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NORMAL FUNCTIONS: Lp ESTIMATES

HUAIHUI CHEN AND PAUL M. GAUTHIER

ABSTRACT. For a meromorphic (or harmonic) function f , let us call the dilation of f
at z the ratio of the (spherical) metric at f (z) and the (hyperbolic) metric at z. Inequalities
are known which estimate the sup norm of the dilation in terms of its Lp norm, for p Ù 2,
while capitalizing on the symmetries of f . In the present paper we weaken the hypothesis
by showing that such estimates persist even if the Lp norms are taken only over the set
of z on which f takes values in a fixed spherical disk. Naturally, the bigger the disk, the
better the estimate. Also, We give estimates for holomorphic functions without zeros
and for harmonic functions in the case that p ≥ 2.

1. Introduction. Let C denote the complex plane, let D ≥ fz 2 C : jzj Ú 1g, and
let Dr ≥ fz 2 C : jzj Ú rg. For a meromorphic function f , let

f #(z) ≥
jf 0(z)j

1 + jf (z)j2

denote its spherical derivative. A function f meromorphic in D is called a normal function
if the family ff Žç : ç 2 Aut(D)g is a normal family in the sense of Montel, where Aut(D)
is the group of Möbius transformations of D onto itself. A harmonic function h is called a
normal function if for every sequence fhŽçng, çn 2 Aut(D) for n ≥ 1, 2, Ð Ð Ð, there exists
a subsequence fh Ž çnkg which locally uniformly converges to a harmonic function, to
+1 or to �1 identically. It is known that a meromorphic function f is normal if and
only if

(1) sup
z2D

(1 � jzj2)f #(z) ≥ sup
z2D

(1 � jzj2)
jf 0(z)j

1 + jf (z)j2
Ú 1,

and a harmonic function h is normal if and only if

(2) sup
z2D

(1 � jzj2)
j grad h(z)j
1 + h2(z)

Ú 1.

For the definitions and general properties of normal functions see for example [6], [7]
and [8].

The following theorem, proved by Pommerenke [12] for p ≥ 2 and by Aulaskari,
Hayman, and Lappan [2] for p Ù 2, gives an integral condition for an automorphic
meromorphic function to be normal.
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THEOREM. Let f be a function meromorphic in D and automorphic with respect to
a Fuchsian group Γ. If

(3) I ≥
Z Z

F
(1 � jzj2)p�2ff #(z)gp dx dy Ú 1

for some p ½ 2, where F is a fundamental region of Γ, then f is normal and, furthermore,
for p Ù 2,

(4) sup
z2D

(1 � jzj2)f #(z) � 3 max(I1Ûp , I1Û(p�2)).

In [4], we strengthened the conclusion of the above theorem by proving that the as-
sumption (3) implies the strong normality of the function f with respect to the group Γ.
Strong normality means that

(1 � jzj2)f #(z) ! 0, z ! ∂D, z 2 F.

At the same time, we obtained a similar result for harmonic functions. Now, in Section 3
of this paper, we weaken the assumption (3) by taking the integral only on a subset Fé

of F in which f assumes values in a fixed spherical disk of angular radius é only. Under
this weaker assumption, we prove that f is still normal and that, for p Ù 2, we have

M ≥ sup
z2Fé

(1 � jzj2)f #(z) � Cé max(I1Ûp , I1Û(p�2)),

sup
z2D

(1 � jzj2)f #(z) � M(1 + 1ÛR2) + 1ÛR,

where, Cé is a constant depending on é only and R ≥ tan(éÛ2). In general, there is no
estimate like (4) for p ≥ 2. However, in Section 4, we prove that such an estimate does
exist for holomorphic functions without zeros and Fé ≥ D, and we give examples to
show that our restriction is quite reasonable. As applications of the above results, we
obtain, in Section 5, corresponding theorems for harmonic functions, which improve a
theorem of Aulaskari and Lappan [3]. In addition, we give some necessary and sufficient
conditions for a harmonic function to be normal.

2. Some lemmas. The following version of the Ahlfors Lemma is similar to that
formulated by Pommerenke [11] and Ahlfors [1]. The proof is almost the same as in [1].

AHLFORS LEMMA. Let ö(z)j dzj be a continuous Riemannian metric in D such that
for every z 2 D, either ö(z) � 1Û(1 � jzj2) or ö(z)j dzj is smooth and has constant
Gaussian curvature �4 in a neighbourhood of z. Then, in fact ö(z) � 1Û(1 � jzj2) for
every z 2 D

LEMMA 1. Let h be a real-valued function harmonic in D, then h is normal if and
only if for every conjugate harmonic function h̃ of h, the holomorphic function (without
zeros) g ≥ exp(h + ih̃) is normal.

PROOF. Assume that h is normal. For any sequencefçng ² Aut(D) we can choose a
subsequencefçnkg such that fhŽçnkg locally uniformly converges to a harmonic function
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h0, to +1 or to �1 identically. In the former case we have jg Ž çnk j ! exp h0. Con-
sequently, by a theorem of Montel about sequences of holomorphic functions bounded
locally uniformly, we can choose again a subsequence of fg Ž çnkg which converges
locally uniformly to a holomorphic function g0 with jg0j ≥ exp h0. If the latter case hap-
pens, then g Ž çnk !1 or 0 locally uniformly. This argument is reversible. The lemma
is proved.

LEMMA 2. Let f be a function holomorphic in D without zeros. If (1�jzj2) jf 0(z)j � M
for z 2 D such that jf (z)j ≥ 1, then

(1 � jzj2)jf 0(z)j � jf (z)j(2j log jf (z)jj + M)

for every point z 2 D.

PROOF. Set

ö(z)j dzj ≥
jf 0(z)jj dzj

jf (z)j(2j log jf (z)jj + M)
.

This continuous metric has constant Gaussian curvature �4 at every point z 2 D with
jf (z)j Â≥ 1 and f 0(z) Â≥ 0. In fact, if jf (z)j Ù 1, ö(z)j dzj is obtained from the Poincaré
metric of CnDr, r ≥ e�MÛ2, by the substitution w ≥ f (z). Also, ö(z)j dzj is obtained from
the Poincaré metric of D1Ûr n f0g if jf (z)j Ú 1. At a point z with jf (z)j ≥ 1 or f 0(z) ≥ 0,
we have ö(z) � 1Û(1 � jzj2) by the assumption of the lemma or ö(z) ≥ 0 respectively.
Thus, applying the Ahlfors Lemma gives ö(z) � 1Û(1�jzj2) for every point z 2 D. This
proves the lemma.

LEMMA 3. Let f be a function meromorphic in D. If (1 � jzj2)jf 0(z)j � M for z 2 D
with jf (z)j � R, then

(1 � jzj2)jf 0(z)j � åjf (z)j2 � 1Ûå

for z 2 D with jf (z)j ½ R, where

å ≥
M +

p
M2 + 4R2

2R2
�

M
R2

+
1
R

.

PROOF. Set

ö(z)j dzj ≥
åjf 0(z)jj dzj
å2jf (z)j2 � 1

, if jf (z)j ½ R,

ö(z)j dzj ≥
1
M
jf 0(z)jj dzj, if jf (z)j � R.

This time, the metric is obtained from the Poincaré metric åj dwjÛ(å2jwj2�1) of CnDå�1

for z with jf (z)j Ù R. We have ö(z) � 1Û(1 � jzj2) for every z 2 D with jf (z)j � R by
hypothesis. The Ahlfors Lemma gives the conclusion of the lemma.

The following lemma is due to J. Dufresnoy [5].
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LEMMA 4. Let f be a function meromorphic in the disk Dr and let A denote the
spherical area of f (Dr), counted without consideration of multiplicity. If A � õô with
0 � õ Ú 1, then

f #(0) �
1
r

² õ
1 � õ

¦1Û2
.

We will use a result of Hayman [6] on a covering property of meromorphic functions
in D, which is stated as follows.

LEMMA 5. Let f (z) ≥ a0 + a1z + a2z2 + Ð Ð Ð be a function meromorphic in D and let
E denote the set of all positive numbers r such that the circle fw 2 C : jwj ≥ rg meets
C n f (D). Then

ja1j
Z

E

dr
(ja0j + r)2

� 4.

LEMMA 6. Let f (z) and E be defined as in Lemma 5 and let G ≥ (0, 1)nE. If a0 ≥ 0,
then

2ô
Z

G
r dr ½ ô

 
ja1j

4 + ja1j

!2

.

PROOF. Suppose that G consists of intervals l1, l2, Ð Ð Ð, where l1 ≥ (0, é). The value
A ≥ 2ô

R
G r dr denotes the total area of the annuli fw 2 D : jwj 2 lig, i ≥ 1, 2, Ð Ð Ð. Given

è Ù 0, choose l1, l2, Ð Ð Ð , ln such that

Z
E0

dr
r2
Ú
Z

E

1
r2

dr + è,

where,

E0 ≥ (0, 1) n
n[

i≥1
li.

Thus, by Lemma (5),

(5)
Z

E0

dr
r2
Ú

4
ja1j

+ è.

Moving the finite number of intervals l1, l2, Ð Ð Ð , ln to the left to form a single interval
(0, r0) so that they lie one after another without gaps nor overlaps, we have

(6) ôr02 ≥ 2ô
Z r0

0
r dr �

nX
i≥1

2ô
Z

li
r dr � A,

since the integral
R
li r dr decreases as li is moved to the left. On the other hand, E0 is

moved to the right when we move the li to the left, so

(7)
Z

E0

dr
r2
½
Z 1

r0

dr
r2
≥

1
r0
� 1,
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since
R

E0 r�2 dr decreases when each of its intervals is moved to the right. Combining (5),
(6) and (7), we obtain

A ½ ôr02 Ù ô
 

1
4Ûja1j + 1 + è

!2

.

Since è may be arbitrarily small, we have

A ½ ô
 

ja1j
4 + ja1j

!2

.

The lemma is proved.
As a consequence of Lemma 4, we have the following.

LEMMA 7. Let h be a real-valued function harmonic in Dr. If

Z Z
Dr

(
j grad h(z)j
1 + h2(z)

)2

dx dy � õô,

with 0 � õ Ú 1, then
j grad h(0)j
1 + h2(0)

�
1
r

(
õ

1 � õ

)1Û2

.

PROOF. Let f ≥ h + ih̃ be a holomorphic function and h̃(0) ≥ 0. Since

f #(z) ≥
jf 0(z)j

1 + jf (z)j2
�
j grad h(z)j
1 + h2(z)

,

we have Z Z
Dr

ff #(z)g2 dx dy � õô.

Thus, Lemma 4 gives

f #(0) �
1
r

(
õ

1 � õ

)1Û2

.

Since

f #(0) ≥
j grad h(0)j
1 + h2(0)

,

the conclusion of Lemma 7 follows.

3. Meromorphic functions.

THEOREM 1. Let p ½ 2, let f be a function meromorphic in D and automorphic
with respect to a Fuchsian group Γ, let F be a fundamental region for Γ, and let Ké be a
spherical disk whose angular radius measured from the center of the sphere is é. If

(5) I ≥
Z Z

Fé
(1 � jzj2)p�2ff #(z)gp dx dy Ú 1

https://doi.org/10.4153/CJM-1997-003-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-003-6


60 HUAIHUI CHEN AND PAUL M. GAUTHIER

where Fé ≥ fz 2 F : f (z) 2 Kég, then f is normal. Furthermore, if p Ù 2, set

M ≥ sup
z2Fé

(1 � jzj2)f #(z), R ≥ tan(éÛ2),

then we have

(6) M � max(23I1Ûp, 7I1Û(p�2)) if é ½ ôÛ2,

(7) M � max(46I1Ûp, 14R�2Û(p�2)I1Û(p�2)) if é � ôÛ2,

(8) sup
z2D

(1 � jzj2)f #(z) � M(1 + 1ÛR2) + 1ÛR.

PROOF. If p ≥ 2, the value of the integral I denotes the spherical area of the part
of the covering surface f (D) over Ké, and I Ú 1 implies that, for almost every point
w 2 Ké, the inverse image f�1(w) has only finitely many points in F. Thus, according to
a theorem of Pommerenke [12], f is normal.

The normality of f in the case that p Ù 2 is a consequence of (6), (7) and (8). However,
we would like to give an independent proof. If f is not normal then, by a theorem of
Lohwater and Pommerenke [10], there exists a sequence fzng ² D and a sequence of
positive numbers föng such that ön ≥ o(1� jznj2) and gn(z) ≥ f (zn + önz) converges to a
non-constant meromorphic function g(z), spherically and locally uniformly in C. Since
g assumes every complex value with two possible exceptions, it is clear that there exists
a positive number R0 such that gn(DR0) \ Ké has a spherical area, without consideration
of multiplicity, greater than ô(1 � cos é)Û4 for sufficiently large n. Set ûn(z) ≥ zn + önz
and ∆n ≥ ûn(DR0). Then f (∆n) \ Ké has a spherical area An ½ ô(1 � cos é)Û4. For any
n, let En ² ∆n be a measurable set such that f (z) 2 Ké for z 2 En, no points in En are
equivalent and, for every point z in ∆n with f (z) 2 Ké, there is a point ê 2 En equivalent
to z. Since f is automorphic,

f (∆n) \ Ké ≥ f (En),
Z Z

En

ff #(z)g2 dx dy ≥ An ½ ô(1 � cos é)Û4.

Let E0
n ² F be a measurable set equivalent to En. Then E0

n ² Fé and
Z Z

E0
n

(1 � jzj2)p�2ff #(z)gp dx dy ≥
Z Z

En

(1 � jzj2)p�2ff #(z)gp dx dy,

since f is automorphic. Now, we have
Z Z

Fé
(1 � jzj2)p�2ff #(z)gp dx dy

½
Z Z

E0
n

(1 � jzj2)p�2ff #(z)gp dx dy ≥
Z Z

En

(1 � jzj2)p�2ff #(z)gp dx dy

½
�ZZ

En

(1 � jzj2)�2 dx dy
�1�pÛ2 �ZZ

En

ff #(z)g2 dx dy
�pÛ2

½ é1�pÛ2
n (ô(1 � cos é)Û4)pÛ2,
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where én is the non-Euclidian area of ∆n, which tends to zero since ön ≥ o(1 � jznj2).

This contradicts the assumption (5), since é1�pÛ2
n !1. The normality of f is proved.

Now, we proceed to prove the second half of Theorem 1. To prove (6), choose a point
z0 2 Fé arbitrarily. We want to prove that if é ½ ôÛ2, then

(1 � jz0j2)f #(z0) � max(23I1Ûp, 7I1Û(p�2)).

Without loss of generality we may, by replacing f (z) by f
�
(z + z0)Û(1 + z0z)

�
, assume that

z0 ≥ 0. Then, the above inequality becomes

(9) f #(0) � max(23I1Ûp, 7I1Û(p�2)).

Let ã0 Ù 0 be the solution of the equation

(10) I2Ûp
 

4ô
3ã02

!1�2Ûp

≥
2
5
ô,

and let ã ≥ max(ã0, 2). Let E ² D1Ûã be a measurable set such that (i) f (z) 2 Ké for
z 2 E, (ii) no points in E are equivalent, and (iii) for every point z in D1Ûã with f (z) 2 Ké,
there is a point ê 2 E equivalent to z. There is a measurable set E0 ² F which is equivalent
to E. Then, f (D1Ûã) \ Ké ≥ f (E), E0 ² Fé and

Z Z
E0

(1 � jzj2)p�2ff #(z)gp dx dy ≥
Z Z

E
(1 � jzj2)p�2ff #(z)gp dx dy,

since f is automorphic.
There are two different casesã0 ½ 2 and ã0 Ú 2 to be discussed separately. Note that

ã0 ½ 2 if and only if I ½ (6Û5)pÛ2ôÛ3. If ã0 ½ 2, then

(11) ã ≥ ã0 ≥
 

5
2ô

!pÛ2(p�2) 4ô
3

!1Û2

I1Û(p�2) .

By Hölder’s inequality for non-Euclidean area measure, noting (11) and (10), we have
Z Z

E
ff #(z)g2 dx dy

�
 Z Z

E
(1 � jzj2)p�2ff #(z)gp dx dy

!2Ûp ZZ
E
(1 � jzj2)�2 dx dy

!1�2Ûp

�
 Z Z

E0
(1 � jzj2)p�2ff #(z)gp dx dy

!2Ûp Z Z
D1Ûã

(1 � jzj2)�2 dx dy
!1�2Ûp

� I2Ûp
 

4ô
3ã2

!1�2Ûp

≥ I2Ûp
 

4ô
3ã02

!1�2Ûp

≥
2
5
ô.

However,
f (D1Ûã) ² (C n Ké) [

�
f (D1Ûã) \ Ké

�
≥ (C n Ké) [ f (E),

so the spherical area, without consideration of multiplicity, of f (D1Ûã) is not greater than

ô
2

+
Z Z

E
ff #(z)g2 dx dy �

ô
2

+
2
5
ô ≥

9
10
ô,
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since é ½ ôÛ2. Thus, it follows from Lemma 4 and (11) that

(12)
f #(0) � ã

 
9Û10

1 � 9Û10

!1Û2

≥ 3ã

≥ 3
 

5
2ô

!pÛ2(p�2) 4ô
3

!1Û2

I1Û(p�2) .

If ã0 Ú 2, then ã ≥ 2 and, since the equation (10) has a solution ã0 Ú 2, the left side
of (10) will be less than 2ôÛ5 when ã0 is replaced by 2. Thus, in this case,

Z Z
E
ff #(z)g2 dx dy � (ôÛ3)1�2ÛpI2Ûp Ú 2ôÛ5.

Consequently, by Lemma 4 and the definition of E, we have

(13)
f #(0) � 2

 
(ôÛ3)1�2ÛpI2Ûp + ôÛ2

ô � (ôÛ3)1�2ÛpI2Ûp � ôÛ2

!1Û2

� 2(10Ûô)1Û2
�
(ôÛ3)1�2ÛpI2Ûp + ôÛ2

�1Û2
.

The estimate (13) is not good for small I, since the upper bound for f #(0) tends to a
constant 2 Ð 51Û2 as I ! 0. To get a better bound for f #(0), we assume that f #(0) � 6.
By a rotation of the w-sphere which carries w ≥ f (0) to w ≥ 0, we may assume that
f (0) ≥ 0. Of course, the spherical disk Ké is also carried to another one which is still
denoted by Ké and which now contains 0. Now, we have f (0) ≥ 0 and jf 0(0)j � 6.
Set g(z) ≥ f (zÛ2) for z 2 D. Let G denote the set of all positive numbers r Ú 1 such
that the circle fw 2 D : jwj ≥ rg is contained in g(D) ≥ f (D1Û2) completely. Let
H ≥ fw 2 D : jwj 2 Gg and let A be the Euclidean area of H. Then, applying Lemma 6
to the function g(z), we know that

A ≥ 2ô
Z

G
r dr ½ ô

 
jg0(0)j

4 + jg0(0)j

!2

≥ ô
 

jf 0(0)j
8 + jf 0(0)j

!2

.

The spherical area of H is not less than AÛ4. Since H ² D consists of annuli with center
w ≥ 0, 0 2 Ké and é ½ ôÛ2, it is clear that H \ Ké has a spherical area not less than
AÛ8. Define E and E0 in D1Û2 just as above. Since H \ Ké ² f (D1Û2) \ Ké ≥ f (E), the
spherical area of f (E) is not less than AÛ8. Thus,

Z Z
E
ff #(z)g2 dx dy ½

A
8
½
ô
8

 
jf 0(0)j

8 + jf 0(0)j

!2

½
ô

1568
jf 0(0)j2.

From the preceding paragraph, we haveZ Z
E
ff #(z)g2 dx dy � (ôÛ3)1�2ÛpI2Ûp.

Therefore, for I Ú (6Û5)pÛ2ôÛ3 and f #(0) Ú 6,

(14) jf 0(0)j2 �
1568
ô

Z Z
E
ff #(z)g2 dx dy �

1568
ô

�ô
3

�1�2Ûp
I2Ûp Ú 523(3Ûô)2ÛpI2Ûp,

f #(0) ≥ jf 0(0)j � 23(3Ûô)1ÛpI1Ûp.
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Let us return to the estimates for f #(0) we have obtained earlier. If I ½ (6Û5)pÛ2ôÛ3,
then, by (12), we have

f #(0) � 3
 

5
2ô

!pÛ2(p�2) 4ô
3

!1Û2

I1Û(p�2) Ú 7I1Û(p�2).

If I Ú (6Û5)pÛ2ôÛ3, then (13) is valid. However, the right side of (13) is less than 6 as
I Ú (6Û5)pÛ2ôÛ3. By (14), we have

f #(0) � 23(3Ûô)1ÛpI1Ûp Ú 23I1Ûp for I Ú (6Û5)pÛ2ôÛ3.

Hence, (9) and, consequently, (6) is proved.
To prove (7) and (8), we may assume that Ké ≥ fw 2 C : jwj Ú R ≥ tan(éÛ2)g. For

an arbitrary é � ôÛ2, set g(z) ≥ R�1f (z). Then, jg(z)j Ú 1 for z 2 Fé and jg(z)j ½ 1 for
z 2 F n Fé. Thus, we have

g#(z) ≥
R�1jf 0(z)j

1 + jf (z)j2ÛR2
�

R�1jf 0(z)j
1 + jf (z)j2

≥ R�1f #(z),

f #(z) ≥
Rjg0(z)j

1 + R2jg(z)j2
� Rjg0(z)j �

2Rjg0(z)j
1 + jg(z)j2

≥ 2Rg#(z)

for z 2 Fé, and consequently,

sup
z2Fé

(1 � jzj2)f #(z) � 2R sup
z2Fé

(1 � jzj2)g#(z),

I0 ≥
Z Z

Fé
(1 � jzj2)p�2g#(z)p dx dy � R�pI.

Applying the result we have proved for é ½ ôÛ2 to g(z) and noting the above inequalities,
we obtain

sup
z2Fé

(1 � jzj2)f #(z) � 2R sup
z2Fé

(1 � jzj2)g#(z)

� max
�
46R(I0)1Ûp, 14R(I0)1Û(p�2)

�
� max

�
46I1Ûp, 14R�2Û(p�2)I1Û(p�2)

�
.

This proves (7).
Let z 2 D be such that jf (z)j Ú R and ê 2 F be the point equivalent to z, then

jf (ê)j Ú R, ê 2 Fé, and consequently,

(1 � jzj2)jf #(z)j ≥ (1 � jêj2)f #(ê) � M, (1 � jzj2)jf 0(z)j � M(1 + R2).

By continuity, for jf (z)j � R,

(1 � jzj2)jf 0(z)j � M(1 + R2).

Thus, from Lemma 3,

(1 � jzj2)jf 0(z)j � (M + MÛR2 + 1ÛR)jf (z)j2
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for z 2 D with jf (z)j ½ R, and

(1 � jzj2)f #(z) � M(1 + 1ÛR2) + 1ÛR for z 2 D.

This proves (8), and the proof of Theorem 1 is complete.
In the conclusion of Theorem 1, there is a factor R�2Û(p�2) preceding I1Û(p�2) , which

tends to 1 as é ! 0 for a fixed p. We show that the power �2Û(p � 2) is best by the
following example.

EXAMPLE 1. Let fn(z) ≥ nz for z 2 D and n ≥ 1, 2, Ð Ð Ð, and let Ké ≥ fw 2 C : jwj Ú
R ≥ tan(éÛ2)g. Then, F ≥ D and Fé ≥ DRÛn for fn(z). We have

M ≥ sup
z2Fé

(1 � jzj2)f #(z) ≥ f #(0) ≥ n

and, for fixed p,

I ≥
Z Z

Fé
(1 � jzj2)p�2ff #(z)gp dx dy

≥
Z 2ô

0

Z RÛn

0

(1 � r2)p�2np

(1 + n2r2)p
r dr dí ³

Z 2ô

0

Z RÛn

0

np

(1 + n2r2)p
r dr dí

≥
ônp�2

p � 1

 
1 �

1
(1 + R2)p�1

!
³ ôR2np�2, as R ! 0, n !1.

Thus,

MÛI1Û(p�2) ³ ô�1Û(p�2)R�2Û(p�2).

4. Holomorphic functions without zeros. In the theorem formulated in the intro-
duction, the estimate (4) is valid only for p Ù 2. Set fn(z) ≥ nz (n ≥ 1, 2, Ð Ð Ð). We have,
for p ≥ 2,

In ≥
Z Z

D
ff #

n (z)g2 dx dy Ú ô,

but f #
n (0) ! 1. This shows that it is, in general, impossible to bound (1 � jzj2)f #(z) in

terms of the integral I for p ≥ 2. Note that the functions fn(z) do not assume 1. The
following example indicates that there need not be such an estimate for p ≥ 2 even
for functions which are automorphic with respect to a fixed group and omit two fixed
complex values.

EXAMPLE 2. We consider the functions fn(z) ≥ nez (n ≥ 1, 2, Ð Ð Ð) in the left half-
plane L ≥ fz 2 C : <z Ú 0g. They do not assume 0 and 1, and are automorphic
with respect to the group generated by the mapping ç(z) ≥ z + 2ôi, which has the strip
F ≥ fz 2 C : <z Ú 0, 0 � =z Ú 2ôg as its fundamental region. Recall that the Poincaré
metric on L is �(2<z)�1jdzj. It is obvious that

Z Z
F
ff #

n (z)g2 dx dy Ú ô, for n ≥ 1, 2, Ð Ð Ð .
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However, letting zn ≥ � log n 2 F for n ≥ 2, 3, Ð Ð Ð, we have

f #
n (zn) ≥ njezn jÛ(1 + n2jezn j2) ≥ 1Û2,

(�2<zn)f #(zn) ≥ log n !1.

Nevertheless, for all meromorphic functions which omit two fixed complex values,
we do have an estimate like (4), in which the integral I is taken over the whole unit disk
D

THEOREM 2. Let f be a function holomorphic in D without zeros, and let

M ≥ sup
z2D

(1 � jzj2)f #(z),

I ≥
Z Z

D
ff #(z)g2 dx dy.

If I Ú 1, then f is normal and

(15) M � C max(I1Û2, I),

where, C is an absolute constant.

PROOF. By the result of Pommerenke [12], we know that f is normal, i.e., M Ú 1.
Let z0 2 D be a point such that (1� jz0j2)f #(z0) ½ 14MÛ15. We may assume that z0 ≥ 0
and jf (0)j � 1. Then, jf 0(0)j ½ 14MÛ15. We have

sup
jf (z)j≥1

(1 � jzj2)jf 0(z)j � 2M

and, by Lemma 2,

(16) (1 � jzj2)jf 0(z)j � 2jf (z)j(j log jf (z)jj + M) for z 2 D.

Thus, for every í, since fr 2 [0, 1 � é) : jf (reií)j ≥ 1g consists of finitely many points
and segments,

∂
∂r

log(log+ jf (reií)j + M) �
2

1 � r2

for all r 2 [0, 1) with a countable number of exceptional values r, and consequently

log+ jf (z)j �
2Mjzj
1 � jzj

for z 2 D.

To prove (15), first assume that M ½ 2. Set g(z) ≥ ff (z)g2ÛM. Since f (z) Â≥ 0,1, g(z) is
a single-valued function. Then, if z 2 D is a point such that jf (z)j Ú 1Û3, we have, from
(16),

(1 � jzj2)f #(z) �
2jf (z)j log(jf (z)j�1) + 2Mjf (z)j

1 + jf (z)j2

� sup
[0,1Û3]

2 Ð
x log x�1 + Mx

1 + x2
Ú

14
15

M.
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Therefore, we conclude that 1Û3 � jf (0)j � 1, and

3�2ÛM � jg(0)j � 1, jg0(0)j ≥
2
M
jf (0)j2ÛM�1jf 0(0)j ½ 20Û15,

and

log+ jg(z)j ≥
2
M

log+ jf (z)j �
4jzj

1 � jzj
Ú 4 for z 2 D1Û2.

It is well-known that g(D1Û2) contains a disk ∆1 ≥ fw 2 C : jw � g(0)j Ú C1g, where

C�1
1 ≥ q(1 + e4). Set ∆0 ≥ fw 2 ∆1 : 3�2ÛM Ú jwj Ú 1g. Then, 1Û3 Ú jf (z)j Ú 1 and

3�2ÛM Ú jg(z)j Ú 1 for z 2 g�1(∆0). The area A of ∆0 tends to zero as M !1, since ∆0

is thinner and thinner when M ! 1. However, it is clear that there exists an absolute
constant C0 such that A ½ (C0M)�1. Now, we have

I ½
Z Z

g�1(∆0)
ff #(z)g2 dx dy ½

1
4

Z Z
g�1(∆0)

jf 0(z)j2 dx dy

≥
M2

16

Z Z
g�1(∆0)

jg(z)jM�2jg0(z)j2 dx dy

½
M2

144

Z Z
g�1(∆0)

jg0(z)j2 dx dy

½
AM2

144
½

M
144C0 ,

M � (144C0)I.

If M Ú 2, then we have, for z 2 D1Û2,

log+ jf (z)j �
4jzj

1 � jzj
Ú 4, jf (z)j Ú e4.

Thus,

I ½
Z Z

D1Û2

ff #(z)g2 dx dy

½ (1 + e8)�2
Z Z

D1Û2

jf 0(z)j2 dx dy ½
ô
4

(1 + e8)�2jf 0(0)j2,

14
15

M � jf 0(0)j �
2

ô1Û2
(1 + e8)I1Û2,

M �
15

7ô1Û2
(1 + e8)I1Û2 Ú 6040I1Û2.

This completes the proof of Theorem 2.
The conclusion (15) of Theorem 2 states that M � CI for I Ù 1. One may expect

that CI can be replaced by CI1Û2. However, this is impossible as the following example
shows.
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EXAMPLE 3. Set fn(z) ≥ nzn for z 2 U ≥ fz 2 C : =z Ù 0g. Recall that the Poincaré
metric of U is (2=z)�1j dzj. Then,

Z Z
U
ff #

n (z)g2 dx dy ≥
nô
2

.

On the other hand, we have

(2=z)f #
n (z) ≥

2njzjn�1=z
1 + jzj2n

�
2njzjn

1 + jzj2n
� n,

and
(2=z)f #

n (z) ≥ n for z ≥ i.

Thus,
sup
z2U

(2=z)f #(z) ≥ n.

Theorem 2 may be generalized so that 0 and 1 are replaced by any two distinct
complex values. We can also consider the situation where the integral I is taken over a
subset of D, not the whole disk.

5. Harmonic functions. The following theorems on harmonic functions are direct
consequences of Theorems 1 and 2.

THEOREM 3. Let h be a real-valued function harmonic in D. If

I ≥
Z Z

G
(1 � jzj2)p�2j grad h(z)jp dx dy Ú 1,

where, p ½ 2, G ≥ fz 2 D : a Ú h(z) Ú bg, then h is normal.

PROOF. Set f (z) ≥ exp
�
h(z) + ih̃(z)

�
, where h̃(z) is a harmonic function conjugate to

h(z). Then,

f #(z) ≥
j grad h(z)j

exp
�
�h(z)

�
+ exp

�
h(z)

� � 1
2
j grad h(z)j,

Z Z
G

(1 � jzj2)p�2ff #(z)gp dx dy � 2�pI Ú 1.

Since z 2 G if and only if ea Ú jf (z)j Ú eb, it follows from Theorem 1 that f is normal.
Consequently, h is also normal by Lemma 1. This proves Theorem 3.

THEOREM 4. Let h be a real-valued function harmonic in D. If

(17) I ≥
Z Z

D

j grad h(z)j2�
exp

�
�h(z)

�
+ exp

�
h(z)

��2 dx dy Ú 1,

then h is normal and

sup
z2D

(1 � jzj2)
j grad h(z)j

exp
�
�h(z)

�
+ exp

�
h(z)

� � M ≥ C max(I1Û2, I),
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where C is the constant in Theorem 2.

Both Theorem 3 and 4 improve a result of Aulaskari and Lappan [3], which asserts
the normality of a harmonic function having the property

(18)
Z Z

D

j grad h(z)j2�
1 + h2(z)

�2 dx dy Ú 1.

As consequences of Lemma 2 and Theorem 1, we have the following results.

THEOREM 5. Let f be a holomorphic function in D without zeros. If

(1 � jzj2)jf 0(z)j � M

for z 2 D with jf (z)j ≥ 1, then

(1 � jzj2)f #(z) �
jf (z)j(2

þþþlog jf (z)j
þþþ + M)

1 + jf (z)j2
� A +

M
2

for every z 2 D, where A is an absolute constant, and consequently f is normal.

THEOREM 6. Let h be a real-valued function harmonic in D. If

(1 � jzj2)j grad h(z)j � M

for z 2 D with h(z) ≥ a, then h is normal and

(1 � jzj2)j grad h(z)j � 2jh(z) � aj + M

for every z 2 D.

PROOF. Set f (z) ≥ exp
�
h(z)�a+ ih̃(z)

�
, where h̃(z) is a harmonic function conjugate

to h(z). Then,

(1 � jzj2)jf 0(z)j ≥ (1 � jzj2)j grad h(z)j � M

for z 2 D with jf (z)j ≥ 1, i.e., h(z) ≥ a. By Theorem 5 and Lemma 1, h is normal. By
Lemma 2, we have

(1 � jzj2)jf 0(z)j � jf (z)j(2
þþþlog jf (z)j

þþþ + M) for z 2 D.

Thus,

(1 � jzj2)j grad h(z)j � 2jh(z)� aj + M for z 2 D.

The theorem is proved.
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THEOREM 7. For a real-valued function h harmonic in D the following five condi-
tions (the constants M may be different) are equivalent:

(i) h is normal;
(ii) there exists a positive number M and a real value a such that

(1 � jzj2)j grad h(z)j � M

for z 2 D with h(z) ≥ a;
(iii) there exists a positive number M such that

(1 � jzj2)j grad h(z)j � M + 2jh(z)j for z 2 D;

(iv) there exists a positive number M such that

(1 � jzj2)j grad h(z)j � M
�
1 + h2(z)

�
for z 2 D;

(v) there exists a constant M such that

(1 � jzj2)j grad h(z)j � M
�

exp
�
�h(z)

�
+ exp

�
h(z)

��
for z 2 D.

PROOF. It is obvious that (iii) implies (iv), (iv) implies (v), and (v) implies (ii). The-
orem 6 asserts that (ii) implies (iii). It is known that (i) is equivalent to (iv). This proves
Theorem 7.

EXAMPLE 4. Consider the normal harmonic function h(z) ≥ y in the upper half-
plane. We have j grad h(z)j ≥ 1. Recall that the Poincaré metric of the upper half-plane
is

ï(z)j dzj ≥ (2y)�1j dzj.

Then,
ï(z)�1j grad h(z)j ≥ 2h(z).

This shows that, for a normal harmonic function h(z), (iii) is the best upper bound for
ï(z)�1j grad h(z)j in terms of jh(z)j.

To conclude this paper, we give a bound for (1� jzj2)j grad h(z)jÛ
�
1 + h2(z)

�
in terms

of the integrals in (17) and (18).

THEOREM 8. Let h be a function harmonic in D and let

I ≥
Z Z

D

j grad h(z)j2�
exp

�
�h(z)

�
+ exp

�
h(z)

��2 dx dy,

I0 ≥
Z Z

D

(
j grad h(z)j
1 + h2(z)

)2

dx dy,

M0 ≥ sup
z2D

(1 � jzj2)
j grad h(z)j
1 + h2(z)

.
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If I Ú 1, then

(19) M0 � max(AM, 2M),

where, M ≥ C max(I1Û2, I) with the absolute constant C defined in Theorem 2,

AM ≥ M Ð
exM + e�xM

1 + x2
M

≥
2xM + 2M

1 + x2
M

,

and xM is the unique positive solution of the equation M ch x ≥ x + M. If I0 Ú 1, then

(20) M0 � max
�
(2Ûô)1Û2I01Û2, 3CI0

�
,

where C is also the absolute constant defined in Theorem 2.

PROOF. If I Ú 1, by Theorem 4 we know that

(21) sup
z2D

(1 � jzj2)
j grad h(z)j

exp
�
�h(z)

�
+ exp

�
h(z)

� � M ≥ C max(I1Û2, I).

In particular,
(1 � jzj2)j grad h(z)j � 2M

for z 2 D with h(z) ≥ 0. Then, by Theorem 6,

(1 � jzj2)j grad h(z)j � 2jh(z)j + 2M

for every z 2 D. Consequently,

(22) (1� jzj2)
j grad h(z)j
1 + h2(z)

�
2jh(z)j + 2M

1 + h2(z)

for every z 2 D. From (21), we have

(23) (1 � jzj2)
j grad h(z)j
1 + h2(z)

� M Ð
exp

�
�h(z)

�
+ exp

�
h(z)

�
1 + h2(z)

for every z 2 D.
Consider the functions

fM(x) ≥ M Ð
ex + e�x

1 + x2
, gM(x) ≥

2x + 2M
1 + x2

,

for x ½ 0. We have fM(0) ≥ gM(0). The other point x such that fM(x) ≥ gM(x) is the
unique positive solution xM of the equation

(24) M ch x ≥ x + M.

It is obvious that xM increases with 1ÛM and that xM ! 0 as M ! 1 and xM ! 1 as
M ! 0. There exists an absolute constant x1 such that fM(x) decreases as 0 � x � x1

and increases as x ½ x1, while gM(x) increases as 0 � x � x2 and decreases as x ½ x2,
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where x2 ≥
�
(M + 1)1Û2 + M

��1
Ú 1. We can show that x1 ³ 1. 5434, however the easier

estimate 1 Ú x1 Ú 2 is sufficient for our purposes. From the above facts, xM Ù x2, gM(x)
decreases as x ½ xM, and

min
�
fM(x), gM(x)

�
≥ fM(x)

(25) � max(fM(xM), 2M) ≥ max(AM, 2M), for 0 � x � xM,

(26) min
�
fM(x), gM(x)

�
≥ gM(x) � gM(xM) ≥ AM, for x ½ xM.

It follows from (22), (23), (25) and (26) that

sup
z2D

(1 � jzj2)
j grad h(z)j
1 + h2(z)

� max(AM, 2M).

This proves (19).
Now, assume that I0 Ú 1. It is obvious that I � I0. If I0 � ôÛ2, it follows from

Lemma 7 that
j grad h(0)j
1 + h2(0)

�
 

I0Ûô
1 � I0Ûô

!1Û2

� (2Ûô)1Û2I01Û2.

For any point z0 2 D, let ç 2 Aut(D) be such that ç(0) ≥ z0 and let û(z) ≥ h
�
ç(z)

�
. Then,

Z Z
D

(
j gradû(z)j
1 + û2(z)

)2

dx dy ≥
Z Z

D

(
j grad h(z)j
1 + h2(z)

)2

dx dy ≥ I0 � ôÛ2.

Thus,

(1 � jz0j2)
j grad h(z0)j
1 + h2(z0)

≥
j gradû(0)j
1 + û2(0)

� (2Ûô)1Û2I01Û2.

This proves that M0 � (2Ûô)1Û2I01Û2 when I0 � ôÛ2.
If I0 Ù ôÛ2, it follows from (22), since C is quite large and

M ≥ C max(I1Û2, I) � C max(I01Û2, I0) ≥ CI0,

that

(1 � jzj2)
j grad h(z)j
1 + h2(z)

�
2jh(z)j + 2M

1 + h2(z)
� 1 + 2M � 1 + 2CI0 Ú 3CI0.

This proves (20) for I0 Ù ôÛ2 and the proof of the theorem is complete.
Let us investigate estimate (19) in Theorem 8 further. Assume that M0 is a constant

such that
exM0 + e�xM0

1 + x2
M0

≥ 2,

i.e., AM0 ≥ fM0 (xM0 ) ≥ 2M0. Then, max(AM, 2M) ≥ 2M for M ½ M0, and
max(AM, 2M) ≥ AM for M � M0. A numerical calculation gives xM0 ³ 2. 9829 and
M0 ≥ x�1

M0
³ 0. 3352. Thus, for I ½ 1, M ≥ CI and

(27) M0 � 2M ≥ 2CI.
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Letting M ! 0, we have

xM !1, AM ≥
2xM + 2M

1 + x2
M

! 0,

AM ≥
2

xM
Ð

1 + MÛxM

1 + (xM)�2
³

2
xM

.

Let x ≥ log M�1 in equation (24). Then the right side will be smaller than the left
side provided that M is sufficiently small. This shows xM Ù log M�1 and AM Ú�
2 + o(1)

�
(log M�1)�1 as M ! 0. Thus, since M ≥ CI1Û2 for I � 1, (19) becomes

(28) M0 � AM Ú
�
4 + o(1)

�
(log I�1)�1

for sufficiently small I. We do not know if the coefficient 4+o(1) in (28) is best. However,
the following example indicates that 4 + o(1) cannot be replaced by a constant k Ú 1.

EXAMPLE 5. Let hm,n(z) ≥ n(m + x) for z ≥ x + iy 2 D, 0 Ú m Ú 1 and n ≥ 1, 2, Ð Ð Ð.
We have

M0
m,n ≥ sup

z2D
(1 � jzj2)

j grad hm,n(z)j
1 + h2

m,n(z)

≥ sup
z2D

n(1 � jzj2)
1 + n2(m + x)2

≥ sup
�1ÚxÚ1

n(1 � x2)
1 + n2(m + x)2

.

The function n(1�x2)Û(1 +n2(m+x)2) attains its maximum at xm,n 2 (�1, 1), where xm,n

is the solution of the equation x + n2(m + x)(mx + 1) ≥ 0. It is obvious that xm,n ! �1Ûm
as n !1. Thus, for a given m,

(29) nM0
m,n ≥

1 � x2
m,n

n�2 + (m + xm,n)2
!

1 � m�2

(m �m�1)2
≥

1
m2 � 1

,

M0
m,n ³

1
m2 � 1

Ð
1
n

as n !1.

On the other hand,

Im,n ≥
Z Z

D

j grad hm,n(z)j2�
exp

�
�hm,n(z)

�
+ exp

�
hm,n(z)

��2 dx dy

≥
Z Z

D

n2

(e�n(m+x) + en(m+x))2
dx dy

�
Z Z

D
n2e�2n(m+x) dx dy

� 2n2e�2nm
Z 1

�1
e�2nx dx

� ne�2n(m�1).

For a given m, we have

(30)
(log I�1

m,n)�1 �
�
log n�1 + 2n(m� 1)

��1

�
 

1
2(m � 1)

+ o(1)
!
Ð

1
n

as n !1.
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Combining (29) and (30), we see that the coefficient 4 + o(1) in (28) cannot be replaced
by a constant k Ú 1, since

1
m2 � 1

:
1

2(m� 1)
! 1 as m ! 1.

Theorem 8 asserts that

M0 ≥ sup
z2D

(1 � jzj2)
j grad h(z)j
1 + h2(z)

� 3CI0 ≥ 3C
Z Z

D

j grad h(z)j2�
1 + h2(z)

�2 dx dy

for large I0, where C is the absolute constant defined in Theorem 2. The following exam-
ple shows that in the above estimate I0 cannot be replaced by I

0ã with ã Ú 1.

EXAMPLE 6. Let hn(z) ≥ nx for z 2 D and n ≥ 1, 2, Ð Ð Ð. Then,

M0 ≥ sup
z2D

n(1 � jzj2)
1 + n2x2

≥ n,

I0 ≥
Z Z

D

n2

(1 + n2x2)2
dx dy ≥

n2

2

Z 2ô

0

dí
1 + n2 cos2 í

≥
n2ô

p
1 + n2

.

Thus, M0 ³ I0Ûô as n !1.
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