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RICH PROXIMITIES AND COMPACTIFICATIONS 

STEPHAN C. CARLSON 

1. Introduction. Each Hausdorff compactification of a given Tychonoff 
space is the Smirnov compactification associated with a compatible 
proximity on the space. Also each realcompactification of a given 
Tychonoff space is the underlying topological space of the completion of 
a compatible uniformity on the space. But if T is a realcompactification 
of a Tychonoff space X which is contained in a particular compactifica­
tion Z of X, then it is not always possible to find a compatible uniformity 
^ o n Z such that T is the underlying topological space of the completion 
of (X, °U) and °lt induces the proximity on X associated with Z. We shall 
call a Hausdorff compactification Z of a Tychonoff space X a rich com­
pactification of X (and the associated proximity on X a rich proximity) if 
every realcompactification of X contained in Z can be obtained as the 
underlying topological space of the completion of a compatible uniformity 
on X which induces the proximity on X associated with Z. Questions 
concerning the rich compactifications of Tychonoff spaces were originally 
communicated by Marlon Ray burn of the University of Manitoba. 

For any Tychonoff space X the Stone- Cech compactification of X is a rich 
compactification of X. Since a realcompact and pseudocompact space is 
compact, every Hausdorff compactification of a pseudocompact Tychonoff 
space is a rich compactification. But when X is a realcompact, noncompact 
Tychonoff space, the existence of rich compactifications of X besides the 
Stone-Cech compactification is not clear. In this paper we shall construct 
such compactifications for spaces belonging to a certain class of locally 
compact, noncompact spaces. 

In fact, this construction occurs in a more general setting. Realcompact-
ness is a special case of ^-compactness in the sense of Engelking and 
Mrôwka [7]. A Hausdorff compactification Z of a Tychonoff space X is 
called an E-rich compactification of X (and the associated proximity on X 
an E-rich proximity) if every ^-compactification of X contained in Z can 
be obtained as the underlying topological space of the uniform completion 
of a compatible uniformity on X which induces the proximity on X 
associated with Z. For a certain class of Tychonoff spaces E: (1) we show 
that every E-completely regular space has an ^-completely regular, E-
rich Hausdorff compactification which turns out to be the projective 
maximum among all its ^-completely regular Hausdorff compactifica-
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tions, and (2) we construct an E-completely regular, £-rich Hausdorff 
compactification (which is not the projective maximum of (1)) for each 
member of a certain class of locally compact, noncompact ^-completely 
regular spaces. When E is the real line, the projective maximum of (1) is 
the Stone-Cech compactification, and, when E is the countably infinite 
discrete space, it is the Banaschewski zero-dimensional compactification 
[2]. We note here that uniformities on E-completely regular spaces have 
been discussed (especially when E is zero-dimensional) in [1], [2], and [5], 
and E-completely regular Hausdorff compactifications for general spaces 
E are discussed in [11], [14], and [15]. 

By uniformity we shall mean separated diagonal uniformity, and the 
collection of pseudometrics associated with a uniformity (which is called 
a uniform structure in [9]) shall be called the gauge structure associated 
with the uniformity. We shall use R to denote the set of real numbers 
and N to denote the set of positive integers, and, when used as topological 
spaces, they shall be assumed to possess their usual topologies. If/: X —> R 
is a real-valued function on a set X, then 

M*,y) = l/(*) -/(y)l (*,y£ *) 
defines a pseudometric on X. For 0 ^ D C RX, { /̂; f £ D) is a subbase 
for a gauge structure 2(D) on X. A gauge structure 2 (and its associated 
uniformity) on X is called functionally determined if for some 0 ^ D Ç R*, 
2 = 2(D). As usual, for a Tychonoff space X, &(X) will denote 
2(C(X)) and ^f*(X) will denote 2(C*(X)). 

A uniform space (X, %) may be completed as follows. Let °ttX denote 
the set of minimal ^-Cauchy filters on X and identify x £ X with the 
neighborhood filter^ £ °ltX. For U £ <%, set 

U* = { ( ^ \ ^ ) 6 °ttX X <%X: for some F £ Jf n &, F X F C U\, 

and let ^ * be the uniformity on °UX generated by the uniform base 
{ U*: U £ ^ | . Then (tftX, °tt*) is a complete, separated uniform space, 
<%*\x = ^T, and X is r(^*)-dense in <^X. If ^ is the gauge structure 
on X associated with °tt, we shall denote the gauge structure on ty/X 
associated with ^ * by 2*, and ^ X may be denoted by 2X. 

By proximity we shall mean separated Efremovic proximity. If 5 is a 
proximity on X, we let 11(6) denote the set of uniformities on X which 
induce ô. There is a one-to-one correspondence between the compatible 
proximities on a Tychonoff space X and the Hausdorff compactifications 
of X. Given a compatible proximity ô on X the associated Hausdorff 
compactification dX (called the Smirnov compactification of (X, 5)) may 
be constructed as follows. Let ÔX denote the set of maximal Ô-round 
filters on X, and identify x £ X with JVx £ 8X. For A Q X, set 

0(A) = IJF £ dX: A e ^ \ 
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and declare (for Eu E2 Q 8X) E\ $* E2 if and only if there are A. i, A. 2 C I 
with Ai$ A2 and Et Q O(Ai) (i = 1,2). Then 5* is a separated proximity 
on <5X, 8*\x = 5, X is r(ô*)-dense in 5X, and r(5*) is compact and Haus-
dorff. Since a compact Hausdorff space admits a unique proximity, we 
have (for AlyA2 C X) ,41 5 A2 if and only if 

cUxAi C\ cUxA2 9* 0. 

Note also that for & 6 <5X, {0(4) : .4 G ̂ "} is a r(<$*)-neighborhood 
base at 3F. 

If 5 is a proximity on X and ^ G II (5), then every minimal ^-Cauchy 
filter is a maximal ô-round filter. So X C ^ X C 8X. Moreover, &(<%*) = 
ô*|^x and so r ( ^ * ) = r(5*)|^^-. It is a consequence of Shirota's Theorem 
[9, p. 229] that, assuming the nonexistence of measurable cardinals, °ttX 
is realcompact as a topological space. 

Also, if Qt e U(d) is functionally determined by D Q Rx
f then a filter^ 

on X is ^-Cauchy if and only if for each e > 0 and finite subset 
{/i> • ••>/»} £ A there is F G *̂ ~ such that whenever x, y £ F and 
k e {1, . . . , » } , 

l/*(*) ~/*(y)l ^ e; 
for .4, 5 Ç X, A & B if and only if there i s w f N , / i , . . . , / B G A and 
e > 0 such that if x G -4 and 3/ Ç Z* then for some k £ {1, . . . , w}, 

l/*(*) -/*60l ^ e. 
If Zi and Z2 are Hausdorff compactirications of a Tychonoff space X, 

we write Z\ *zx Z2 and say Zx is protectively larger than Z2 if there is a 
continuous surjection/: Z\ —> Z2 such tha t / (x) = x for all x £ X. We 
write Zi = Z Z 2 and say Zi is isomorphic to Z2 if there is a homeomorphism 
ft: Zi —» Z2 such that ft(x) = x for all x f l . We let Ctf (X) denote the set 
of all isomorphism classes of Hausdorff compactirications of X. Then 
(Ctf (X), ^x) is a complete upper semilattice and is a complete lattice 
when X is locally compact. When 81 and 82 are compatible proximities on 
X, 81 Ç 82 if and only if ôiX è x àiX. We write ôi è 52 when ch C 82 so 
that the set of compatible proximities on X, partially ordered by è , is 
order-isomorphic to (J^(X), ex ) -

Some other concepts will be recalled in later sections. The reader may 
find references to [16], [9], [17], or [18] helpful. The work presented in 
this paper was initiated in the author's Ph.D. dissertation [4], and the 
author wishes to thank Jack R. Porter for invaluable aid and encourage­
ment during its preparation. 

2. Proximities on ^-completely regular spaces. Let 8 be a com­
patible proximity on a Tychonoff space X. If T is a realcompactification 
of X, then *$(T) corresponds to a complete compatible uniformity i^ on 
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r , in which case {T, f) is the completion of (X, V\x). We can ask 
further: when is there a compatible complete uniformity 'V on T such 
that bi^\x) = 6? Of course, if II (5) contains only the totally bounded 
member, then the answer is: only when T =x bX, the Smirnov compacti-
fication of (X, b). 

Definition. Let 5 be a compatible proximity on a Tychonoff space X, 
and let T be a Tychonoff extension of X. We say that X is b-completable 
to r if there is a compatible complete uniformity ' f on T such that 
K^\x) = 5. 

We note that if X is ô-completable to JH, then (without loss of generality) 
r is an extension of X contained in bX and (assuming the nonexistence of 
measurable cardinals) T is realcompact. 

We call a filter*^ on a topological space X fixed if 

C\ {dxF: F e &\ 5*0, 

and /ree otherwise. The fixed minimal ^-Cauchy filters on a uniform 
space (X, &) are the r(^)-neighborhood filters. 

2.1. PROPOSITION. Let 8 be a compatible proximity on a Tychonoff space 
X, and let X Q T Q bX. The following are equivalent: 

(a) X is b-completable to T. 
(b) There is a compatible complete uniformity ^ on T such that bi!V) = 

ô*| r , where 5* is the unique compatible proximity on bX. 
(c) There is % Ç 11(5) swc& /fea/ T is the set of minimal °k'-Cauchy filters 

onX. 
(d) There is ^ £ 11(5) swc& / t o 7 \ X is the set of free minimal °U'-Cauchy 

filters on X. 

Proof. We shall prove only (a) => (b). Suppose there is a compatible 
complete uniformity f o n T such that b(tV\x) = b. LetT^i be the unique 
totally bounded uniformity on T such that ôWi) = 5 (^0 , and let7^2 be 
the unique totally bounded uniformity on T such that 5 ( ^ 2 ) = 5*| r . 
Then à(Vi\x) = 5 and 5 ( ^ 2 | x ) = 5. So, s ince^M* a n d ^ 2 | x are both 
totally bounded members of TL(ô),Vi\x = ^i\x> T h u s , ^ i = ^Vi since 
b o t h ^ i a n d ^ 2 are compatible on T and X is dense in T. Hence, 

5(*0 = 5 ( ^ 0 = 5 ( ^ 2 ) = 5*| T. 

2.2. PROPOSITION. Le£ b be a compatible proximity on a Tychonoff space 
X. If T is a realcompactification of X contained in bX and bX = T fiT, 
then X is b-completable to T. 

Proof. L e t ^ be the complete compatible uniformity on T correspond­
ing to the gauge structure <i£(T). For A, B C 7\ A b{V)B if and only if 

cW,4 H c l ^ S 5* 0 
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if and only if 

c\5x A H cW B ^ 0 

if and only if 

A <5*| r 5 . 

So 5(3^) = Ô*| r . Thus, X is 5-completable to T by 2.1. 

2.3. COROLLARY. Let X be a Tychonoff space and let 8 be the proximity on 
X corresponding to fiX. Then X is 8-computable to every realcompactification 
ofX contained in 8X. 

Proof. Let X C T C 8X =x (3X. Then 8X =T (3T [9, p. 89]. So X is 
<5-completable to T by 2.2 since T is realcompact. 

Recall [17] that if £ is a fixed topological space, then a topological 
space X is called E-completely regular if X is homeomorphic to a subspace 
of some product of copies of E, and X is E-compact if X is homeomorphic 
to a closed subspace of some product of copies of E. Thus, the [0, 1]-
completely regular spaces are the Tychonoff spaces, and the [0, l]-compact 
spaces are the compact Hausdorff spaces. The R-completely regular 
spaces are also the Tychonoff spaces, and the R-compact spaces are the 
realcompact spaces which have been studied extensively and character­
ized in terms of C(X) ([9], [17]). The N-completely regular spaces are 
the zero-dimensional T0 spaces. (A topological space is zero-dimensional 
if the clopen subsets of X are a basis for the open sets; a Tychonoff space 
X is strongly zero-dimensional if pX is zero-dimensional.) An E-compactifi-
cation of a topological space X is an E-compact extension of X. 

Definition, (a) Let £ be a topological space and let 8 be a compatible 
proximity on a Tychonoff space X. 8 is an E-rich proximity if X is 8-
completable to every E-compactification of X contained in 8X. 

(b) Let £ be a topological space and let Z be a Hausdorff compactifi-
cation of a Tychonoff space X. Z is called an E-rich compactification of X 
if the proximity induced on X by Z is an E-rich proximity. 

(c) A compatible proximity on (respectively, a Hausdorff compactifi­
cation of) a Tychonoff space X is a rich proximity (respectively, a rich 
compactification of X) if it is an R-rich proximity (respectively, an R-rich 
compactification of X). 

2.4. COROLLARY. For any realcompact space E and any Tychonoff space 
X} fiX is an E-rich compactification of X. In particular, $X is a rich 
compactification of X. 

Proof. The second assertion follows from 2.3, and, since any E-compact 
space is realcompact, the first assertion follows from the second. 

https://doi.org/10.4153/CJM-1982-021-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-021-5


324 SïEPHAN C. CARLSON 

Every Hausdorff compactification of a pseudocompact Tychonoff space 
X is a rich compactification of X. Also if X is not E-completely regular, 
then X has no E-compactifications and, hence, every Hausdorff compacti­
fication of X is an E-rich compactification of X. Of course, in this case, 
no Hausdorff compactification of X can be E-completely regular. Even 
when X is E-completely regular, 0X need not be E-completely regular, as 
the existence of zero-dimensional, not strongly zero-dimensional spaces 
shows [12]. It is of interest to determine, for a given space E, whether 
every E-completely regular space X has an E-completely regular Haus­
dorff compactification. This is not the case for every realcompact space £ , 
as the following example shows. 

Example. Let E be a realcompact space which is totally disconnected 
but not zero-dimensional ([9, 16L], [18, 29B]). Then every E-completely 
regular space is totally disconnected, and every compact E-completely 
regular space is zero-dimensional. So E can have no E-completely regular 
Hausdorff compactification. (This example was discussed in [14] where it 
was observed that /3E is not E-completely regular.) 

The next theorem concerns the existence of E-completely regular 
Hausdorff compactifications of E-completely regular spaces (without 
regard to their E-richness). The concepts involved are essentially those 
discussed in [10], [3], and [19]. 

2.5. THEOREM. For a Tychonoff space E, the following are equivalent. 
(a) E has a Hausdorff compactification which is E-completely regular. 
(b) Every E-completely regular space has a Hausdorff compactification 

which is E-completely regular. 
(c) Every E-completely regular space has a Hausdorff compactification 

which is E-completely regular and is protectively larger than each of its 
E-completely regular Hausdorff compactifications. 

Proof. We shall prove only (b) => (c). Let X be E-completely regular 
and from each isomorphism class of E-completely regular compactifica­
tions of X choose a representative. Let {Z,-: i £ I) be the nonempty set of 
these representatives. Let&: X —^H{Zi\ i £ /} be defined by Tt(h(x)) = x 
(x £ X,i £ I). Then h is an embedding. Let 

Z = dmziHX). 

Then Z is an E-completely regular compactification of h(X) (which we 
can identify with X via h) and 71-*| z is a continuous surjection of Z onto Zt 

such that iTi{h{x)) = x for all x £ X. So Z ^x Zi-

The remainder of this section is devoted to showing that if E is a 
realcompact space which satisfies a stronger condition than (a) of 2.5, 
then the largest E-completely regular compactification of an E-completely 
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regular space is an £-rich compactification. Throughout the remainder of 
this section E will denote a fixed Tychonoff space. 

Definition. For a Tychonoff space X, set 

D(X) = {g of: for some n £ N, / Ç C(X, E") and g 6 C(£*)}, and 

D*(X) = £>(X) H C*(X). 

Also define the gauge structures on X: 9{X) = @(D(X)) and ^ * ( Z ) = 
^(£>*(X)). 

Note that D(X) is just the collection of continuous real-valued func­
tions on X which factor continuously through some finite power of £ , 
and also 

D*(X) = {g of: for some n £ N , / € C(X, £n) and g Ç C*(En)}. 

2.6. PROPOSITION. Le/ X be a Tychonoff space. D(X) and D*(X) are 

vector sublattices of C{X) which contain the constant functions. 

Proof. Let ^ = ^ o / ^ D(X) where/, € C(X, £"») and g, G C(£n<) 
(i = 1, 2) .Letw: R X R - ^ R be continuous. Define/6 C ( X , £ n i X £ n ' ) 
by 

/(*) = (fi(x),f2(x)) M I ) , 

and g G C(£Wl X £n2) by 

giyu y*) = w(gi(yO, ^2(3^2)) Cy< G E"S i = 1, 2). 

Then ft = g of £ D(X). It follows that D(X) is closed under the neces­
sary binary operations and clearly D(X) contains the constant functions. 

Since the above function g will be bounded if gi and g<i are bounded, the 
proof is similar for D*(X). 

2.7. PROPOSITION. For a Tychonoff space X, the following are equivalent. 
(a) X is E-completely regular. 
(b) £fr*(X) is a compatible gauge structure on X. 
(c) £&{X) is a compatible gauge structure on X. 

Proof. Let r denote the topology of X. First note that since @*(X) Q 
9{X) c <&{X), 

T(@*(X)) C T(9{X)) Q T{^{X)) = r. 

So (b) => (c) is clear. To show (a) => (b) we show r C r(^*(-X")) when 
X is E-completely regular. Let U £ r and suppose that p £ U. Since X 
is ^-completely regular by [17, p. 16] there is an w Ç N a n d / Ç C(X, £n) 
such that 

fiP) (l dBnf(X\U). 
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Since En is Tychonoff, there is g € C*(E?) such that 

{y € £»: \g(y) - g(j{p))\ < 1} Ç E » \ c W ( * W ) -

Now if x 6 X such that |g(/(x)) - g(f(p))\ < 1, then 

/(*) «Z c l £ „ / (Z \ t / ) 

and so x g X\U. Thus, 

j x Ç Z : |go / (*) - g o / ( £ ) | < 1} C [/. 

Soue T{9*{X)). 

It remains to show (c) => (a). Suppose that 2f{X) is compatible with 
r. Let p (z X and let A be a closed subset of X such that p d A. Then 
XV4 is a neighborhood of p and, since @(X) is compatible with r, there 
are rtj € N,/,- G C(X, £ n 0 , g,- 6 C(£ n0 (i = 1, . . . , k), and e > 0 such 
that whenever 

\gj ofj(x) - gj ofj(p)\ < e for a l i i = 1, . . . , k, 

then x e X\A. Let 

F = I l £*J 

and define f: X —* Y by 

/(*) = CM*)), (*a ) . 
T h e n / i s continuous. Note that the gauge structure <f on F functionally 
determined by 

u [goTTj-.ge c(En>)} 
3=1 

is compatible with the topology of F [6, p. 200]. So 

G = {y e F: | g , o ^ ( y ) - g, o ir,(/(£))| < e for a l l i = 1, . . . , k} 

is a neighborhood of f(p) in F, and G C\ f{A) = 0. So/ (p) g dYf(A). 
Since F is a finite power of E, by [17, p. 16] X is ^-completely regular. 

2.8. PROPOSITION. Let X be an E-completely regular space, let n £ N, and 
letf £ C(X,En).Then 

(a) / : (X, 2)(X)) —» (En, &(En)) is uniformly continuous, and 
(b) / : (X, @*(X)) -» (£w, ^"(E*)) w uniformly continuous. 

Proof. We must show that for every pseudometric e £ ^ (£w) (respec­
tively, 9f* (£*)), e o (J X f) € @(X) (respectively, 9*{X)). Let 
e ^ ^ ( £ n ) (respectively, ^ * ( £ n ) ) . Let e > 0 be given. There are 
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gu . . . , gk 6 C(En) (respectively, C*(En)) and Ô > 0 such that 

\gi(yi) ~ gi(y*)\ < & for alH = 1, . . . , k 

implies 

e(yi,y2) < e. 

Now g* o / 6 £>(X) (respectively, D*(X)) for ^ = 1, . . . , k. Suppose 
Xi, x2 € X and 

\gt of(xi) - gi o/(x2) | < <5 for alW = 1, . . . , &. 

Then 

e(J(x1)1f(x2)) < €. 

I.e., 

e o (/ X/) (x i ,x 2 ) < e. 

S o e o (/ X / ) e 9{X) ( respec t ive ly ,^*^) ) . 

2.9. COROLLARY. Let X be an E-completely regular space, let n £ N and 
letf £ C(X, En). Let (3 denote the proximity induced on En by fi(En). Then 

(a) / : (X, b(9{X))) ~> (En, 0) w a p-rnap, and 
( b ) / : (X ,5 (^*(X) ) ) ->(En,f3)isap-map. 

Proof. <5(^(£*)) = <5(^*(£w)) = /3, and every uniformly continuous 
function is a p-map with respect to the induced proximities. So (a) and 
(b) follow from (a) and (b) of 2.8. 

2.10. PROPOSITION. Let X be an E-completely regular space, and let Bi, 
B2 C X. IfBi b{9(X)) B2f then there isann £ N andf 6 C(X, En) such 
thatf(Bi)fif{B2) where & is the proximity induced on En by $(En). 

Proof. Suppose Bx $(@(X))B2. Then there are », G N , / , G C(Z, £n»), 
g, Ç C(Eni) (j = 1, . . . , fe), and e > 0 such that whenever Xi 6 J5X and 
x2 Ç B2 there is j 6 {1, . . . , k) with 

\gj(fi(Xl)) ~ gj{fj(Xl))\ ^ €. 

Set 

F = n &* 
and let <? be the compatible gauge structure on F functionally determined 
by 

U\go*s:i£ C(£n0i 
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[6, p. 200]. Then 5(<f ) is a compatible proximity on F. Define/: X -> Y 
by 

/(*) = if Àx)) j (xeX). 

T h e n / Ç C(Z, F). If *i G JBI and x2 € J32, then there is a / € {1, . . . , k] 
such that 

|g^ o TTj-C/Cxi)) - gjOTrj(J(x2))\ ^ e. 

So f(B1)$(é))f(B2). Denote the proximity induced on F by (3Y as 0. 
Since 0 Ç d((f)} f(Bi)0 f(B2). Finally note that F is homeomorphic to 
En where n — n\ + . . . + nk. 

2.11. PROPOSITION. Let X be an E-completely regular space. Then 

b{9(X)) = b(9*{X)). 

Proof. Since @*(X) Q @(X), h{9{X)) C <5(^*(X)). Suppose that 
# i , ftÇI and Bà\@{X)) B2. By 2.10, there is an n 6 N and/ G C(Z, Ew) 
such thatf(Bi)(8f(B2) where 0 is the proximity induced on En by &(En). 
By 2.9(b), 

/ : ( X , ô ( ^ * ( * ) ) ) ->(£M8) 

is a £-map. So J5i $(@*(X)) B2. Therefore, Ô(@*(X)) C b{9{X)). 

Definition. For an E-completely regular space X let <$#X denote 
8(@*(X))X, the Smirnov compactification of (X, b(@*{X))), and let 
bE denote ô(@*(X)) when no confusion can arise about the domain of 
the proximity. 

2.12 PROPOSITION, (a) 8EX is E-completely regular for all E-completely 
regular spaces X if and only if fi{En) is E-completely regular for all n Ç N. 

(b) If X is an E-completely regular space and y is a compatible proximity 
on X such that yX is E-completely regular, thendE £ 7-

Proof, (a) Suppose that 6EX is E-completely regular for every In­
completely regular space X. Let n £ N. En is certainly E-completely 
regular, and D(En) = C(En). So p(En) = En ôE(En) is E-completely 
regular. 

Conversely, suppose that £(EW) is E-completely regular for all n G N. 
Let X be an E-completely regular space, and let 5 denote ôE. Let Ai and 
4̂ 2 be disjoint closed subsets of 8X. Then A\ $* A2 where <5* is the unique 

compatible proximity on SX. So there are subsets Bi, B2 C X such that 
5 i ( f t a n d i ^ Ç 0(5y) (i = 1, 2). By 2.10 there is n £ N and / 6 
C(X, En) such that/(jSi)^/(J52), where /3 is the proximity induced on En 

by 0(EW). Now / : (X, 5) -> (En, 0) is a £-map by 2.9. So there is a 
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continuous function/: bX —> fi(En) such t h a t / | x = / . Now for i = 1,2, 

f(At) QKcUxBt) C c W » ) / ^ * ) , 

and since f(B1)$f(B2), 

ck(En)f(Bl)nch(En)f(B2) = 0 . 

So/041) C\f{A2) = 0. Nowp(En) is ^-completely regular, and / ( ^ i ) and 
J (A 2) are disjoint closed subsets of @(En). By [17, p. 16] and the compact­
ness of 0(En), there is m € N and g G C(/3(En), Em) such that 

g ( / ( -4 i ) )ng ( / (4 2 ) ) = 0 . 

So 

g 0 / G C(ôX, £») and g of {A,) H g o/G42) = 0. 

Therefore, by [17(3.3, p. 16)], bX is £-completely regular. 
(b) Let 7 be a compatible proximity on an ^-completely regular space 

X such that yX is ^-completely regular. Let Bi, B2 Q X and suppose 
that Bl f B2. Set Kt = dyX Bt{i = 1,2). Then ^ H X ^ 0. Since 7 ^ 
is ^-completely regular and compact, by [17, (3.3, p. 16)] there is an 
m £ N and h G C(yX, Em) such that ft^) C\ h{K2) = 0. A (2^) and 
A(i£2) are disjoint compact subsets of Em. So there is g £ C(EW, [0, 1]) 
such that 

giHK^QW and g(h(K2)) C j l ) . 

S e t / = ft|^. Then g o / Ç D*(X). Also if ^ Ç J52 and x2 Ç £ 2 then 

|go/(*i) - g0f(x2)\ = 1. 

So Bi $E B2. Therefore, bE C 7. 

It follows immediately from 2.12 that if fi(En) is ^-completely regular 
for all n £ N and X is an incompletely regular space, then ô^ is the 
proximity induced on X by the largest ^-completely regular compactifi-
cation of X of 2.5. 

2.13. PROPOSITION. Suppose that fi(En) is E-completely regular for all 
n G N. Let X be an E-completely regular space, and letX C T C <5#X. rAen 
I w E-completely regular, and bET = T bEX. 

Proof. By 2.12 (a), 5#X is £-completely regular. So T is £-completely 
regular. Also, by 2.12 (a), <5#r is £-completely regular. So bET is an 
^-completely regular compactiflcation of X, and therefore bEX ^x àET. 
Also, bEX is an E-completely regular compactiflcation of T. So bET ^ T 

5#X. So ô^r = x <5#X and, since X is dense in T, bET = T bEX. 

2.14. PROPOSITION. Let E be realcompact. If X is an E-compact space, 
then 2iï(X) is a complete gauge structure on X. 
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Proof. Suppose X j* 9{X)X, the.completion of (X, 9{JX)). Let 
/ e C(X, E). By 2.8 (a), / : (X, 9{X)) -> (E, % {JE)) is uniformly 
continuous. Since E is realcompact, ^ {JE) is complete [17 (13.6, p. 146)]. 
So there is a uniformly continuous function 

/ : {9{X)X,9{X)*) - > ( £ , %f(£)) 

such tha t / |x = / . Thus every member of C(X, E) extends to a member 
of C(@(X)X, E) which, by [17 (4.5, p. 28)] contradicts the £-compact-
ness of X. Therefore, X = 9 {JX)X and, hence, 9 {JX) is complete. 

2.15. THEOREM. Let E be a realcompact space such that f3(En) is E-
completely regular for all n £ N. If X is an E-completely regular space, 
then 5E is an E-rich proximity on X and bEX is an E-rich, E-completely 
regular compactification of X. 

Proof. Let I Ç T Ç bEX where T is E-compact. 9{T) is a compatible 
gauge structure on T and is complete by 2.14. By 2.11, b{9(T)) = 
b(9*(T)), and the Smirnov compactification of (T, b(9(T))) is bET. 
By 2.13, ÔET =T5EX. Thus, 

b(®{T)) = h(9*{X))*\T 

where ô(&*(X))* is the unique compatible proximity on bEX. So, by 2.1, 
X is Ô(^*(X))-completable to T. Therefore, bE = ô(@*(X)) is an £-rich 
proximity on X. It follows that bEX is an £-rich compactification of X, 
and bEX is £-completely regular by 2.12 (a). 

Since the class of R-completely regular spaces coincides with the class 
of Tychonoff spaces, certainly P(Rn) is R-completely regular for all w Ç N , 
and of course R is realcompact. In this case, it is clear that 5RX =X $X, 
the Stone-Cech compactification of Xt for any Tychonoff space X. So 
the results of 2.15 with E = R have already been proven in 2.4. 

Finally we consider the case where E = N. The class of N-completely 
regular spaces coincides with the class of zero-dimensional Tychonoff 
spaces. If n G N, then Nn is a countable discrete space, and so /3(Nn) is 
zero-dimensional and, hence, N-completely regular. Also, of course, N is 
realcompact. In this case, for a zero-dimensional Tychonoff space X, 
bwX is the Banaschewski zero-dimensional compactification of X [2]. 
Since there exist zero-dimensional Tychonoff spaces which are not strong­
ly zero-dimensional, b^X does not coincide with (3X in general. In fact 
there exists an N-compact space X which is not strongly zero-dimensional 
[12]. For any such space X, one of the following must hold: 

(1) b^X is a rich compactification of the realcompact, noncompact 
space X which is not the Stone-Cech compactification of X, or 

(2) there is a realcompact space T such that I Ç T C 6NX and T is 
not N-compact. In the next section we shall see that many realcompact, 
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noncompact spaces X have rich compactifications besides PX. The 
existence of realcompact zero-dimensional spaces which are not N-
compact has been shown by Nyikos [13]. 

3. More £-rich proximities. Throughout this section E will denote 
a fixed realcompact space with at least two points such that p(En) is 
^-completely regular for all n 6 N. According to 2.15, for every in­
completely regular space X, dEX is an E-completely regular, JS-rich 
compactification of X. In this section we shall show that there are 
^-completely regular spaces X which admit ^-completely regular, £-rich 
compactifications besides dEX. 

We shall begin with a specific construction. Let ( F, r) be a locally 
compact, noncompact, E-completely regular space such that the one-
point compactification a F of F is JS-completely regular. Let X = Y © F 
be the topological sum of two copies of F, and let r © r denote the 
topology of X. We set Xt = Y X {i} (i = 0, 1) so that 

X = F X {0, 1} = X o U X i 

where X t is homeomorphic to F (i = 0, 1). Let p: X —» F be defined by 

p(y,i) =y (yeY,ie {o, i}). 

Then p is continuous. 

3.1. PROPOSITION. The one-point compactification aX of X is E-completely 
regular. 

Proof. Let x0 (respectively, yo) denote the point at infinity in aX 
(respectively, aY). p: X —> F extends to the continuous function pa: 
aX —> aY such that pa (x0) = 3V Let Xi, x2 £ aX, %\ 9^ x2. If £a(xi) F^ 
pa(x2), then since a F is ^-completely regular, by [17 (3.3, p. 16)], there 
there is f £ C(aY, E) such that/(£«(tfi)) ^f(pa(x2)). So 

fopae C(aX,E) and fopa{xx) ^fopa(x2). 

lî pa(xi) = pa(x2), then {xi, x2} = {(y, 0), (y, 1)} for some y £ F. Since 
a F is ^-completely regular, by [17 (3.3, p. 16)], there i s / Ç C(aF, E) 
such tha t / (y ) ^ /(3>o)- Define g: « I —» £ by g(x0) = /(^o), and (for 
te Y,i£ {0,1}) 

^ ' j V(yo) if* = i. 
Then g £ C(aX, E) and g(xi) ^ g(x2). Therefore, a!" is ^-completely 
regular by [17 (3.3, p. 16)]. 

Let 

i f = {(G, if) G r X r: clFG C tf and c l F # is compact). 
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Let (G, H) G Jzf. Then clFG and Y\H ate disjoint closed subsets of F 
and c\YG is compact. Since Fis E-completely regular, by [17 (3.3, p. 16)], 
there is a i u f N and g £ C( F, Ew) such that 

g ( d y G ) n c l * » g ( F V O = 0 . 

Since g(clyG) is compact, there is fe £ C(£w, [0, 1]) such that 

Hg(c\yG)) C{1} and fc(cl*«*(FV?))£{0}. 

Set/(Gi,H) = hog. Then 

€ £>*(F),/ (G, f f )(F) Ç [0, l],/ (0, f f,(clyG) Ç {1}, and 
/ ( G , f f ) ( F \ F ) C { 0 ) . 

For g 6 I ? ( 7 ) , t 6 {0, l j , and (G, tf ) 6 i f , define [g; ( G , # ) ; i ] : X -» 
R ( f o r y € F , j € {0, 1}) by 

Then [g; (G, i f ) ; i ] € G(Z). 
For£>*(F) Ç D Ç D ( F ) , let 

5 = { k ; ( G , H ) ; i ] : i Ç {0, l} ,g € A (G, # ) e i f } . 

Then @!{B) is a gauge structure on X. 

3.2. PROPOSITION. For £>*(F) Ç D Ç £>(F), ^(25) is compatible with 
the topology T ® r onX. 

Proof. Since each member of D is continuous, we have 

r{9{D)) C r © r. 

Let (%, i) Ç I . A typical basic open neighborhood of (x, i) in X is of the 
form H X \i} where x £ H £ T and clyiJ is compact. Let x Ç G Ç r with 
clyG C H. Let 

fc= 1/(^)5 (G,ff) ; i ] . 

We claim that 

{(yj) Ç X: |ft(y,j) - fc(*,*)| < 1} Ç if X {*}. 

Note that fc(tf, i) = 2. If j ^ i, then 

h(yj) = f{G,H)(y) ^ i ; 

if y $ H, then h(y, j) = 0. So if \h(y, j) - h(x,i)\ < 1, then h(y, j) > 1, 
and we must have (y,j) £ H X {i}, as claimed. Thus, T ® r Q T{SJ{D)). 

3.3. PROPOSITION. IfD*(Y) QD.Q D(Y) (i = 1, 2), then 

5(^(50) = s(@(B2)). 
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Proof. It suffices to show that 

S(@(D*(Y))) = b(9{D{Y))). 

Since 9(ÏF(Y)) C ^ (25(F) ) we have 

Ô(^(5(F))) £ ô(^(5*(Î0)). 

Let i4i, i42 S Xand suppose Ax $(&(D(Y))) A2. Then there are gh . . . , 
& G £>(F), (Gi, ffi), . . . , (Gn, ffn) 6 i f , ix, . . . , * » € {0, 1}, and € > 0 
such that z £ Ai, z' £ A2 implies for some k G {1, . . . , n\, 

\[gk\ (GkjHk);ik](z) - [gk\ (Gk, Hk)\ik](z')\ è e. 

Set G = W {Gfc: ft = 1, . . . , n}, and ff = U {#*: ft = 1, . . . , »}. Then 
(G.iï) Gif . 

We claim that piA^H $E p(A2)\H. (ôE = b{9{Y)) = <5(^*(F)) is 
the proximity on F defined in Section 2.) For suppose that y G p(Ai)\H 
and y Ç p(A2)\H. Then there are t, j £ {0, 1} such that (3/, i) G ^4i and 
( / , j ) € ^2. Thus, for some ft G {1, • . • , n), 

\[gk; (Gk,Hk);ik](y,i) - [&; (G*, fffc) ;**](/, j ) | è e. 

Since y & H and 3/ $ 77, we have 

[gfc; (G*, ^Tfc) ; 4](3>, i) = gk(y) and 

[g*;(G t ,ff*);i*](y,i) = & ( / ) . 

So 

U*Cv) - &(y)l è 6. 
Since gi,. . . , gn G Z>(F), this shows that p (A i)\H$Ep(A 2)\H, as claimed. 

Since bE is the proximity induced on F by &(D*(Y)), there are #i, . . . , 
am G -D*(F) and p G (0, 1) such that y G £(4i)Vffand 3/ G p(A2)\H 
imply for some / G {1, . . . , w}, 

K M - <**(/)I ^ p. 
Since F is locally compact, there is U G r with cly if C [/ and c\Y U 

compact. (fi, U) G i f . If & G {1, . . . , n), then gk is bounded on c l r U. 
Since Z)( F) is closed under infs and sups and contains the constant func­
tions (by 2.6), there is bk G D*(Y) such that 

bk\clYU = gk\clYU' 

Let rj = min {e, p, 1 — p}. The functions [bk; (Gk, Hk) ; 4] (k = 1, . . . , 
n) ; [a,; (G, if) ; *], [a,; (H, U) ; *], (/ = 1, . . . , m; * = 0, 1) form a finite 

subset of D*(Y). We claim that if z G ̂ 41 and z' G ̂ 4 2, then for one of these 
functions, h, we have 

\h(z) - h(z>)\ ^ 1/. 
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Let z = (y, i) Ç 4 i and z' = ( / , j ) € 42. First suppose that y Ç f/ 
and 3/ Ç [/. Then for some & Ç {1, . . . , n], 

|fe; (Gtlff*) ;*'*](?,*) - fe; (Gt,/rt);**](y',j)l è «. 

So 

\[h; (Gk,Hk);it](y,i) - [bk; {Gk, Hk);ik]{y>,j)\ £; „. 

Next suppose that y <E F \ # and y' € F\ff. Then 

y € £ ( ^ i ) \ # and / € p(At)\H. 

So, for some / 6 {1, . . . , w | , 

l«i(y) - ^GOI > P-

Now 

[a.^G./rj-.OKy,*) = a , ( y ) and 
[ a i ; ( G , H ) ; 0 ] ( y , i ) = a , ( y ' ) . 

So 

| [ a , ; (G,H) ;0] (y , t ) - [a,; (G,H);0](y',j)\ ^ P ^ r,. 

Finally, suppose y £ ffandy' £ F\?7. If, for some/ 6 {1, . . . ,w} , 

K(y) - «i(y)l è P, 

then take / € {0, l\\{i\. Then 

[a,; (ff, I/); *](?,»') = o,(y) and 

[a,;(ff, tf) ;*](/, . ;) = « , ( / ) . 

So 

|[a,; (ff, U);t](y,i) - [a,; (if, C/); *]( / , . / ) | 5; P è v-

Otherwise, for all / Ç {1, . . . , m), 

M y ) - ai(y')\ < P. 

Now 

M (H, U);i](y,i) = ax(y) + / W l t ; ) (y ) = a^y) + 1 

and 

[a i ;(tf , U);i](y',j) = ax(y'). 

Thus, 

| M (ff, U);i](y,i) - M (H, U);i](y',j)\ = |(1 + « i W ) - a i ( / ) | 

= |1 + (ai(y) - ai(y'))l è 1 - P è »?. 
This proves the claim. 
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It follows from the claim that Ax b{9(D*{Y))) A2. Therefore, 

8(0 (D(Y))) = ô(&(D*(Y))). 

We shall let y denote B(@(5*(Y))). 

3.4. PROPOSITION. 7 is not the proximity induced on X by the cornpactifi-
cation b EX of X. 

Proof. Pick e0} ex £ E such that e0 9^ ex. Define/: X —> E by f(x) = et 

iîx G Xi(i = 0,1). T h e n / 6 C(X, E). There is g Ç C(£, [0,1]) such that 
g(*<) = 1 (i = 0 , l ) . g o / £ # * ( * ) , and, if s , Ç X , (i = 0, 1), then 

\gof{x0) - go / (x i ) | = 1. 

So Xo tgXi. We claim that XQ yXx. For let gu . . . ,gn G 2?*(F), (GuH{), 
. . . , (Gw, £Tn) 6 i f , and *i, . . . , 4 6 {0, 1}. Let 

ye Y\V{Hk:k = l , . . . , n } . 

Then, for & = 1, . . . , n, 

[gk\ (G*, ff*); t*](y, i) = gk(y) (i = 0, 1). 

Thus, 

for all & = 1, . . . , n. So Xo y X\ as claimed. 

Before we discuss the compactification yX of X we need a few results 
about 7-round filters on X. 

3.5. PROPOSITION. AT® T-free filter £F on X is y-round if and only if 
for each F ç / there is an F' Ç &~ with p'l{p{F))f X\F. 

Proof. Let . f b e a r © r-free filter on X. Suppose that ^ has the 
prescribed property. If F 6 J^, then there is F' Ç J ^ such that 

Now F' ç p-l{p(F')) and so p~x{p{F')) € J T Thus , .F is y-round. 
Conversely, suppose J5" is 7-round. Let F £ <̂ ~. Then there is F\ Ç <̂ ~ 

such that Fx f X\F. So there are gi gn <= D*(Y), (Gu Hi), . . . , 
(G„ H„) 6 i f , *!, . . . , * » € {0, 1(, and 6 > 0 such that 2 6 Fu z' Ç X \ F 
implies for some & £ {1, . . . , «}, 

|[g»; (G*. If*); »*](*) - [g*; (G»,J3*) ;**](«')! ê «. 

Set 

if = U {if*: £ = 1, . . . , « } . 

clr H is compact, whence £ -1(cly if) is compact. Since &~ is r © r-free, 
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there is F\ 6 ^ such that 

Set F' = Fi A ^2- Now suppose that 

(?,*) € P~l(P(F')) and ( / , j ) C I \ F . 

( j , /) Ç F' for some / Ç {0, 1}. So for some ft £ {1, . . . , n}, 

| t e ; ( G * , # * ) ; Ï * ] ( 3 > , / ) - [&; (G*, #*) ; **](/, j)l ^ e. 

Now (y, l) Ç F2. So £ ( ? , / ) = ? £ F \ # . Thus 

[&; (Gk,Hk);ik](y,i) = £*()>) = [g*; (G*, i/fc) ; ̂ ](3>,/). 

So 

\[gk; (Gk,Hk);ik](y,i) - [gfc; (G*, Hk) ; ̂ ] ( / , i ) l ^ *• 

Therefore, p~l(p(Ff)) f X\F. 

3.6. COROLLARY, i T © r-free, y-round filter <0^ is generated by the 
filterbaseSë = {p~l(P(F)): F e#~}. 

Proof. That ^ is a filterbase on X and that «â? generates Ĵ ~ both 
follow from 3.5. 

If#~ is a filter on X, def ined* = {p(F): / ? 6 ^ | . 

3.7. PROPOSITION, (a) If^is a r © r-/r^, y-round filter on X, then^* 
is the unique r-free, bE-round filter on Y such that ̂  is generated by 

{p-l(G):G e #"*}. 

(b) If&~\ and 3^2 (ire two distinct r © r-free, y-round filters on X, then 

(c) If *£ is a r-free, bE-round filter on Y, then there is a r © r-free, 
y -round filter 3F on X such that & = J^*. 

(d) Let ̂  be a r © r-free, y-round filter on X. Then^ is a maximal 
y-round filter if and only if cF* is a maximal 5E-round filter. 

Proof, (a) Clearly J^* is a filter on F. If y G C\ {c\Yp(F): F ^ ^ \ , then 

0 ^ ^ ( y ) C H {p~l(c\Yp(F)): F 6 J H 

- n f c l x / * - 1 ^ ) ) : ^ ^ | = n { c l x F : f f / ) , 

which contradicts the freedom of Ĵ ~. SoJ^~* is r-free. To see that Ĵ ~* is 
g r o u n d , let F 6 #". We want to find f ^ f such that 

There is Fi G ̂  such that F\ f X\F. So there are gh . . . , gn G D*(F), 
(Gi, Hi) , . . . , (Gn, iïB) € i f , ii, . . . , in Ç {0, 1}, and e > 0 such that 
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z Ç R a n d s ' £ X\ F imply for some k Ç {1,. . . , n\, 

\[gk\ (Gk,Hk);ik}(z) - [gk; {G*,Hk);ik]V)\ * e. 

Let H = U {iJ*: & = 1, . . . , n\. Then clF H is compact and, hence, 
p~l(c\Y H) is compact. So there is F2 Ç Ĵ ~ such that 

F2r\p-'{c\YH) = 0. 

Set F - Fi H F2. Let 3/ Ç £(F') and / Ç Y\p(F). For some i € {0, 1}, 
(y, i) G F' ; ( / , 0) G Z \ F . So for some k Ç {1, . . . , n), we have 

|[g*; (Gk,Hk);ik](y,i) - [&; (Gt, ff*) ;**](/, 0)| è «. 

Since y d H, 

[gk\ (Gk,Hk);ik}(y}i) = £*(j). 

If i* = 0, then set a* = g* +f(0k,iik)- Then 

[g*; (G*, -HT*) ; i*](y» 0 = 0*00 and 

[g*',(Gk,Hk);ik](y',0) = ak(y'). 

So 

\ak(y) - ak(y')\ è e. 

If 4 5* 0, then 

[&;(£*,#*) ;**](/, 0) = & ( / ) , 

and so 

l&(y) - &GOI è e. 

Thus, the functions gt, g* + f(Gh,ak) {k = 1,. . . ,n) forma finite subset of 
D*(Y) such that y Ç p{F'),y' G Y\p(F) imply for one of these functions, 
A, 1*60 - A(y')l ^ e. So 

as desired. So^~* is ôB-round. 
By 3.6, J M s generated by {p~l(G): G <= .F*} . Suppose ^ is any r-free, 

ÔE-round filter on F such t h a t # " is generated by {p~l{fi): G € ^ } . If 
G f f , then ^ ( G ) g J T So p(p~l{G)) £ $r*. Thus, ^ Ç J^"*. If 
G 6 #"*, then G = p(F) ior some f f F . There is H e & such that 
£ - 1 ( # ) Ç ^ So 

H = p(p-i(H))Qp(F) = G, 

and hence, G € ^ . So-F* ç # . Therefore, J*"* = ^ . 
(b) If J ^ * = J S * , then J S and #"2 are both generated by 

{p-'iG): G e &i*}, and, hence, J5", = J S . 
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(c) Let J> = {p-x(G): G Ç ^ } . Clearly 36 is a filterbase on X. Let 
G f ^ . Then there is G' G ^ such that G' j * F\G. So there are gh . . . , 
gn G D*(F) and e > 0 such that y G G7, y' G F\G imply for some 
* G { 1 , . . . , » } , 

ta(y) - g*(y')\ è e. 

Let (3/, i) 6 ^ ( G ' ) and (y'f j) G XSp-^G). Then ^ G ' and / G F\G. 
So there is & G {1, . . . , n\ such that 

IfltOO - g*(y')\ è e. 

Thus, 

fe; (0,0);O](y,;) - fo; (0, 0); 0](y',j)\ = \g*(y) ~ & ( / ) ! è €. 

Therefore, p~l(G') 7 X\p~1(G). So ^ is a 7-round filterbase on X, and 
,^~, the filter generated by 3ê, is a 7-round filter on X. If 

x G C\ {cljf^-HG): G G ^ } , 

then 

£(*) G H {^(cl^-UG)): G ( f ) = n jclFG: G G ^ } , 

which contradicts the freedom of ^ . Thus, ^ is a r © r-free filter. It is 
clear that 3f* = ^ . 

(d) If J S and J S are r © r-free, 7-round filters on X, then J S C J S 
if and only if J S * C J S * . Thus, for a r © r-free, 7-round filter, we have 
^ is a maximal 7-round filter if and only if Ĵ ~* is a maximal ô^-round 
filter. 

Def ine^: yX -+ÔE Y by 

/>*(*) = />(*) (x G Z ) and ^ ( # ~ ) - jT* (#~ G T I \ I ) . 

3.8. PROPOSITION. py is a continuous surjection, and 

py\yX,x:yX\X ->ÔEY\Y 

is one-to-one (and, in fact, a homeomorphism). 

Proof. Everything is clear except the continuity of py. Since X and F 
are both locally compact and py\x = p is continuous, it suffices to check 
continuity of py at points of yX\X. Let ïF G 7Jf\X and let T be an open 
subset of ôE Y containing^"*. There is an open G G ^~* such that 0(G) C 
7\ Let T7 = p~l(G). Then .F is an open member of J ^ and p(F) = G. We 
claim that py(0(F)) C 0(G). First suppose that * G 0(F) H X. Then F 
is a neighborhood of x in X. So G = p(F) is a neighborhood of £(x) = 
py(x) in F. I.e., py(x) G 0(G). Next suppose that ^ G 0(F)\X. Then 

https://doi.org/10.4153/CJM-1982-021-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-021-5


RICH PROXIMITIES 339 

F £ ^ and, hence, 

G = p(F) e &* = PH&). 

I.e., py(&) £ 0(G). Thus p^(0(F)) C (0(G), as claimed. So py is con­
tinuous at #~. 

It follows from 2.11 that if £>*( 7) C £> C £>( F), then ^(£>) is a gauge 
structure on F and 5(0 (D)) = <5#. 

3.9. PROPOSITION. Le* D*(F) C D C L>(F) and let^bear ® r-free, 
y-round filter on X. Then ^ is 0(D)-Cauchy if and only if^* is 0(D)-
Cauchy. 

Proof. Suppose that #~ is <^(5)-Cauchy. Let glt . . . , gn £ D and 
e > 0. Since ^ is ^(iD)-Cauchy, there is F Ç ̂  such that z, z' £ F 
implies 

|k*;(0,0);O](s) - [&;(0,0);O](s')l ^ € 

for all k = 1, . . . , «. Let G = p(F), and let y, y' £ G. For some i, j Ç 
{0, 1}, (y, i) , ( y , j ) G F. Thus, if k G {1, . . . , * } , then 

l&Cv) ~ £*(/)! = Ik*; (0,0);O](y,i) - [&; (0 ,0 ) ;O] ( / , i ) | ^ e. 

SoJ r*is^(Z>)-Cauchy. 
Conversely, suppose that Ĵ ~* is i^(L>)-Cauchy. Let gi, . . . , gn £ L>, 

(Gi, ffi), . . . , (Gn, Hn) £&,iu...,ine {0, 1}, and e > 0. Since #~* is 
i^(L>)-Cauchy and r-free, and U { c l F ^ : è = 1, . . . , « } is compact, 
there is G G ?F* such that 

G H ( U {clF#*: k = 1, . . . , n } ) = 0 

and y,y' £ G implies 

|g*60 - g*(/)l â e for all k = 1, . . . , «. 

L e t F = ^ ( G ) . T h e n F G #~.Let(y,i),(y',j) G F and let £ £ { 1 , . . . , » } . 
Since y, y' Ç Y\Hk, we have 

[g*; (G*, if*) ; i,t](:y, i) = g*(y) and 

[gk; (GkfHk);ik](y',j) = gk(y
f). 

Thus, 

Ik*; (Gk,Hk);ik](y,i) - [gk\ (Gk, Hk);ik](y',j)\ g e. 

SoJ r i s^(5)-Cauchy. 

3.10. PROPOSITION. yX is E-completely regular. 

Proof. Since yX is compact, by [17, p. 16] it suffices to show that 
C(yX, E) separates the points of yX. Let t1} t2 £ yX, h 5* t2. If p

y(h) ^ 
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py(t2), then there i s / Ç C(ôEY, £ ) such that 

fiPHh)) ^f(P"(h)) 

since bEY is ^-completely regular. Then 

fopy e C(yXtE) and f o py(h) ?± f o py(h). 

If £7(/i) = py{h) then /1, /2 € X. Let g: 7X -» a ! be the unique con­
tinuous surjection of yX onto the one-point compactification, aX, of X. 
By 3.1, aX is ^-completely regular. So there i s / 6 C(aX, E) such that 
/ 0 i ) ^ /C2). Then / o g 6 C(yX, E);fo q(h) * f o q(t2). Therefore, 
C(yX, E) separates the points of yX. 

3.11. PROPOSITION. Let X C T C 7X. rfeen r i s E-compact if and only if 
py(T) is E-compact. 

Proof. Suppose py(T) is E-compact. Since yX is E-compact, 

T = (py)-i(py(T)) 

is E-compact by [17, p. 24]. 
Conversely, suppose that T is E-compact. Set A = X0 W (7XVO. 

Then i4 = 7«X\X"i is closed in 7X since Xi is open in yX. So yl is compact. 
Now PJ\A'' A —> ôEY is a one-to-one, continuous surjection, hence, a 
homeomorphism. I P i i is a closed subset of T, so T r\ A is an E-compact 
subspace of A. Thus, py(T C\ A) is an E-compact subspace of ôEY. But 

py{TC\A) = ^ ( T ) . 

So py(T) is E-compact. 

3.12. PROPOSITION. 7 is an E-rich proximity on X. 

Proof. LetX QT QyX where T is E-compact. By 3.11, S = p?(r ) is 
E-compact, and F Ç 5 Ç 5 B F J s i s an E-rich proximity on Y. In fact, 
@(S) = £t{D(S)) is a complete gauge structure on 5* whose restriction 
to Y induces the proximity 5E. @(S)\Y is functionally determined by 

D = D*(Y)KJ{g\Y: geD(S)}. 

Clearly, D*(Y) Q D C D(Y). So S\Y is the set of r-free minimal ^(JD)-
Cauchy filters on Y. Therefore, by 3.9, {py)~l{S\Y) = T\X is the set of 
r © r-free minimal ^(Z5)-Cauchy filters. By 3.3, Ô(@(D)) = 7. So, by 
2.1, X is 7-completable to T. 

Therefore, 7 is an E-rich proximity on X. 

The main results obtained thus far are summarized in the following 
theorem. 

3.13. THEOREM. Let E be a realcompact space with at least two points 
such that /5(En) is E-completely regular for all n Ç N. Let X be a noncompact 
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locally compact Hausdorff space which is the topological sum of two homeo-
morphic subspaces, Xo and X\, and whose one-point compactification is 
E-completely regular. Then X is an E-completely regular space which admits 
a compatible E-rich proximity y such that 

(a) yX is E-completely regular, 
(b) yX 9^x SEX, and 
(c) if At C X i and c\x A t is not compact (i = 0, 1), then A0 y X\ and 

X,yA,. 

Proof. Without loss of generality, X = F 0 F for some space F, X { — 

Y X {i}, and we can take y = ô(@(D*(Y))). Then everything has been 
proven except (c) in its full generality. The proof of the fact that X0 y Xi 
(in 3.4) may be easily modified to prove (c). 

Now consider the case where E = N. We already know that (3(Nn) is 
N-completely regular for all n £ N and that N is realcompact. (Recall 
that a space is N-completely regular if and only if it is zero-dimensional 
and Tychonoff.) The straightforward proof of the following proposition 
is omitted. 

3.14. PROPOSITION. If Y is a zero-dimensional, noncompact, locally 
compact Hausdorff space, then the one-point compactification of Y is zero-
dimensional. 

3.15. COROLLARY. If X is a noncompact, locally compact, zero-dimensional 
Tychonoff space which is the topological sum of two homeomorphic sub spaces, 
then X admits a compatible, N-rich proximity y such that yX 9^x faX. 

Proof. This result follows from 3.13 and 3.14. 

Next consider the case where E = R. Since R-completely regular 
coincides with Tychonoff, it is clear that f3(Rn) is R-completely regular 
for all n £ N and that the one-point compactification of any locally 
compact Tychonoff space is R-completely regular. 

3.16. COROLLARY. If X is a noncompact, locally compact Hausdorff 
space which is the topological sum of two homeomorphic sub spaces, then X 
admits a compatible rich proximity y such that yX 9^x &X. 

Proof. This result follows from the previous remarks, 3.13, and the 
fact that ÔRX =X$X. 

We note here that in [11] Marin presents a condition on a Hausdorff 
space E which guarantees that the one-point compactification of every 
non-compact, locally compact, £-compact space be jE-completely regular. 

It is of interest to find compatible rich proximities, besides that induced 
by the Stone-Cech compactification, on spaces which are not necessarily 
the topological sum of two homeomorphic subspaces. We shall now obtain 
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some results in this direction. In the remainder of this section we will be 
concerned with rich (R-rich) proximities and compactifications of 
Tychonoff (R-completely regular) spaces. 

Throughout we will let (X, r) be a fixed Tychonoff space and let A be 
a fixed closed subset of (X, r) such that K = c\x (XV4) is compact. 

3.17. PROPOSITION. Let 8X be a compatible proximity on {A, r\A). Then 
there is a unique compatible proximity 8 on (X, r) such that 8\A = 8i. 

Proof. Let (A*, a) be a Hausdorff compactification of A such that 
A* =A BiA and (A*\A) H X = 0. Let X* = A* U X have the weak 
topology T* induced by {̂ 4*, K) [6]. Then (X*, r*) is a Hausdorff com­
pactification of (X, T) and a = r*|A*. Let <5* be the unique compatible 
proximity on (X*, r*). Then t>*|Aîjî is the unique compatible proximity on 
04*, a). Let 5 = 5*\x> Then 8 is a compatible proximity on (X, r) , and 
<5|A = ôi. 

Now suppose that <5r is any compatible proximity on (X, r) such that 
<5'|A = $i. Let (X#, r#) be the Smirnov compactification of (X, <5'), and 
let ô# denote the unique compatible proximity on (X#, T#) . Let ^4# = 
(X#\X) U ^4. Then (A*, r#|A

#) is a Hausdorff compactification of 
(A, T\A). Thus, ô#|A

# is the unique compatible proximity on (A*, T\J). 
Moreover, (<5#|A

#)|A = 8i. Therefore, there is a homeomorphism 

such that fti(x) = x for all x G A. Define h: X# —> X* by 

h(x) = hi(x) (x Ç .4#), M*0 = x (x G X V ) . 

Now r# is the weak topology on X# induced by {yl#, K). Thus, since 
ft|A

# and h\K are continuous, also ft is continuous. Thus, ft is a homeo­
morphism, and h(x) = x for all x £ X. Therefore, <5' = 5. 

If J ^ is a filterbase on X, then we set 

#~ = {G Ç X: for some F £^, FQ G). 

3.18. PROPOSITION. Le/ 8\be a compatible proximity on {A, r\A) and let 
8 be the unique compatible proximity on (X, r)juch that 8\A = <5i. 

(a) If&~ is a free 8 i-round filter on A, then&~ is a free 8-round filter on X. 
(b) / / & is a free 8-round filter^ on X, then^ = & C\ A is the unique 

free 8 i-round filter on A such that^ — ^. 
(c) For a free 8 i-round filter£F on A,<^~ is a maximal 8 i-round filter on A 

if and only if^F is a maximal 8-round filter on X. 

Proof, (a) C l e a r l y ^ is a filter on X generated by the filterbase Ĵ ~ on 
X; and since, for F £ Jr

J clA F = c\x F,^ is r-free. To see that ^ is 
5-round, it suffices to show that &~ is a <5-round filterbase on X. Let 
F Ç f . There is Fx G ^ such that Fx ti A\F. Since & is r|A-free and 
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K C\ A is compact, there is F2 G ^ such that 

AAF2C\ (KC\A) = 0. 

Now clA F2 = cl* F2 = (clôx/y H X, and c\ôxK = i£. So 

cl5x F2 H cW X = 0. 

Thus, F2 $ K. Since I \ i Q K, F2 $ X\A. Set F = F1 C\ F2. Then 
F J i \ F a n d F J l V . S o 

F' $ (A\F) (j (X\A) = X\F, 

and F' £ # \ Thus, ̂  is a ô-round filterbase on X. 
(b) Since ^ is free and X is compact, there is G Ç CS such that 

G H X = 0, whence GQA. Thus, 

JT = ^ n ^ l = {G Ç ^ : G QA], 

Ĵ ~ is a filter on ^4, and 3F is a fllterbase on X which generates @. For 
F G #", clA F = cl* F. So ^ is r|A-free since ^ is r-free. Let L £ J T 
Then there is F £ ^ such that F $ X\F, and clearly F' £ #". So F' j 4 \ F 
and, since ôi = ()|,4, i

7' $i A\F. SoJMsôi-round. 
Now suppose that J f is a r | A-free, ô i-round filter on A such t ha t J^ = &. 

If i J Ç Jf, then He & and H Q A. So H £ <0r. U F £ J^, then F e ^ 
= # . So there isH^je such that 77 C L, whence FÇJtf. Thus, j f = #~. 

(c) If J S and J S are two r|A-free, (h-round filters on ,4, then^~i C J S 
if and only if # ! C # 2 . 

3.19. PROPOSITION. Le/ 81 be a compatible proximity on A and let 8 be 
the unique compatible proximity on X such that 8\A — h\. Let °ii\be a uni­
formity on A such that 8(&i) = ôi, and suppose that there is a compatible 
uniformity °ti on X such that %\A = °tt\. Then 

(a) 8(°ll) = 8, and 
(b) if3f is a r\A-free, bi-round filter on A, then^ is °k\-Cauchy if and 

only if^Fis °tt -Cauchy. 

Proof, (a) 8($t) is a compatible proximity on X such that 8{f%)\A
 = ^i-

(b) S u p p o s e d is ^i-Cauchy. Let U £ <%. Then V = U C\ (A X A) 
6 ^ L So there is F <E f such that 7? X F Q F Ç [/. So F G # and 
F X F Ç1 U. Thus, Ĵ ~ is ^-Cauchy. Conversely, suppose that Ĵ ~ is 
^-Cauchy. Let V Ç ^ Then there is £/ € ^ such that V = U H 
(4 X 4 ) . There is G £ # such that G X G Q U. There is F 6 « ^ such 
that FQG. Then F Ç A S o 

F X F Q U C\ (A X A) = V. 

T h u s ^ i s ^ V C a u c h y . 

3.20. PROPOSITION. Le/ <$i 6e a compatible proximity on A and let 8 be the 
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unique compatible proximity on X such thatb\A = <$i. Let A C T C 5ii4. 
rfeew T is realcompact if and only if X U {#~: Ĵ ~ g 7 \ 4 } w a realcompact 
sub space of 5X. 

Proof. Define h: M -> ÔX by 

A(*) = x ( x M ) and A(F) = i ^ ( & 6 M V ) . 

Then h is a one-to-one function. We claim that h is continuous. First 
suppose that x Ç A. A typical basic open neighborhood of A(x) in 8X is 
of the form 

0(B) = JB U {& € « A ^ : ^ € ^ 1 

where x 6 5 £ r. Let M = J5 H A Then x £ M Ç r|A, so 

0(M) = I W | / Ç M V 4 : I ^ t 

is an open neighborhood of x in <$i/l. It is easily checked that h(0(M)) Q 
0(B), so that h is continuous at x. Next suppose that £F £ ôi^4\^4. A 
typical basic open neighborhood of h(^) = ^ \n bX is of the form 

0(G) = i n t x G U {^ 6 ÔX\^: G G ^ } , 

where G Ç #~. There is F 6 # " such that F C G and F H i r = 0. So 

0(F) = intA F U { / f M \ 4 : F 6 J^} 

is an open neighborhood of £F in h\A, Noting that intA F is open in X, 
we can easily check that h(0(F)) C 0(G). So & is continuous at Ĵ ~. 
Therefore, h is continuous. 

Now if X U { # : J ^ Ç T V } is realcompact, then 

^ ( i w j / : ^ ç r\ i4}) = r 

is realcompact by [17, p. 24]. Note that & is a homeomorphism onto 
fe(M) = A \J (ÔX\X). So if T is realcompact, then i ( r ) = A \J 
{tF'.^ G T\A} is realcompact. Thus, 

I U ( / : f ( T V } = A(D U I 

is realcompact since h(T) is realcompact and K is compact [17, p. 87]. 

Definition. [8] Let S be a subspace of Tychonofï space Y. 
(a) 5 is Uo-embedded in F if every compatible uniformity on 5 has an 

extension to a compatible uniformity on Y. 
(b) S is u-embedded (respectively, u*-embedded) in F if every compatible 

uniformity which is functionally determined by a collection of continuous 
(respectively, bounded continuous) real-valued functions on 5 has an 
extension to a compatible uniformity on Y. 

3.21. PROPOSITION. (A, r\A) is C-embedded in (X, r ) . Thus, (A, r\A) is 
u-embedded in (X,T). 
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Proof. L e t / G C(A). T h e n / U n * € C(4 C\ K) and A C\ K is C-
embedded in K. So there is g 6 C(i^) such that 

#U n x = /U n x-

Define/: X -> R by 

/(*) = x (x 6 4 ) , / ( * ) = g(x) (x Ç X). 

T h e n / 6 C(X) and / | A = / . Therefore, A is C-embedded in X, and it 
follows that A is w-embedded in X by results from [8]. 

3.22. THEOREM. Let X be a Tychonoff space and let A be a closed u0-
embedded subset of X such that clx(X\A) is compact. Let <$i be a compatible 
proximity on A, and let 8 be the unique compatible proximity on X such that 
b\A = di. Then hi is a rich proximity on A if and only if b is a rich proximity 
on X. Moreover, bX = x &X if and only ifbiA =A/3A. 

Proof. First suppose that <5i is a rich proximity on A. Let X C 5 C bX 
where 5 is realcompact. Let 

T = AU {& r\A:& £ S\X}. 

Then A C r Ç M , a n d I U j / : F G T\A) = S is realcompact. So, 
by 3.20, T is realcompact. Since bi is a rich proximity on A} there is a 
uniformity %i on A such that b(°tti) = <5i and T\A is the set of free 
minimal ^i-Cauchy filters on A. Since 4̂ is wo-embedded in X, there is 
a compatible uniformity^ on X such that °U\A = ^ i . By 3.19, b (°ti) = b 
and S\X = {&'. &~ £ 7 V } is the set of free minimal ^-Cauchy filters 
on X. So, by 2.1, X is ô-completable to 5. Therefore, 5 is a rich proximity 
o n l . 

Next suppose that b is a rich proximity on X. Let i Ç T Ç b\A where 
T is realcompact. Let 

S = l U j / i f G T\A). 

By 3.20, 5 is realcompact, and, since b is a rich proximity on X, there is 
a compatible uniformity ^ o n l such that <5(^) = b and 5 \X is the set 
of free minimal ^-Cauchy filters on X. Then °tt\ = °lt\A is a compatible 
uniformity on A and ô (^ i ) = <5i. Also, by 3.19, 

T\A = {^ 6 M V 4 : ^ € S\X} 

is the set of free minimal ^i-Cauchy filters on A. Thus, by 2.1, A is 
<$i-completable to T. Therefore, <5i is a rich proximity on A. 

Now recall, from the proof of 3.20, that the subspace A* = A U 
(bX\X) of bX has the property that bxA =A A*. Suppose that M =A f$A. 
Then .4* =A pA. L e t / 6 C*(X). Then /U G C*(4). So there is g Ç 

https://doi.org/10.4153/CJM-1982-021-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-021-5


346 STEPHAN C. CARLSON 

C*(A*) such that g\A = f\A. Define/: 8X -> R by 

/(*) = /(*) (x G X)J(x) = g(x) (x e i4*). 

T h e n / G C*(ÔZ) and / | x = / . Thus, X is C*-embedded in 8X, and so 
bX =xpX. 

Conversely, suppose that dX =x pX. L e t / G C*(A). By 3.21, there is 
g G C*(Z) such that g\A = f. Now X is C*-embedded in dX. So there is 
g £ C*(5Z) such that g\x = g. S e t / = f|A*. Then / Ç C*(A*) and 
/ U = /• So yl is C*-embedded in A*, and, hence, (3A =A A* =A di A. 

3.23. COROLLARY. Let X be a collection-wise normal Hausdorff space and 
let A be a closed subset of X such that c\x (X\A ) is compact. Then A admits 
a compatible rich proximity di such that 8\A 9^A PA if and only if X admits 
a compatible rich proximity 8 such that 8X 9£

x PX. 

Proof. A is ^o-embedded in X [8]. So this result follows from 3.22. 

The next result is a corollary to the proof of 3.22. 

3.24. COROLLARY. Let X be a noncompact, locally compact Hausdorff 
space containing a closed subset A such that 

(a) clx (X\A) is compact, and 
(b) A is homeomorphic to Y © Y for some space Y. 
Then X admits a compatible rich proximity à such that 8X ^x pX. 

Proof. A must be locally compact and Hausdorff, and so Y must be a 
noncompact, locally compact Hausdorff space. By 3.16, A admits a com­
patible rich proximity 8\ such that 8\A ^A PA. Moreover, it follows from 
the proof of 3.12 that <$i can be chosen so that if A C T C 8iA where T is 
realcompact, then there is a functionally determined uniformity %\ on A 
such that b{%\) = <5i and T\A is the set of free minimal ^ i -Cauchy 
filters on A. Since, by 3.21, A is w-embedded in X, for any such uniformity 
°tt\, there is a compatible uniformity ^ o n l such that °U\A — %\> With 
this fact, the proof of 3.22 yields a compatible rich proximity 8 on X 
such that 8X 9^xpX. 

3.25. COROLLARY. The real line R with the usual topology admits a com­
patible rich proximity 8 such that Ô R ^ R pK. 

Proof. Take A = ( - o o , - 1 ] U [ + 1, +oo) and X = R. Then X and 
A satisfy the hypotheses of either 3.23 or 3.24. 

We have seen that many Tychonoff spaces admit more than one rich 
proximity. The following question asks how far this result can be extended. 

Question. Does every Tychonoff space which admits at least two distinct 
compatible proximities admit at least two compatible rich proximities? 
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To see that, in certain instances, the number of compatible rich proxim­
ities on a noncompact, realcompact space may be large, we will conclude 
with an example. 

Example. Let X be a countably infinite discrete space. For a subset A 
of X such that \A | = \X\A \ = Ko let ô(A) be a compatible rich proximity 
on X such that 

(1) if Bi and B2 are disjoint subsets of A then Bi $(A) B2, 
(2) if Bx and B2 are disjoint subsets of X\A} then Bi $(A) B2, 
(3) if B is an infinite subset of A, then B b(A) X\A, and 
(4) if B is an infinite subset of X\A, then A ô(A) B. 

(The existence of à (A) follows from 3.13 and its proof.) 
Let SS be an almost disjoint family of infinite subsets of X with \SS\ — 

c(= 2*o). (I.e., if Bu B2 e Se and Bx * B2, then \BX C\ B2\ < Ko). Let 
se = \X\B\ B Ç Se). T h e n j / has these properties: 

(a) \sé\ = c, 
(b) if ^ G J / , then \A\ = | A V I = K0, and 
(c) if Alf A2 Ç J / and 4 i ^ ^42, then 

Mi H Ai\ = \Ai\A2\ = | i4 a Vi | = Ko and | X \ ( ^ i U A*)\ < K0. 

Now if Au A2 £s/ and ^4i ^ A2, then we claim that ô(Ai) ^ ô(i42). 
To see this, note that AiC\ A2 and A i\A 2 are disjoint subsets of A i. Thus, 

(A1nA2)t(A1)(A1\Ai). 

Since ^4i P\ ^42 is an infinite subset of A2, 

(A, r\ A2) b(A2)(X\A2) = (AM*) \J [X\(Ar U A*)]. 

Since X\(AiU A2) is finite, 

(Ar n A2) $(A2)[X\(A1U A2)]. 

Thus, we must have (Ax C\ A2) b{A2) (AM*)- Therefore, 6(Ai) j* 
<5(̂ 42), as claimed. 

Thus, {8(A): A £ s/\ is a collection of c distinct compatible proximi­
ties on X. 

Also note that if A\ and A2 are two disjoint infinite subsets of X, then 
Ai à(Ai) A2. Now the smallest member, a, in the lattice of compatible 
proximities on X is defined by (for Bi, B2 C X) B\ a B2 if and only if 
B\ C\ B2 7e 0 or \B\\ = |£2 | = Ko- So clearly a is the infimum of the rich 
proximities in the lattice of compatible proximities on X. 

REFERENCES 

1. G. Bachman, E. Beckenstein, L. Narici and S. Warner, Rings of continuous functions 
with values in a topological field, Trans. Amer. Math. Soc. 204 (1975), 91-112. 

2. B. Banaschewski, Ûber nulldimensionale Rdume, Math. Nachr. 13 (1955), 129-140. 

https://doi.org/10.4153/CJM-1982-021-5 Published online by Cambridge University Press

file:///X/B/
https://doi.org/10.4153/CJM-1982-021-5


348 STEPHAN C. CARLSON 

3. A remark on extensions of Hausdorff spaces, General Topology and its Applica­

tions 4 (1974), 283-284. 
4. S. C. Carlson, Rich proximities on Tychonoff spaces, Ph.D. dissertation, University 

of Kansas, Lawrence, Kansas (1978). 
5. K. P. Chew, Shirota's theorem for N-compact spaces, Kyungpook Math. J. 12 (1972), 

153-157. 
6. J. Dugundji, Topology (Allyn and Bacon, Boston, Mass., 1966). 
7. R. Engelking and S. Mrôwka, On E-compact spaces, Bull. Acad. Polon. Sci. Ser. Sci. 

Math. Astronom. Phys. 6 (1958), 429-435. 
8. T. Ganter, Extensions of uniform structures, Fund. Math. 66 (1970), 263-281. 
9. L. Gillman and M. Jerison, Rings of continuous functions (D. Van Nostrand Co., 

Princeton, New Jersey, 1960). 
10. H. Herrlich and J. VanderSlot, Properties which are closely related to compactness, 

Indag. Math. 29 (1967), 524-529. 
11. F. Marin, A note on E-compact spaces, Fund. Math. 76 (1972), Fasc. 3, 195-206. 
12. S. Mrowka, Recent results on E-compact spaces, TOPO 7^-General Topology and its 

Applications, Second Pittsburgh International Conference (1972), 298-301. 
13. P. Nyikos, Not every ^-dimensional realcompact space is ^-compact, Bull. Amer. Math. 

Soc. 77 (1971), 392-396. 
14. N. Piacun and L. P. Su, Woilman compactifications on E-completely regular spaces, 

Pacific J. Math. Jfi (1973), 321-326. 
15. L. P. Su, Wallman-type compactifications on ^-dimensional spaces, Proc. Amer. Math. 

Soc. 43 (1974), 455-460. 
16. W. J. Thron, Topological structures (Holt, Rinehart and Winston, New York, 1966). 
17. M. Weir, Hewitt-Nachbin spaces, Notes de Matemâtica 57 (North-Holland Publish­

ing Co., 1975). 
18. S. Willard, General topology (Addison-Wesley Publishing Co., Reading, Mass., 1970). 
19. R. G. Woods, Topological extension properties, Trans. Amer. Math. Soc. 210 (1975), 

365-385. 

University of North Dakota, 
Grand Forks, North Dakota 

https://doi.org/10.4153/CJM-1982-021-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-021-5

