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LETTERS TO THE EDITOR

A NOTE ON TWO MEASURES OF DEPENDENCE AND MIXING
SEQUENCES

MAGDA PELIGRAD.* University of Rome

Abstract

In this note we establish an inequality between the maximal coeffi-
cient of correlation and the ¢-mixing coefficient which is symmetric in
its arguments. Motivated by this inequality, we introduce a mixing
coefficient which is the product of two ¢-mixing coefficients.

We also study an invariance principle under conditions imposed on
this new mixing coefficient. As a consequence of this result it follows
that the invariance principle holds when either the direct-time process
or its time-reversed process is ¢-mixing; when both processes are
¢-mixing the invariance principle holds for sequences of L,-
integrable random variables under a mixing rate weaker than that
used by Ibragimov.

MAXIMAL COEFFICIENT OF CORRELATION

Let (©, K, P) be a probability space and K, and K, two o-algebras contained in the
o-algebra K. Define the measures of dependence between K, and K, as follows:

oKy, Ky) = sup |P(B | A)-P(B)|

{AeK,.P(A)#0.BeK;}

and oKy K= sup |E(X-EX)(Y-EY)|
b2 {XeLao, EXX-EX)YENY-EY)?*

YeLyK»)

The following well-known inequality ([5], Theorem 17.2.3, p. 309) relates the two
measures of dependence.

Suppose X is a random variable K,-measurable and Y a random variable K,-
measurable and E'” |X|° <o, EV*|Y|* <, where 1/p+1/q = 1. Then

1) |EXY - EX - EY|=2(¢(K,, K,)E | X|")P(E | Y|*)"2
whence
2) p(K,, K2)§2<P%(Kh K>).

We notice that in (2) ¢ is not symmetric in its arguments whereas p is. We shall
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establish the following symmetric inequality which improves (1):

3 |EXY — EX - EY|=2(¢(K}, K)E | X°) " (¢(K2, K)E | Y|,
whence
@ p(Ky, K7) =204Ky, K)o Kz, K)).

Proof of (3). The proof of (3) follows in the same way as the proof of (1). We
approximate X and Y by X=3al(A), Y=Y bI(B), where (A): and (B;); are

i ]
respectively, finite decompositions of € into disjoint elements of K, and K, and I(A)
denotes the indicator function of A. Using Holder’s inequality we obtain

|EXY - EX-EY|= (Z | P(A-))""
* [Z P (Af)(,Z Ib,| |P(B; | A)— p(Bi)l)“]”«
=(E |le)‘/"[zi: P(A) % (; |b;|* |P(B; | Ai)-P(B,»)|>

ap}
x(Z1pe, 1 a0-P®)I) | =EIXPE YT

1/p %
xmax (2 PGB, | A)-P(®)I) max (T 1P(A] B)-P(A)])

If C{ (or C;) is the union of those B; for which P(B;|A;)—P(B;) is positive, (or
non-positive) then

Z |P(B; | A)— P(B)|=|P(C{" | A)—P(C)|+|P(Ci | A) - P(C)|=20(K, Ka).

Similarly Y IP(A/ | B) - P(A)| 520 (K2, K))

so (3) holds for simple random variables, and by passing to the limit the inequality
remains valid for every Xe L,(K,) and Y € L ,(K>).

Suppose now (X, n =0, £1, +£2, - - -) is a stationary sequence of random variables and
denote by F; =o(X,, n=k <m). For each ne N define

o(n)=@(F., F?)
p(n)=p(F ., F?).

The sequence (X, ).z is said to be ¢-mixing, or p-mixing, respectively, as ¢(n) —0 or
p(n)— 0. It is known that there are sequences of random variables that are not
¢-mixing, while their reverses are, (see [6], p. 414). For instance let (X, n=
0,+1,+2,---) be a stationary Markov chain with transition matrix A,;=2"" and
A;;_y=1for j, i = 1. This sequence is not ¢-mixing, but its reversed-time sequence, with
transition matrix B, = B;;,, =3 for all i, is ¢-mixing. Therefore it seems natural to ask if
the properties valid for ¢-mixing sequences are valid for sequences of random variables
with the time-reversed sequence ¢-mixing, and the fact that both the direct and the
reversed sequence are ¢-mixing can improve on the ¢-mixing rate in certain limit
theorems.

The new relation between p and ¢ suggests that instead of the mixing coefficient ¢(n)
we can consider another one, namely the product

e(Me"(n) = @(F’., FDo(FZ, F°.).
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The following theorem gives an invariance principle for stationary sequences of
L,-integrable random variables under conditions imposed on this new mixing coeffi-
cient. From this result we deduce that the invariance principle obtained by Ibragimov
[4], Theorem (3.2), also holds for stationary sequences of L,-integrable random
variables whose time-reversed sequences satisfy a ¢-mixing condition. When both the
direct-time sequence and its reverse are @-mixing the ¢-mixing rate used in [4],
Theorem (3.2), is improved (for instance for reversible ¢-mixing sequences). This
theorem also yields a functional form for Corollary 5.3. (i) of [3], which is a central limit
theorem for sequences of random variables whose reversed-time sequences are ¢-
mixing. At the same time the mixing rate used there (polynomial) is improved
(logarithmic).

n

Let S, = Z X;, and let [t] denote the greatest integer =t.

i=1

Theorem. Let (X,, n =0, £1, £2, - - -) be a stationary sequence of centered random vari-
ables which have L,-moments and ES’—> . Suppose also that

(5) Y [e(2)e' @) <.

Then there exists 0%, 0<g><o such that lim, ES2%/n=0", and the normalised sample
paths W,.(t)=S[,,,]/n5cr, (0=t=L) converge in distribution to the standard Brownian
motion process W(t),(0=t=1).

Proof. By (4) and (5) we have Z p(2')<wx, and, using Theorem 1 in [2], or Theorem

(4.1) in [7], we obtain that ES2/n converges to a positive constant a”>0. The theorem
follows by applying Theorem 19.2 of [1]. First W,(t) has asymptotically independent
increments (see the proof of Theorem 20.1 of [1]). Then, by Lemma (3.5) of [7] it
follows that (S2/n, n=1) is uniformly integrable, so W2(t) is uniformly integrable for
each t and obviously EW,(t)=0 and EWZ(t) ——t. It remains only to verify the
tightness condition, namely that for each & >0, there exists A >1 and an integer n, such
that n=n, implies P(lrgiagxn |S:|>Aan?) =e/A. Without loss of generality we assume

o’=1. If ¢, — 0 this condition was verified in [1], pp. 175-176. If ¢, — 0, the proof
follows the same lines with the difference that we now denote

El'= { max |S, — S| <3An*=|S, —Sil}e F7.

o=sj<i

So, we have successively:
P(mgax |S:|> 4)\n5) =P(S,|> And)+ P(Arga_x‘ IS, —Si|> 3)\n%)

n—1
=2P(S,|>And) + Y. P(EFN{|S|>2AnY) =2P(S,|>An)
i=1

P n—1

n—1
+Y P(S|>2anh)+ Y P(S;—S,|>And+ Y PEIN{Si ,|>AnY)
i=1 i=p+1 i=p+1

n—1

=2P(S.|>And) + nP(SE>And)+ Y P(EDN(P(S._,|>And)+¢'(p))

i=p+1

where p and S* were defined in [1], p. 175. This gives the desired result.
With a similar proof it is easy to see the following.
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Remark. This theorem can be obtained for some non-stationary sequences of random

variables (X,, n=1), namely, we can assume instead of stationarity that (X7, n=1) is
(k+1)n

2
uniformly integrable and E( b K) / ES2—1 as n — o uniformly in k, the mixing

i=kn

coefficients @(n) and ¢"(n) being defined by
¢(n)=sup ¢(Fg, Fi..) and  ¢"(n)=sup ¢(F.n, F7).

The author thanks the referee for his useful suggestions and criticisms and also E.
Presutti and R. C. Bradley for stimulating discussions on the subject.
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