded members of I1(8), 7 1|x = ¥ s|x. Thus, ¥, = ¥, since
both ¥, and ¥, are compatible on T and X is dense in 7. Hence,

8V ) =8 1) = 8(¥5) = 81

2.2. PROPOSITION. Let 8 be a compatible proximity on a Tychonoff space
X. If T is a realcompactification of X contained in 6X and 6X = BT,
then X 1s 6-completable to T.

Proof. Let?” be the complete compatible uniformity on 7" correspond-
ing to the gauge structure € (T). For 4, B C T, A 6(¥")B if and only if

ClﬁTA f\ ClﬂTB # ﬂ
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if and only if
clix A Nclex B#9
if and only if
A §*| 7B.
So 8(¥") = 6*| 7. Thus, X is §-completable to 7" by 2.1.

2.3. COROLLARY. Let X be a Tychonoff space and let § be the proximity on
X corresponding to BX . Then X is §-completable to every realcompactification
of X contained in 6X.

Proof. Let X C T C §X =x BX. Then 6X =,871[9, p. 89]. So X is
s-completable to T" by 2.2 since T is realcompact.

Recall [17] that if E is a fixed topological space, then a topological
space X is called E-completely regular if X is homeomorphic to a subspace
of some product of copies of E, and X is E-compact if X is homeomorphic
to a closed subspace of some product of copies of E. Thus, the [0, 1]-
completely regular spaces are the Tychonoff spaces, and the [0, 1]-compact
spaces are the compact Hausdorff spaces. The R-completely regular
spaces are also the Tychonoff spaces, and the R-compact spaces are the
realcompact spaces which have been studied extensively and character-
ized in terms of C(X) ([9], [17]). The N-completely regular spaces are
the zero-dimensional 7'y spaces. (A topological space is zero-dimensional
if the clopen subsets of X are a basis for the open sets; a Tychonoff space
X is strongly zero-dimensional if BX is zero-dimensional.) An E-compactifi-
cation of a topological space X is an E-compact extension of X.

Definition. (a) Let E be a topological space and let § be a compatible
proximity on a Tychonoff space X. § is an E-rich proximity if X is é-
completable to every E-compactification of X contained in 8X.

(b) Let E be a topological space and let Z be a Hausdorff compactifi-
cation of a Tychonoff space X. Z is called an E-rich compactification of X
if the proximity induced on X by Z is an E-rich proximity.

(c) A compatible proximity on (respectively, a Hausdorff compactifi-
cation of) a Tychonoff space X is a rich proximity (respectively, a rich
compactification of X) if it is an R-rich proximity (respectively, an R-rich
compactification of X).

2.4. COROLLARY. For any realcompact space E and any Tychonoff space
X, BX s an E-rich compactification of X. In particular, BX is a rich
compactification of X .

Proof. The second assertion follows from 2.3, and, since any E-compact
space is realcompact, the first assertion follows from the second.
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Every Hausdorff compactification of a pseudocompact Tychonoff space
X is a rich compactification of X. Also if X is not E-completely regular,
then X has no E-compactifications and, hence, every Hausdorff compacti-
fication of X is an E-rich compactification of X. Of course, in this case,
no Hausdorff compactification of X can be E-completely regular. Even
when X is E-completely regular, 8X need not be E-completely regular, as
the existence of zero-dimensional, not strongly zero-dimensional spaces
shows [12]. It is of interest to determine, for a given space E, whether
every E-completely regular space X has an E-completely regular Haus-
dorff compactification. This is not the case for every realcompact space E,
as the following example shows.

Example. Let E be a realcompact space which is totally disconnected
but not zero-dimensional ([9, 16L], [18, 29B]). Then every E-completely
regular space is totally disconnected, and every compact E-completely
regular space is zero-dimensional. So £ can have no E-completely regular
Hausdorff compactification. (This example was discussed in [14] where it
was observed that BE is not E-completely regular.)

The next theorem concerns the existence of E-completely regular
Hausdorff compactifications of E-completely regular spaces (without
regard to their E-richness). The concepts involved are essentially those
discussed in [10], [3], and [19].

2.5. THEOREM. For a Tychonoff space E, the following are equivalent.

(a) E has a Hausdorff compactification which is E-completely regular.

(b) Every E-completely regular space has o Hausdorff compactification
which 1s E-completely regular.

(c) Every E-completely regular space has o Hausdorff compactification
which 1s E-completely regular and is projectively larger than each of its
E-completely regular Hausdorff compaciifications.

Proof. We shall prove only (b) = (c). Let X be E-completely regular
and from each isomorphism class of E-completely regular compactifica-
tions of X choose a representative. Let {Z;: 7+ € I} be the nonempty set of
these representatives. Let h: X — II{Z,: ¢ € I} be defined by 7;(h(x)) = x
(x € X,7 € I). Then h is an embedding. Let

Z = clu, z; k(X).

Then Z is an E-completely regular compactification of (X) (which we
can identify with X via k) and .| z is a continuous surjection of Z onto Z;
such that m;(h(x)) = xforallx € X.SoZ =21 Z..

The remainder of this section is devoted to showing that if £ is a
realcompact space which satisfies a stronger condition than (a) of 2.5,
then the largest E-completely regular compactification of an E-completely
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regular space is an E-rich compactification. Throughout the remainder of
this section E will denote a fixed Tychonoff space.

Defination. For a Tychonoff space X, set
D(X) = {gof:forsomen € N,f € C(X, E*) and g € C(E")}, and
D*(X) = D(X) N C*X).
Also define the gauge structureson X: 2 (X) = Z(D(X)) and Z*(X) =
9 (D*(X)).

Note that D(X) is just the collection of continuous real-valued func-
tions on X which factor continuously through some finite power of E,
and also

D*¥(X) = {gof:forsomen € N,f € C(X, E*) and g € C*(E")}.
2.6. ProPOSITION. Let X be a Tychonoff space. D(X) and D*(X) are

vector sublattices of C(X) which contain the constant functions.

Proof. Let h; = g;0f; € D(X) where f; € C(X, E*) and g, € C(E")
(# =1,2).Letm: R X R — R be continuous. Define f € C(X, E*t X E")
by

fx) = (filx), f2(x)) (x € X),
and g € C(E™ X E™) by
g(y1, y2) = m(g:(y1), £2(¥2)) (¥« € E™, 1 = 1,2).

Then k = gof € D(X). It follows that D(X) is closed under the neces-
sary binary operations and clearly D(X) contains the constant functions.

Since the above function g will be bounded if g, and g, are bounded, the
proof is similar for D*(X).

2.7. PROPOSITION. For a Tychonoff space X, the following are equivalent.
(a) X 1s E-completely regular.

(b) 9*(X) is a compatible gauge structure on X.

(c) D (X) is a compatible gauge structure on X.

Proof. Let 7 denote the topology of X. First note that since 2*(X) C
Z(X) € ¢(X),

(D*X)) S (P (X)) S7(F (X)) =

So (b) = (c) is clear. To show (a) = (b) we show r C 7(£2*(X)) when
X is E-completely regular. Let U € 7 and suppose that p € U. Since X
is E-completely regular by {17, p. 16] thereisann € Nand f € C(X, E*)
such that

fp) ¢ clg f(X\U).
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Since E” is Tychonoff, there is ¢ € C*(E") such that

vy e B Jg(y) — ¢(f(p))] < 1} S ENclpn f(X\U).
Now if x € X such that |g(f(x)) — g(f(p))] < 1, then
f(x) ¢ clgn f(X\U)
and so x ¢ X\U. Thus,
fx € X:gof(x) —gof(p)l <1} S U.

So U € 71(Z*(X)).

It remains to show (c) = (a). Suppose that & (X) is compatible with
7. Let p € X and let 4 be a closed subset of X such that p ¢ 4. Then
X\A4 is a neighborhood of $ and, since & (X) is compatible with r, there
aren; € N, f; € C(X, E"), g, € C(E*) (j=1,...,k),and ¢ > Osuch
that whenever

|gfofj<x) _gjojj(p)l < e foralljz 17"'yky
then x € X\4. Let

k
v=[lE"Y
=1
and define f: X — ¥V by

fx) = (f;(x)); (x € X).

Then f is continuous. Note that the gauge structure &” on ¥ functionally
determined by

k

U {go ;g e C(EY)

j=1
is compatible with the topology of ¥ [6, p. 200]. So
G=ly€ Yilgom(y) —gom(f(p))| <e forallj=1,..., kj}

is a neighborhood of f(p) in ¥, and G M f(4) = 8. So f(p) ¢ cly f(4).
Since Y is a finite power of E, by [17, p. 16] X is E-completely regular.

2.8. PROPOSITION. Let X be an E-completely regular space, letn € N, and
letf € C(X, E"). Then

(@) f1 (X, 2 (X)) — (E*, € (E")) is uniformly continuous, and

(b) f: (X, 9*(X)) — (E*, €*(E")) is uniformly continuous.

Proof. We must show that for every pseudometric e € % (E") (respec-
tively, G*(E*)), e o (f X f) € D(X) (respectively, 2*(X)). Let
e € B (E") (respectively, @*(E")). Let ¢ > 0 be given. There are
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g1, ..., g € C(E") (respectively, C*(E")) and § > 0 such that
lg:(y1)) — gi(y2)] <8 foralli=1,...,k
implies
e, y2) <e
Now g; o f € D(X) (respectively, D*(X)) for ¢+ = 1, ..., k. Suppose
%1, 2 € X and
lgiof(x1) — giof(x)] <6 foralli=1,..., k.
Then

e(f(x1), fx2)) < e
Le.,
eo (f X [f)(x1,x2) < e
Soeo (J X /) € Z(X) (respectively, Z*(X)).

2.9. COROLLARY. Let X be an E-completely regular space, let n € N and
let f € C(X, E"). Let 8 denote the proximity induced on E" by B(E"). Then

(a) f: (X,8(D(X))) — (E", B) 1s a p-map, and

(b) f: (X, 8(Z*(X))) — (E", B) is a p-map.

Proof. (€ (E")) = 8(€*(E")) = B, and every uniformly continuous
function is a p-map with respect to the induced proximities. So (a) and
(b) follow from (a) and (b) of 2.8.

2.10. ProprosITION. Let X be an E-completely regular space, and let B,
B, C X.If B16(Z2 (X)) By, then thereisann € Nand f € C(X, E*) such
that f(B1)B f(B2) where 3 is the proximity induced on E" by B(E").

Proof. Suppose B, $(2 (X))B;. Then there are n; € N, f; € C(X, E*),
g, € C(E") (j=1,...,k),and ¢ > 0 such that whenever x; € B; and
Xe € Bythereisj € {1,...,k} with

1g5(f5(x1)) — g;(f5(x2))| 2 e

Set
k .
Y =]]E"
=1
and let & be the compatible gauge structure on Y functionally determined
by

k
U {gomg e CEY)]
pus
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(6, p. 200]. Then 8(&’) is a compatible proximity on Y. Define f: X — V
by

fx) = (f;(x)); (x € X).

Thenf € C(X, Y). If x; € Byand x» € B,, then thereisaj € {1,..., k]
such that

lgjom;(f(x1)) — gyom;(f(w2))] 2 e

So f(B1)#(&)f(Bz). Denote the proximity induced on ¥ by gY as 8.
Since 8 € §(&), f(B:1)B f(B2). Finally note that Y is homeomorphic to
E*wheren = n;1 4+ ...+ n;.

2.11. ProPOSITION. Let X be an E-completely regular space. Then
§(2 (X)) = §(Z*(X)).

Proof. Since 9*(X) C D(X), 6(Z(X)) € 6(2*(X)). Suppose that
Bi1,B: € X and B1$(Z (X)) Bs. By 2.10, thereisan# € Nandf € C(X, E")
such that f(B;)8 f(B:) where 8 is the proximity induced on E" by B(E").
By 2.9 (b),

J (X, 8(Z*(X))) — (B B)
is a p-map. So B; $(Z*(X)) Bs. Therefore, §(Z*(X)) C §(Z(X)).

Definition. For an E-completely regular space X let 65X denote
8(2*(X))X, the Smirnov compactification of (X, §(Z*(X))), and let
85 denote §(Z*(X)) when no confusion can arise about the domain of
the proximity.

2.12 PROPOSITION. (a) 6zX is E-completely regular for all E-completely
regular spaces X if and only if B(E") is E-completely regular for all n € N.

(b) If X 1s an E-completely regular space and v is a compatible proximaity
on X such that vX 1s E-completely regular, thend g C v.

Proof. (a) Suppose that §zX is E-completely regular for every E-
completely regular space X. Let » € N. E" is certainly E-completely
regular, and D(E") = C(E"). So B(E") =g 6g(E") is E-completely
regular.

Conversely, suppose that 8(E") is E-completely regular for all » € N.
Let X be an E-completely regular space, and let 6 denote 6. Let 4; and
A, be disjoint closed subsets of X. Then 4, §* A4, where §* is the unique
compatible proximity on 6X. So there are subsets B, By & X such that
Byé Byand 4; € O(B;) (1 = 1,2). By 2.10 there is # € N and f €
C(X, E") such that f(B;)8 f(B:), where 8 is the proximity induced on E*
by B(E"). Now f: (X, 8) — (E", B) is a p-map by 2.9. So there is a
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continuous function f: X — B(E") such that f|y = f. Now fori = 1, 2,
f(4:) € f(clsxBi) S clgeam f(By),

and since f(B1)8 f(B2),
clgcam f(B1) M clgen f(B2) = 0.

Sof(41) N f(A4,) = 0. Now B(E*) is E-completely regular, and f(4,) and

F(42) are disjoint closed subsets of 8(E"). By (17, p. 16] and the compact-
ness of B(E"), thereism € N and g € C(B(E"), E™) such that

g(f(41) N g(f(4)) = 0.
So
gof € C6X,E™) and gof(d:) Ngof(d,) = 0.

Therefore, by [17(3.3, p. 16)], 6X is E-completely regular.

(b) Let v be a compatible proximity on an E-completely regular space
X such that yX is E-completely regular. Let By, B, € X and suppose
that By ¢ Bs. Set K; = clyx B; (# = 1,2). Then K; M K, = 0. Since vX
is E-completely regular and compact, by [17, (3.3, p. 16)] there is an
m € Nand b € C(yX, E™) such that h(K;) N h(K,) = 8. h(K;) and
h(K.,) are disjoint compact subsets of E™. So there is g € C(E™, [0, 1])
such that

g(h(K1)) € {0} and g(h(K2)) S {1}.
Set f = h|x. Then g o f € D*(X). Also if x; € B, and xs € B, then

lgof(x) — gofx)| = L.
So B, 8z Bs. Therefore, 65 C .

It follows immediately from 2.12 that if B(E") is E-completely regular
for all # € N and X is an E-completely regular space, then 45 is the
proximity induced on X by the largest E-completely regular compactifi-
cation of X of 2.5.

2.13. PROPOSITION. Suppose that 3(E") is E-completely regular for all
n € N. Let X be an E-completely regular space, and let X € T C §zX. Then
T is E-completely regular, and 6 g T = 7 65X .

Proof. By 2.12 (a), 6zX is E-completely regular. So 7" is E-completely
regular. Also, by 2.12 (a), 657 is E-completely regular. So 657 is an
E-completely regular compactification of X, and therefore § ;X =y 657
Also, 6z X is an E-completely regular compactification of 7. So 6z = »
0X.S06xT =5 6zX and, since X isdensein T, 6z1 = r65X.

2.14. PROPOSITION. Let E be realcompact. If X is an E-compact space,
then D (X)) 1s a complete gauge structure on X.
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Proof. Suppose X # 2 (X)X, the completion of (X, Z(X)). Let
/ € C(X, E). By 28 (a), f: (X, 2(X)) — (E, € (E)) is uniformly
continuous. Since E is realcompact, % (E) is complete [17 (13.6, p. 146)].
So there is a uniformly continuous function

I (@ X)X, 9X)") — (E, C(E)

such that flx = f. Thus every member of C(X, E) extends to a member
of C(Z (X)X, E) which, by [17 (4.5, p. 28)] contradicts the E-compact-
ness of X. Therefore, X = 2 (X)X and, hence, Z(X) is complete.

2.15. THEOREM. Let E be a realcompact space such that B(E") 1s E-
completely regular for all n € N. If X 1s an E-completely regular space,
then 8z 1is an E-rich proximity on X and 6zX is an E-rich, E-completely
regular compactification of X.

Proof. Let X C T C 65X where T'is E-compact. & (T') is a compatible
gauge structure on 1" and is complete by 2.14. By 2.11, §(2(T)) =
8(9*(T)), and the Smirnov compactification of (7', §(Z(T))) is 651
By 2.13, 6,1 = 6xX. Thus,

WD (1)) = 8(Z*(X))*|

where §(2*(X))* is the unique compatible proximity on 6z X. So, by 2.1,
X is 8(2*(X))-completable to T". Therefore, 6z = §(2*(X)) is an E-rich
proximity on X. It follows that § ;X is an E-rich compactification of X,
and 6 zX is E-completely regular by 2.12 (a).

Since the class of R-completely regular spaces coincides with the class
of Tychonoff spaces, certainly 8(R") is R-completely regular for all #» € N,
and of course R is realcompact. In this case, it is clear that X =y BX,
the Stone-Cech compactification of X, for any Tychonoff space X. So
the results of 2.15 with E = R have already been proven in 2.4.

Finally we consider the case where E = N. The class of N-completely
regular spaces coincides with the class of zero-dimensional Tychonoff
spaces. If » € N, then N" is a countable discrete space, and so 8(IN") is
zero-dimensional and, hence, N-completely regular. Also, of course, N is
realcompact. In this case, for a zero-dimensional Tychonoff space X,
OnX is the Banaschewski zero-dimensional compactification of X [2].
Since there exist zero-dimensional Tychonoff spaces which are not strong-
ly zero-dimensional, 68X does not coincide with X in general. In fact
there exists an N-compact space X which is not strongly zero-dimensional
[12]. For any such space X, one of the following must hold:

(1) 6nX is a rich compactification of the realcompact, noncompact
space X which is not the Stone-Cech compactification of X, or

(2) there is a realcompact space T such that X € 7" C 6nX and T is
not N-compact. In the next section we shall see that many realcompact,
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noncompact spaces X have rich compactifications besides X. The
existence of realcompact zero-dimensional spaces which are not N-
compact has been shown by Nyikos [13].

3. More E-rich proximities. Throughout this section E will denote
a fixed realcompact space with at least two points such that B(E") is
E-completely regular for all # € N. According to 2.15, for every E-
completely regular space X, §,X is an E-completely regular, E-rich
compactification of X. In this section we shall show that there are
E-completely regular spaces X which admit E-completely regular, E-rich
compactifications besides 6 zX .

We shall begin with a specific construction. Let (¥, 7) be a locally
compact, noncompact, E-completely regular space such that the one-
point compactification a ¥ of V is E-completely regular. Let X = VY @ ¥V
be the topological sum of two copies of ¥, and let 7 @ 7 denote the
topology of X. Weset X, = ¥V X {i} (+ = 0, 1) so that

X =Y X{0,1} = X, U X,

where X ; is homeomorphicto ¥V (¢« = 0, 1). Let p: X — ¥ be defined by
py, 1) =y (€ Y, ic{01}).

Then p is continuous.

3.1. PROPOSITION. The one-point compactification aX of X is E-completely
regular.

Proof. Let x, (respectively, y,) denote the point at infinity in aX
(respectively, V). p: X — YV extends to the continuous function p*:
aX — aY such that p* (xo) = yo. Let x5, x2 € aX, 21 3 xo. If p2(x1) #
p*(x,), then since a ¥V is E-completely regular, by [17 (3.3, p. 16)], there
there is f € C(aY, E) such that f(p=(x1)) # f(p*(x2)). So

fop* € ClaX, E) and fop(x1) # fop(xs).

If po(x1) = p2(x2), then {x1, x2} = {(3,0), (v, 1)} for some y € V. Since
aY is E-completely regular, by [17 (3.3, p. 16)], there is f € C(aY, E)
such that f(y) # f(y¢). Define g: aX — E by g(x0) = f(y0), and (for
te Y, i€ {0,1})

NIRRT
g(t,9) ”{f@o) ifi=1.

Then g € C(aX, E) and g(x;) 5 g(xs). Therefore, aX is E-completely
regular by [17 (3.3, p. 16)].

Let
L =1{(G,H) € r X7:clyGZ H and clyH is compact]}.

Il
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Let (G, H) € . Then clyG and Y\H are disjoint closed subsets of ¥
and clyG is compact. Since Y is E-completely regular, by [17 (3.3, p. 16)],
thereisanz € N and ¢ € C(Y, E") such that

g(clyG) M clgag(Y\H) = 0.

Since g(clyG) is compact, there is h € C(E", [0, 1]) such that
h(g(clyG)) S {1} and h(cleng(Y\H)) S {0}.

Set f(e.uy = hog Then

fwm € D¥Y), fe.m(Y) €0, 1], fg.m(clyG) € {1}, and
fe.mn(Y\H) C {0}.

FOrg € D(Y)r/” € {O,l},and (GYH) E"grdeﬁne [g; (GY H);,L] X -
R (fory € V,j € {0,1}) by

_ e = 380) if 7 5% i
i 6miiond =500 oy 2

Then [g; (G, H) ;1] € C(X).
For D¥(Y) € D C D(7Y), let

D = {[g; (G,H);il: 1€ {0,1},g € D, (G, H) € Z}.
Then 2 (D) is a gauge structure on X.

3.2. PROPOSITION. For D*(Y) € D C D(Y), D (D) is compatible with
the topology @ ron X.

Proof. Since each member of D is continuous, we have
(9D Crr.

Let (x,7) € X. A typical basic open neighborhood of (x, 7) in X is of the
form H X {i} wherex € H € 7and clyH is compact. Letx € G € 7 with
clyG € H. Let

h = [fwm; (G, H);1l.
We claim that

{3 7) € Xo|h(y,j) — h(x,9)| <1} S H X {4}.
Note that h(x, ) = 2. If 7 # 1, then

h(y,7) = femn(y) £ 15

ify ¢ H, then h(y,j) = 0.Soif |k(y,j) — h(x,7)] < 1, then h(y,7) > 1,
and we must have (y,j) € H X {i}, as claimed. Thus, r ® 7 C (2 (D)).

3.3. ProrosITION. If D¥*(YV) C D, C D(Y) (i = 1,2), then
8(2(Dy)) = 8(Z(D>)).
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Proof. 1t suffices to show that
5(2(D*(Y))) = 8(2(D(V))).
Since Z (D*(Y)) € 2(D(Y)) we have
(2 (D(V))) C 6(2(D*(Y))).

Let 4,, 4. € X and suppose 4 6(9(D(Y))) As. Then there are g, .
g € D(Y), (G, Hy), ..., (G, H,) € &L, 14, ... E{O 1}, ande>0
such thatz € 4,,7 € A21mplxes for some k € { .o, nl,

Hgiu (Gry Hi) s il (2) — lgus (Gx, Hy); 1) (2') | 2 e

SetG =\U{Gy:k=1,...,nl,and H =\J {H;: k=1,...,n}. Then
(G, H) c¢Z.

We claim that p(41)\H 6z p(A)\H. 6z = 6(D(Y)) = 6(D*(Y)) is
the proximity on ¥ defined in Section 2.) For suppose thaty € p(4:1)\H
and ¥’ € p(42)\H. Then there are 7, € {0, 1} such that (v,7) € 4, and
(y',7) € 4,. Thus, forsomek € {1,...,n},

lgws (Gi, Hi); 1l (v, 9) — [ge; (Gry He) 5 0] (¥, 7)| Z
Since v ¢ H and y' ¢ H, we have

(gx; (Gx, Hi); il(y,7) = &(y) and

lgk; (Gry Hi); 2 (¥, 7) = & (y').
So

() — a@)l z e

Since g1, . . ., g, € D(Y), thisshows that p(41)\H §zp (A:)\H, as claimed.

Since 8z is the proximity induced on ¥ by &2 (D*(Y)), there areay, . . .,
@ € D*(Y) and p € (0, 1) such thaty € p(4,)\H and y" € p(4:)\H
imply for some I € {1,...,m},

lal(y) —a,(y )l Zp
Since Y is locally compact, there is U € 7 withcly H € U and cly U
compact. (H, U) ¢ &. If & € {1,..., n}, then g, is bounded on cly U.
Since D(Y) is closed under infs and sups and contains the constant func-
tions (by 2.6), there is b, € D*(Y) such that
bkiclyU = gklclyu
Letn = min {¢, p, 1 — p}. The functions [by; (Gx, Hy); 4] (B =1,...,
n); lay (G, H);tl, [ay; (H,U);t], {=1,...,m;t=0,1) form a finite

subset of D*(Y). We claim thatif s € 4;and z’ € A4,, then for one of these
functions, %, we have

h(z) — k()| = n
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Letz = (y,1) € Avand 2’ = (y',7) € A,. First suppose thaty € U
and 9’ € U. Then for some k& € {1,...,n},

Hgrs (G, Hi)s ) (v, 0) — lgws (G, Hi) 5 ], 7)] 2 e
So
[bxs (G, Hi) 3 1) (0, 0) — [bi; (Giy Hi) 5 0] (v, 5) 2 .
Next suppose that y € Y\H and ¥’ ¢ Y\H. Then
y € p(AD\H and y' € p(4:)\H.
So, for some [ € {1, ..., m},
la(y) — a(y")] > p.
Now
lay; (G, H);0)(y,7) = ai(y) and
la:; (G, H); 01", 7) = a.(y").
So
llas; (G, H);0](y,1) — las; (G, H); 0](¥',7)| 2 p = n.
Finally, supposey € Hand y’ ¢ Y\U. If,forsome! € {1,...,m},
la(y) — a:(y")] = p,
then take ¢t € {0, 1}\{7}. Then
lay; (H, U); t1(3,1) = ai(y) and
lai; (H, U); 11, 7) = a.(y').
So
llay; (H, U); t1(y,2) — lay; (H, U); 1, )] 2 p 2 7.
Otherwise, for all € {1, ..., m},
la:(y) — a.(y")] <o
Now
lay; (H, U);1)(y,4) = ax(¥) + far,0n(¥) = a1(y) + 1
and
lay; (H, U); 2]y, 7) = a(y').
Thus,

lay; (H, U);2)(y, 1) — lay; (H, U); 210", )] = |1 + ar(y)) — a:1(5")]

=1+ (@) —a@Nzl-pzn1
This proves the claim.
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It follows from the claim that 4, 6(2 (D*(Y))) A4,. Therefore,
5(2(D(Y))) = 8(2(D*(Y))).

We shall let v denote 6(2 (D*(Y))).

3.4. PROPOSITION. v is not the proximity induced on X by the compactifi-
cation 6 X of X.

Proof. Pick ey, e; € E such that e, # e;. Definef: X — E by f(x) = e;
ifx€ X;(#=0,1). Thenf € C(X,E). Thereisg € C(E, [0, 1]) such that
g(ei) = 1’ (l = Or 1) g Of E D*(X)y and) if Xq E Xt (1’ = Oy l)y theﬂ

lgof(xo) — goflxi)| = 1.

So X 8zX1. We claim that Xy X;. Forlet g, ..., g € D*(Y), (G, Hy),
o, Gy, Hy) €% ,and iy, ..., 1, € {0,1}. Let

ye YNU{H:k=1,...,n}.

Then, fork =1,...,n,

(gx; (G, Hi); i) (3, 1) = g(y) (0 =0, 1).
Thus,

[lgrs (Gry Hi); 2l (y, 0) — (g (G Hi) 3 il (v, 1)] = 0
forallk =1,...,%n. So Xov X: as claimed.

Before we discuss the compactification yX of X we need a few results
about y-round filters on X.

3.5. PROPOSITION. 4 7 ® r-free filter ¥ on X is y-round if and only if
for each F € F there is an F' € % with p~1(p(F"))y X\F.

Proof. Let # be a v ® r-free filter on X. Suppose that # has the
prescribed property. If F € %, then there is F' € # such that

P (F)y X\F.

Now F' C p~1(p(F’)) and so p~(p(F’")) € & . Thus,Z is y-round.
Conversely, suppose # is y-round. Let F € & . Then there is F; € %

such that F; 4 X\F. So there are gy, ..., g, € D*(Y), (Gy, Hy), ...,
(G, Hy) €&, 44, ...,14, €{0,1},and ¢ > Osuch thatz € Fy, 2’ € X\F
implies for some k € {1,..., n},

lgrs (G, Hr); 12)(2) — lgr; (Gry Hi); l(2)]| 2 e
Set
H=\U{Hg:k=1,...,n}.

cly H is compact, whence p~!(cly H) is compact. Since % is r @ r-free,
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there is Fy € % such that
Fo\ p~lcly H) = 0.
Set F' = Fy M\ F,. Now suppose that
(¥,1) € p~H(p(F")) and (¥',]) € X\F.
(v, 1) € F' for some [ € {0, 1}. So for some k € {1,...,n},
lge; (G, Hi)3 il (v, 1) — lgws (Gr, Hi) 5 0] (6, 1)] 2 e
Now (v,1) € Fy.So p(y,1) =y € Y\H. Thus
lg; (Gr, Hi); 1l (3, 1) = ge(¥) = [gis (Gr, Hi)5 il (0, D).
So
Hge; (Gr, Hi); 0l (v, 1) — lgw; (Gr, Hi) 3 ul (v, )] 2 e
Therefore, p~1(p (F')) ¥ X\F.

3.6. COROLLARY. A 7 @ r-free, v-round filter F is generated by the
filterbase B = {p='(p(F)): F ¢ F}.

Proof. That & is a filterbase on X and that & generates # both
follow from 3.5.

If # is a filter on X, define & * = {p(F): F € ¥ }.

3.7. PROPOSITION. (a) IfF isat ® r-free, y-round filter on X, then F *
1s the unique r-free, 8 g-round filter on YV such thatF is generated by
{(p~UG): G € F*|.
(b) If F 1 and F 4 are two distinct @ r-free, y-round filters on X, then
F* =P K
(c) If 9 is a 1-free, dy-round filter on Y, then there is a 7 ® 7-free,
v-round filter F on X suchthat G = F*.

(d) Let F be a v @ 7-free, y-round filter on X. Then ¥ is a maximal
v-round filter if and only if F * is a maximal § g-round filter.

Proof. (a) Clearly# *isafilteron V. If y € N {clyp(F): F € ¥}, then
B = p7(y) © N {p~H(cly p(F)): F € F}
= N icy p='(p(F)): F € F) = N |y F: F € FY,

which contradicts the freedom of & . So % * is r-free. To see that Z * is
sg-round, let F € % . We want to find F/ € % such that

p(F') 8 Y\p(F).

There is F; € # such that Fy 4 X\F. So there are g1, . .., g, € D*(Y),
(G, Hy), ..., (G, Hy) €L, 41, ...,1, € {0, 1}, and ¢ > 0 such that

https://doi.org/10.4153/CJM-1982-021-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-021-5

RICH PROXIMITIES 337

z € Fiandz’ € X\Fimply forsomek € {1,...,n},
lgr; (Gr, Hy) s t)(2) — lgx; (Gr, Hi); i) (2)] = e
Let H =\U {Hy: k =1,...,n}. Then cly H is compact and, hence,

p~1(cly H) is compact. So there is Fy» € % such that
FoM\p~i(cly H) = 0.

Set F/ = Fi M\ Fy. Lety € p(F’) and 3y’ € Y\p(F). For some 7 € {0, 1},
(y,7) € F'; (¢/,0) € X\F.Soforsomek € {1,...,n}, we have

lgr; (G, Hy); il (¥, 2) — lgis (Gr, Hi)s %], 0)] 2 e
Since y ¢ H,
(g5 (G, Hi); il (¥, 1) = &(y).
If 2, = 0, then set a; = g + figr.un- Then
[ge; (Gi, Hi); il (3, 2) = ax(y) and
[ge; (Gi, Hi)5 4], 0) = ax(y').
So
lar(y) — ()| =z e
If 2, # 0, then
[gx; (Gr, Hi); ul(y', 0) = g(y'),
and so
lge() — &)l 2 «

Thus, the functions gx, gx + fcr.z0) (B = 1, ..., n) form a finite subset of
D*(Y) such thaty € p(F’),y" € Y\p(F) imply for one of these functions,
h, [h(y) — k()] 2 € So

p(F)és Y\p(F),

as desired. So % * is 6 g-round.

By 3.6,% is generated by {p~1(G): G € & *}. Suppose ¥ is any r-free,
ég-round filter on ¥ such that & is generated by {p~1(G): G € ¥}. If
G € 9, then p1(G) € F. So p(p-1(G)) € F* Thus, & C F* I
G € F* then G = p(F) for some F € F. There is H ¢ ¥ such that
p=\(H) C F. So

H = p(p~'(H)) S p(F) = G,

and hence, G € ¥.So F* C 4. Therefore, F* = 9.
(b) If & * =F,* then ¥, and F, are both generated by
{p—-l(G): G eﬁl*}, and, hence,g‘-l =3Z.2.
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() Let Z = {p~(G): G € F}. Clearly Z is a filterbase on X. Let
G € 9. Then there is G’ € & such that G’ $z V\G. So there are gy, . . .,
g, € D*(Y) and € > 0 such that y € G’, y € Y\G imply for some
kefl,...,n},

lge(y) — o] 2 e

Let (y, 1) € p~(G") and (y',j) € X\p-l(G). Theny € G'and y' € Y\G.
So thereisk € {1, ..., n} such that

() — &0 z «
Thus,

[gx; (8,0);01(y,9) — [g&; (8,0);0100", )| = [&(¥) — ()] 2 e

Therefore, p~1(G’) v X\p~(G). So & is a y-round filterbase on X, and
F, the filter generated by &, is a y-round filter on X. If

x € Nicly p~(G): G € ¥},
then
p(x) € N\ {p(clxp™(G)): G € G} = N {clyG: G € T},

which contradicts the freedom of 4. Thus, # is a r ® r-free filter. It is
clear that #* = 9.

(d) If #,and %, are r ® r-free, y-round filters on X, then # ; & %,
if and only if # * C % ,*. Thus, for a r ® r-free, y-round filter, we have
& is a maximal y-round filter if and only if #* is a maximal 8 z-round
filter.

Define p7: yX — 65V by
pr(x) = p(x) (x € X) and p(F) =F*(F € vX\X).
3.8. PROPOSITION. p” is a continuous surjection, and
Phxix: yX\X — 85 V\V
1s one-to-one (and, in fact, a homeomorphism).

Proof. Everything is clear except the continuity of 7. Since X and ¥
are both locally compact and p*|x = p is continuous, it suffices to check
continuity of p at points of yX\X. Let &# € yX\X and let T be an open
subset of § ¥ containing. % *. There is an open G € % * such that 0(G) C
T.Let F = p~'(G). Then F is an open member of # and p(F) = G. We
claim that p(O(F)) € O(G). First suppose thatx € O(F) M X. Then F
is a neighborhood of x in X. So G = p(F) is a neighborhood of p(x) =
p7(x) in V. Le., p7(x) € O(G). Next suppose that ¥ € O(F)\X. Then
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F € 9 and, hence,
G =p(F) € G*=p (D).

Le., p7(%) € O(G). Thus p*(O(F)) € (O(G), as claimed. So p” is con-
tinuous at.% .

It follows from 2.11 thatif D*(Y) € D C D(Y), then Z (D) is a gauge
structure on Y and 6(Z (D)) = é5.

3.9. PROPOSITION. Let D*(Y) € D C D(Y) and letF bea v @ r-free,
v-round filter on X. Then % is D (D)-Cauchy if and only if F* is I (D)-

Cauchy.
Proof. Suppose that F is 9 (D)-Cauchy. Let g, ..., g, € D and
e > 0. Since ¥ is 2 (D)-Cauchy, there is F € .% such that z, 2 € F
implies
lgxs (@,0);0](z) — [g; (8,0);0](z')] < e
forallk = 1,...,%n. Let G = p(F), and lety, ' € G. For some 7, j €
{0, 1}, (v,1), (¢, j) € F. Thus, if & € {1,..., n}, then

lgx(¥) — &) = |lg; 0,9);01(y,7) — [g; 0,9);010,7)] £ e

So F * is @ (D)-Cauchy.

Conversely, suppose that % * is 9 (D)-Cauchy. Let gy, ..., g, € D,
(G, Hy), ..., (G, H,) €&, 4y,...,1, € {0,1},and ¢ > 0. Since % * is
2 (D)-Cauchy and 7-free, and \U {clyH;: k = 1, ..., n} is compact,
there is G € % * such that

Gm(U{Clka:k‘-:l,...,n}):ﬂ
and y, ' € G implies
lgx(¥) — @) £ € forallk=1,...,n

Let F = p=(G). Then F € &# . Let (y,1), (v/,j) € Fandletk € {1,..., n}.
Since v, ¥’ € Y\H;, we have

(gr; (Gi, Hy); i) (9,2) = g(y) and

(gx; (Gry Hi); )Y, 7) = & ().
Thus,

|[gk? (Gx, Hy); w) (v, 2) — lg; (Gi, Hr); ik](ylvj)[ = e
So # is & (D)-Cauchy.

3.10. PrROPOSITION. vX s E-completely regular.

Proof. Since yX is compact, by [17, p. 16] it suffices to show that
C(yX, E) separates the points of vX. Let 1, t2 € vX, t; 5 to. If p7(4;) =
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p7(ty), then there is f € C(6zY, E) such that
T () # f(p (1)
since 6z Y is E-completely regular. Then
fopy € C(yX,E) and fop7(t1) # fop'(ts).

If p7(41) = p¥(t2) then ty, t, € X. Let ¢: vX — aX be the unique con-
tinuous surjection of ¥X onto the one-point compactification, aX, of X.
By 3.1, aX is E-completely regular. So there is f € C(aX, E) such that
f(t1) # f(t2). Then fogq € C(vyX, E); f o q(t1) 5% [ o q(t:). Therefore,
C(yX, E) separates the points of vX.

3.11. PropoSITION. Let X © T°C vX. Then 1T is E-compact if and only if
p7(T") is E-compact.

Proof. Suppose pY(1") is E-compact. Since vX is E-compact,

T = ()~ (1))

is E-compact by [17, p. 24].

Conversely, suppose that 7" is E-compact. Set 4 = X, U (yX\X).
Then 4 = vX\X, is closed in yX since X is open in vX. So 4 is compact.
Now p*|4: A — 8xY is a one-to-one, continuous surjection, hence, a

homeomorphism. 7'M A4 is a closed subset of 7', s0 7'M\ 4 is an E-compact
subspace of 4. Thus, p7(T M A4) is an E-compact subspace of 6z Y. But

p1(T'MNA) = p(T).
So p7(T") is E-compact.
3.12. PROPOSITION. v is an E-rich proximaity on X.
Proof. Let X € T C vX where T is E-compact. By 3.11,.S = p7(1) is
E-compact,and ¥ € S C 6zY. 5 is an E-rich proximity on Y. In fact,

(S) = 2(D(S)) is a complete gauge structure on .S whose restriction
to ¥ induces the proximity éz. Z(S)|y is functionally determined by

D = D*(Y)\J {gy: g € D(S)}.

Clearly, D*(Y) € D C D(Y). So S\'V is the set of 7-free minimal 2 (D)-
Cauchy filters on Y. Therefore, by 3.9, (p")"1(S\Y) = T\X is the set of
r @ 7-free minimal & (D)-Cauchy filters. By 3.3, (2 (D)) = v. So, by
2.1, X is y-completable to 7.

Therefore, v is an E-rich proximity on X.

The main results obtained thus far are summarized in the following
theorem.

3.13. THEOREM. Let E be a realcompact space with at least two points
such that B(E™) is E-completely regular for alln € N. Let X be a noncompact
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locally compact Hausdorff space which is the topological sum of two homeo-
morphic subspaces, Xo and X,, and whose one-point compactification is
E-completely regular. Then X is an E-completely regular space which admits
a compatible E-rich proximity v such that

(@) vX is E-completely regular,

(b) vX #x 60X, and

(c)if A; € X, and cly A, is not compact (z = 0, 1), then Ay v X1 and
X 0y Al.

Proof. Without loss of generality, X = ¥V ® Y for some space ¥V, X; =

Y X {i}, and we can take y = §(9 (ﬁ‘(\f))) Then everything has been
proven except (c) in its full generality. The proof of the fact that X,y X,
(in 3.4) may be easily modified to prove (c).

Now consider the case where E = N. We already know that 3(N*) is
N-completely regular for all # € N and that N is realcompact. (Recall
that a space is N-completely regular if and only if it is zero-dimensional
and Tychonoff.) The straightforward proof of the following proposition
is omitted.

3.14. PROPOSITION. If V s a zero-dimensional, noncompact, locally
compact Hausdorff space, then the one-point compactification of Y is zero-
dimensional.

3.15. COROLLARY. If X s a noncompact, locally compact, zero-dimensional
Tychonoff space which ts the topological sum of two homeomorphic subspaces,
then X admits a compatible, N-rich proximity v such that vX #x onX.

Proof. This result follows from 3.13 and 3.14.

Next consider the case where £ = R. Since R-completely regular
coincides with Tychonoff, it is clear that 3(R"*) is R-completely regular
for all » € N and that the one-point compactification of any locally
compact Tychonoff space is R-completely regular.

3.16. CoroLLARY. If X 1is a moncompact, locally compact Hausdorff
space which is the topological sum of two homeomorphic subspaces, then X
admits a compatible rich proximity v such that yX #x 8X.

Proof. This result follows from the previous remarks, 3.13, and the
fact that 6rX =y BX.

We note here that in [11] Marin presents a condition on a Hausdorff
space E which guarantees that the one-point compactification of every
non-compact, locally compact, E-compact space be E-completely regular.

It is of interest to find compatible rich proximities, besides that induced
by the Stone-Cech compactification, on spaces which are not necessarily
the topological sum of two homeomorphic subspaces. We shall now obtain
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some results in this direction. In the remainder of this section we will be
concerned with rich (R-rich) proximities and compactifications of
Tychonoff (R-completely regular) spaces.

Throughout we will let (X, 7) be a fixed Tychonoff space and let 4 be
a fixed closed subset of (X, 7) such that K = cly (X\4) is compact.

3.17. PROPOSITION. Let 8, be a compatible proximity on (A, 7|4). Then
there is a unique compatible proximity & on (X, 7) such that 8|, = .

Proof. Let (4*, o) be a Hausdorff compactification of 4 such that
A* =464 and (4N\4) N X = 0. Let X* = 4* U X have the weak
topology 7* induced by {4*, K} [6]. Then (X*, 7*) is a Hausdorff com-
pactification of (X, 7) and ¢ = 7%| 4. Let §* be the unique compatible
proximity on (X*, 7*). Then 6*| 44 is the unique compatible proximity on
(4%, o). Let 8 = 6*|x. Then é is a compatible proximity on (X, 7), and
5|A = 61.

Now suppose that §’ is any compatible proximity on (X, 7) such that
8|4 = 6, Let (X?, 7*) be the Smirnov compactification of (X, é’), and
let 8 denote the unique compatible proximity on (X*, 7f). Let Af =
(XA\X) U 4. Then (A*, 7*|,#) is a Hausdorff compactification of
(4, 7]4). Thus, 6| 4* is the unique compatible proximity on (Af, 7|.).
Moreover, (6*] 4#)|4+ = 81. Therefore, there is a homeomorphism

by (At 7H4t) — (4%, o)
such that hi(x) = x for all x € 4. Define h: X* — X* by
h(x) = hi(x) (x € 4%), h(x) = x (x € X\4).

Now 7t is the weak topology on X7 induced by {A4f, K}. Thus, since
h|4* and h|x are continuous, also k is continuous. Thus, & is a homeo-
morphism, and k(x) = x for all x € X. Therefore, §' = 4.

If &# is a filterbase on X, then we set
F =1{GC X: forsome F cF, FCGl.

3.18. PROPOSITION. Let 8, be a compatible proximity on (A, 7|4) and let
6 be the unique compatible proximity on (X, v) such that 6|4 = §,.

(a) IfZ is afree 6,-round filter on A, thenF is a free 6-round filter on X.

(b) If 9 is a free 6-round filter on X, then F = G M\ A is the unique
free 8,-round filter on A such thatF = 9.

(c) For a free d-round filter # on A, F is a maximal §,-round filter on A
if and only if  is a maximal s-round filter on X.

Proof. (a) Clearly # is a filter on X generated by the filterbase # on
X; and since, for F € #, cl, F = cly F, % is r-free. To see that & is
s-round, it suffices to show that % is a é-round filterbase on X. Let
F € & . There is F; ¢ % such that F; §, A\F. Since Z is 7| a-free and
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K M 4 is compact, there is F, € # such that
cly Fs N (KM A4) = 0.

Now cly Fo = cly Fy = (cljxF2) M X, and cl;xK = K. So
clsx Fa N cljxy K = 0.

Thus, Fy § K. Since X\4 C K, F; § X\A4. Set F' = F, M F,. Then
F'$ A\Fand F' § X\4. So

F' 3 (A\F) U (X\4) = X\F,

and F' € &# . Thus,Z is a é-round filterbase on X.
(b) Since ¥ is free and K is compact, there is G ¢ % such that
GN K =@, whence G C 4. Thus,

F =G N4={(GeG:GC A,

F is a filter on 4, and & is a filterbase on X which generates ¥. For
Fe %, cly F=clyF.So% is7|sfree since F is r-free. Let F € #.
Then there is F/ € ¥ such that F’ § X\ F, and clearly F’ ¢ #.So F' § A\F
and, since §; = 6|4, ' 8; A\F. SoZ is é;-round. .

Now suppose that.# is a 7| 4-free, §;-round filter on 4 such thats# = g .
If H €, then H ¢ GandHC A.SoHe F fFecF,then Fe &G
= #. Sothereis H € # such that H C F, whence F € #. Thus, # = % .

(c) f.ZF#, anqg‘-z are two 7| 4-free, 8;-round filters on 4, then# , C.%,
if and only if #, C.%.,.

3.19. PROPOSITION. Let §; be a compatible proximity on A and let § be
the unique compatible proximity on X such that 8|, = 8,. Let U1 be a uni-
formity on A such that (%) = 61, and suppose that there is a compatible
uniformity U on X such that U\, = U,. Then

(a) (%) = 6, and

(b) of F is a 1| a-free, d1-round filter on A, then & is U 1-Cauchy if and
only if # is U-Cauchy.

Proof. (a) (%) is a compatible proximity on X such that §(%)|4 = 6:.

(b) Suppose # is %,-Cauchy. Let U € %.Then V = UN (4 X A4)
€ U,. So thereis F € # suchthat F X FC V C U.So F € % and
F X F C U. Thus, ¥ is %-Cauchy. Conversely, suppose that % is
W -Cauchy. Let V € %,. Then there is U € % such that V. = U N
(A X A). Thereis G € ¥ such that G X G € U. Thereis F € & such
that F € G. Then F C 4. So

FXFCUN( XA =V,
Thus & is %,-Cauchy.

3.20. PROPOSITION. Let &1 be a compatible proximity on A and let § be the
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unique compatible proximity on X such that 8|, = 61 Let A & T C 6:4.
Then T is realcompact if and only if X \J (% F € T\A} is a realcompact
subspace of 6X.
Proof. Define h: 6,4 — 6X by
hx) = x (x € 4) and h(F) =F (F € 54\4).

Then & is a one-to-one function. We claim that % is continuous. First
suppose that x € 4. A typical basic open neighborhood of k(x) in 6X is
of the form

OB) = BU{Y ¢ $X\X: B¢ Y}
wherex € B € r.Let M = BN A. Thenx € M € 7|4, s0
OM) = M\J{H € 6,A\A: M € U}

is an open neighborhood of x in §,4. It is easily checked that 2(0O(M)) C
O(B), so that h is continuous at x. Next suppose that # € §,4\4. A
typical basic open neighborhood of A(#) = % in 56X is of the form

0G) = intYGU {9 csX\X: G € Gy,
where G € % . There is F € & such that ¥ € Gand FN\ K = §. So
O(F) = int, F\U{# € 6,4\A: F € )

is an open neighborhood of % in 6,4. Noting that int, [ is open in X,
we can easily check that h(O(F)) € O(G). So h is continuous at .% .
Therefore, h is continuous.

Now if X U {f‘ﬁ- € T\A} is realcompact, then

BUX U{F: F c T\4})
is realcompact by [17, p. 24]. Note that & is a homeomorphism onto
h(6:4) = A U (X\X). So if T is realcompact, then A(T) = 4 U
{fzﬁ‘- € T\A4} is realcompact. Thus,

XUIZE . F e T\4} = h(T) UK
is realcompact since k(7)) is realcompact and K is compact [17, p. 87].

Definition. [8] Let S be a subspace of Tychonoff space Y.

(a) S is up-embedded in Y if every compatible uniformity on S has an
extension to a compatible uniformity on Y.

(b) Sisu-embedded (respectively, u*-embedded) in Y if every compatible
uniformity which is functionally determined by a collection of continuous
(respectively, bounded continuous) real-valued functions on S has an
extension to a compatible uniformity on Y.

3.21. PROPOSITION. (A4, 7|4) ts C-embedded in (X, 7). Thus, (4, 7|4) ts
u-embedded in (X, 7).
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Proof. Let f € C(A). Then flanx € C(4 N K) and 4 N K is C-
embedded in K. So there is g € C(K) such that

g|AmK =fiAmK-

Define f: X — R by

flx) = x (x € 4), fx) = glx) (x € K).

Then f € C(X) and f|4 = f. Therefore, 4 is C-embedded in X, and it
follows that 4 is u-embedded in X by results from [8].

3.22. THEOREM. Let X be a Tychonoff space and let A be a closed u,-
embedded subset of X such that cly(X\A) is compact. Let 6, be a compatible
proximity on A, and let 6 be the unigue compatible proximaty on X such that
8|4 = 81. Then 8115 a rich proximity on A if and only if 6 is a rich proximity
on X. Moreover, 6 X =x BX if and only if 6,4 =4 BA.

Proof. First suppose that é; is a rich proximity on 4. Let X C S C §X
where S is realcompact. Let

T=A4U{9 N4 G cS\X].

Then 4 € T € §;4,and X U {5‘:': & ¢ T\A4} = Sis realcompact. So,
by 3.20, T is realcompact. Since §; is a rich proximity on A4, there is a
uniformity %, on A such that 6(%,) = 6; and T\4 is the set of free
minimal % ,-Cauchy filters on A. Since 4 is u¢-embedded in X, there is
a compatible uniformity U on X suchthat % |, = %,. By 3.19,6(%) = 6
and S\X = {#: % ¢ T\A} is the set of free minimal % -Cauchy filters
on X. So, by 2.1, X is 6-completable to S. Therefore, 6 is a rich proximity
on X.

Next suppose that é is a rich proximity on X. Let 4 € T C ;4 where
T is realcompact. Let

A

S=XVU{%:F c T\4}.

By 3.20, S is realcompact, and, since § is a rich proximity on X, there is
a compatible uniformity % on X such that §(%) = & and S\X is the set
of free minimal % -Cauchy filters on X. Then %, = %|, is a compatible
uniformity on 4 and §(%,) = 6. Also, by 3.19,

T\A = |F € 6,4\d: F ¢ S\X}

is the set of free minimal %;-Cauchy filters on 4. Thus, by 2.1, 4 is
d;-completable to 7. Therefore, ¢, is a rich proximity on 4.

Now recall, from the proof of 3.20, that the subspace 4* = 4 U
(0X\X) of 6X has the property that 8,4 =, A*. Suppose that §,4 =, BA.
Then A* =, BA. Let f € C*(X). Then f|4 € C*(4). So there is g €
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C*(4*) such that g|4 = f|4. Define f: X — R by

Flx) = f(x) (v € X),f(x) = g(x) (x € 4%).

Then f € C*(6X) and flx = f. Thus, X is C*-embedded in 6X, and so
80X =xBX.

Conversely, suppose that 6X =y 8X. Letf € C*(4). By 3.21, there is
g € C*(X) such that g|4, = f. Now X is C*-embedded in 6X. So there is
g € C*(6X) such that gly = g. Set f = g|as. Then f € C*(4*) and
fla = f-So 4 is C*-embedded in 4*, and, hence, B4 =4 A* =, 6: 4.

3.23. COROLLARY. Let X be a collection-wise normal Hausdorff space and
let A be a closed subset of X such that cly (X\A4) is compact. Then A admits
a compatible rich proximity &y such that 6,4 #4 BA if and only if X admats
a compatible rich proximity & such that §X #x BX.

Proof. A is up-embedded in X [8]. So this result follows from 3.22.
The next result is a corollary to the proof of 3.22.

3.24. COROLLARY. Let X be a noncompact, locally compact Hausdorff
space containing a closed subset A such that

(a) cly (X\A) is compact, and

(b) A is homeomorphicto Y @ Y for some space Y.

Then X admits a compatible rich proximity § such that X #y 8X.

Proof. A must be locally compact and Hausdorff, and so ¥ must be a
noncompact, locally compact Hausdorff space. By 3.16, 4 admits a com-
patible rich proximity &; such that §:4 #, 8A. Moreover, it follows from
the proof of 3.12 that §; can be chosen so thatif A C 7" C 6,4 where T is
realcompact, then there is a functionally determined uniformity %, on A
such that (%) = 6, and T\4 is the set of free minimal %;-Cauchy
filters on 4. Since, by 3.21, 4 is u-embedded in X, for any such uniformity
U ., there is a compatible uniformity % on X such that |, = % .. With
this fact, the proof of 3.22 yields a compatible rich proximity § on X
such that 6X #y BX.

3.25. COROLLARY. The real line R with the usual topology admits a com-
patible rich proximaty § such that SR =g BR.

Proof. Take 4 = (—o0, —1]U [+1, 4+ ) and X = R. Then X and
A satisfy the hypotheses of either 3.23 or 3.24.

We have seen that many Tychonoff spaces admit more than one rich
proximity. The following question asks how far thisresult can be extended.

Question. Does every Tychonoff space which admits at least two distinct
compatible proximities admit at least two compatible rich proximities?
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To see that, in certain instances, the number of compatible rich proxim-
ities on a noncompact, realcompact space may be large, we will conclude
with an example.

Example. Let X be a countably infinite discrete space. For a subset 4
of X such that |4| = |X\4| = Nolet §(4) be a compatible rich proximity
on X such that

(1) if B; and B, are disjoint subsets of 4 then B; §(4) B.,

(2) if B, and B; are disjoint subsets of X\4, then B; §(4) B.,

(3) if B is an infinite subset of 4, then B §(4) X\4, and

(4) if B is an infinite subset of X\ 4, then 4 §(4) B.

(The existence of §(4) follows from 3.13 and its proof.)

Let Z be an almost disjoint family of infinite subsets of X with |#| =
c(= 2%). (L.e., if By, B, € & and B, # B, then |B; M By| < Xo). Let
& = {X\B: B ¢ #}. Then./ has these properties:

@ ] = ¢

(b) if 4 € o7, then |4] = |X\4| = Ny, and

(c) if 4y, 4, € &/ and A, # A,, then

]AlmA2| = |A1\A2| = |A2\Al| = NO and |X\(A1UA2)| < x0~

Now if 41, A2 € &/ and 4, # A,, then we claim that §(4;) # §(4,).
To see this, note that 4; M A:and 4,\ A4 are disjoint subsets of 4;. Thus,

(A1 M As) 8(A1)(A1\A42).
Since A1 M A, is an infinite subset of 45,

(A1 M As) 8(As) (X\42) = (41\42) U [X\(4.: U 4,)].
Since X\ (4:\U 4.,) is finite,

(A1 As) $(A2)[X\ (41U 42)].

Thus, we must have (4; M A4:) 6(42) (4:\4:). Therefore, 6(4,)
5(A42), as claimed.

Thus, {6(4): A € &/} is a collection of ¢ distinct compatible proximi-
ties on X.

Also note that if 4; and A4, are two disjoint infinite subsets of X, then
A, 6(A1) A Now the smallest member, «, in the lattice of compatible
proximities on X is defined by (for By, By € X) B; @ B, if and only if
Bi M By # @ or |Bi = |B:] = No. So clearly a is the infimum of the rich
proximities in the lattice of compatible proximities on X.
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