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NORMAL FUNCTIONS: LP ESTIMATES

HUAIHUI CHEN AND PAUL M. GAUTHIER

ABsTRACT.  For ameromorphic (or harmonic) function f, let us call the dilation of f
at ztheratio of the (spherical) metric at f () and the (hyperbolic) metric at z. Inequalities
areknown which estimate the sup normof thedilationin termsof itsLP norm, for p > 2,
while capitalizing on the symmetries of f. Inthe present paper we weakenthe hypothesis
by showing that such estimates persist even if the LP norms are taken only over the set
of zon which f takes valuesin afixed spherical disk. Naturally, the bigger the disk, the
better the estimate. Also, We give estimates for holomorphic functions without zeros
and for harmonic functions in the case that p = 2.

1. Introduction. Let C denote the complex plane, let D = {z< C : |7 < 1}, and
let D, = {z€ C: |z <r}. For ameromorphic function f, let

@)

F@=13ap

denoteits spherical derivative. A functionf meromorphicin D iscalled anormal function
if thefamily {foy : v € Aut(D)} isanormal family inthe senseof Montel, where Aut(D)
isthe group of Mobiustransformations of D ontoitself. A harmonic function hiscalled a
normal function if for every sequence {hov,}, 7n € Aut(D) forn = 1,2, ---, thereexists
a subsequence {h o v, } which locally uniformly converges to a harmonic function, to
+00 or to —oo identically. It is known that a meromorphic function f is normal if and

only if
'@
1 sup(1 — |Z]9)f*(2) = su 1—22|7<oo,
@) sup(L — [2)"(2) = sup(L — |2 Ty o
and a harmonic function h is normal if and only if
2y gradh(@)|
2 ?5.5’(1 179 1+ < 00.

For the definitions and general properties of normal functions see for example [6], [7]
and [8].

The following theorem, proved by Pommerenke [12] for p = 2 and by Aulaskari,
Hayman, and Lappan [2] for p > 2, gives an integral condition for an automorphic
meromorphic function to be normal.
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THEOREM. Let f bea function meromorphicin D and automor phic with respect to
a Fuchsiangroup . If

©) | = [ - 122" 2{* D} dxdy < oo
for somep > 2, whereF isafundamental region of I', thenf isnormal and, furthermore,
for p > 2,
(4) sup(1 — |Z2)f*(2) < 3max(1/P, 11/ (-2,
zeD

In [4], we strengthened the conclusion of the above theorem by proving that the as-
sumption (3) implies the strong normality of the function f with respect to the group I'.
Strong normality means that

(1-12%f%*@2 —0, z—adD,zcF.

At the sametime, we obtained asimilar result for harmonic functions. Now, in Section 3
of this paper, we weaken the assumption (3) by taking the integral only on a subset F;
of Finwhich f assumesvaluesin afixed spherical disk of angular radius é only. Under
this weaker assumption, we prove that f is still normal and that, for p > 2, we have

M = sup(1 — [2?)f*(2) < Cymax(1¥/P, 1Y/(P-2),

zeFs

sup(1 - [Z)f*(2) <M1+ 1/R) +1/R,
zeD

where, C; is a constant depending on é only and R = tan(é/2). In general, there is no
estimate like (4) for p = 2. However, in Section 4, we prove that such an estimate does
exist for holomorphic functions without zeros and F; = D, and we give examples to
show that our restriction is quite reasonable. As applications of the above results, we
obtain, in Section 5, corresponding theorems for harmonic functions, which improve a
theorem of Aulaskari and Lappan [3]. In addition, we give some necessary and sufficient
conditions for a harmonic function to be normal.

2. Somelemmas. The following version of the Ahlfors Lemmais similar to that
formulated by Pommerenke[11] and Ahlfors[1]. The proof isamost the sameasin [1].

AHLFORS LEMMA. Let p(2)| dz| be a continuous Riemannian metric in D such that
for everyz € D, either p(2) < 1/(1 — |Z?) or p(2)| dz| is smooth and has constant
Gaussian curvature —4 in a neighbourhood of z. Then, in fact p(2) < 1/(1 — |z?) for
everyze D

LEMMA 1. Let h bea real-valued functiog harmonicin D, then h is normal if and
only if for every conj~ugate harmonic function h of h, the holomor phic function (without
zeros) g = exp(h +ih) isnormal.

ProoF. Assumethat hisnormal. For any sequence{vn} C Aut(D) we can choosea
subsequence{v,, } suchthat {hov,, } locally uniformly convergesto aharmonic function
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ho, to +oo or to —oo identically. In the former case we have |g o Vn, | — expho. Con-
sequently, by a theorem of Montel about sequences of holomorphic functions bounded
locally uniformly, we can choose again a subsequence of {g o v, } which converges
locally uniformly to aholomorphic function go with |go| = exphy. If the latter case hap-
pens, then g o v, — oo or 0 locally uniformly. Thisargument is reversible. The lemma
is proved.

LEMMA 2.  Letf beafunction holomorphicin D without zeros. If (1—|2?) |f'(2)| <M
for z € D such that |f(2)| = 1, then

QL —1ZHF' @I < If@I2/log[f | +M)
for every point z € D.

PrROOF. Set
t'(2)|| dz

f@I(2log [f(2)]| + M)’

This continuous metric has constant Gaussian curvature —4 at every point z € D with
[f(2)| # Landf'(2) # 0. Infact, if |f(2)| > 1, p(2)| dZ is obtained from the Poincaré
metric of C\ Dy, r = e M/2, by the substitution w = f(2). Also, p(2)| dz| is obtained from
the Poincaré metric of Dy, \ {0} if [f(2)] < 1. Atapoint zwith [f(2)| = 1 or f'(2) = 0,
we have p(2) < 1/(1 — |z]%) by the assumption of the lemma or p(2) = O respectively.
Thus, applying the Ahlfors Lemmagives p(2) < 1/(1— |z]?) for every point z € D. This
provesthe lemma.

p(2)|dz| =

LEMMA 3. Let f bea function meromorphicin D. If (1 — |z?)|f'(z)] <M forze D
with |[f(2)] <R, then

L-1zAF'@I < pIf@F —1/8
for z € D with |f(2)| > R, where

_ M+ VM2 +4R? < M +l
= 2R? “R2 R
o ')l dz|
Blf'(@||dz| .
- >
p@) b2l = e 1 i @I =R

ol d] = @] &2, it [f()] <R

Thistime, the metric is obtained from the Poincaré metric 3| dw| / (3%|w|?— 1) of C\ D4+
for zwith |f(2)] > R We have p(2) < 1/(1— |Z?) for every z € D with [f(2)] < Rby
hypothesis. The Ahlfors Lemma gives the conclusion of the lemma.

Thefollowing lemmais dueto J. Dufresnoy [5].
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LEMMA 4. Let f be a function meromorphic in the disk D, and let A denote the
spherical area of (D), counted without consideration of multiplicity. If A < orm with
0<o <1, then

1 1/2
o< )

We will use aresult of Hayman [6] on a covering property of meromorphic functions
in D, which is stated as follows.

LEMMA 5. Letf(2) = ag+ a1z + a2 + - - - be a function meromorphicin D and let
E denote the set of all positive numbersr such that the circle {w € C : |w| = r} meets
C\ f(D). Then

dr
|a1| /l; (|a0| +r)2 S 4.

LEMMA 6. Letf(2) and E bedefinedasin Lemma5andletG = (0,1) \ E.Ifap = 0,

then )
|au
27T/Grdr27r(4+|al| .

PROOF. Supposethat G consists of intervalsly, Iy, - - -, wherel; = (0,6). The value
A = 27 g r dr denotesthetotal areaof theannuli{w € D : |w| € |;},i = 1,2,---. Given
€ > 0, choosely, |5, - - -, I, such that

L%<4gmﬂ,

E'=(0,1)\ Ejlli.

where,

Thus, by Lemma (5),

dr 4
(5) /E’r_2<@+€.

Moving the finite number of intervals |y, |, - - -, I, to the left to form a single interval
(0, r") so that they lie one after another without gaps nor overlaps, we have

2 _ r n
(6) mr _27r./0 rdrgi;Zw/hrdrgA,

since the integral i r dr decreases as |; is moved to the left. On the other hand, E is
moved to the right when we move the |; to the left, so

dr 1dr 1
Y kwzlz=n-1t
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since g r~2 dr decreaseswhen each of itsintervalsis moved to the right. Combining (5),
(6) and (7), we obtain

2
A>qr'? > ﬂ(;) )
- 4/lar] +1+e

Since e may be arbitrarily small, we have

|2 )2
A>nml———| .
—“(4+|a1|
Thelemmais proved.

As aconsequence of Lemma 4, we have the following.

LEMMA 7. Let h beareal-valued function harmonicin D;. If

Ih

|gradh(0)|<1[ o }
1+h20) ~rll-0

| gradh(@)|

2
<
1+ } dxdy < o,

with0 < ¢ < 1, then
1/2

PROOF. Letf = h+ih beaholomorphic function and h(0) = 0. Since

@ _ |gaih@)
7O =10F = 1o

we have
/ /D (%2} dxdy < or.

Thus, Lemma4 gives

1 o 1/2
#(0) < ;{1_0} .
Since | gradh(0)
r
"0 = Tor0)

the conclusion of Lemma 7 follows.

3. Meromor phicfunctions.

THEOREM 1. Letp > 2, let f be a function meromorphic in D and automorphic
with respect to a Fuchsian group I, let F be a fundamental regionfor I, and let K be a
spherical disk whose angular radius measured from the center of the sphereiss. If

©) = [ @ 2P 2@ dxay < oo
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whereFs = {z€ F : f(2) € K;}, thenf isnormal. Furthermore, if p > 2, set
M = sup(1 - )", R=tan(s/2),

zeFs
then we have
(6) M < max(231YP,  71Y®P-2yif 5 > 7 /2,
7) M < max(461Y/P, 14R"2/P-211/ -2y if 5 < 7 /2,
(8) sup(1 — |29 (9 <M(1+1/R)+1/R
zeD

PrOCF. If p = 2, the value of the integral | denotes the spherical area of the part
of the covering surface f(D) over Ks, and | < oo implies that, for almost every point
w € Ks, theinverseimagef~1(w) hasonly finitely many pointsin F. Thus, according to
atheorem of Pommerenke[12], f is normal.

Thenormality of f inthe casethat p > 2 isaconsegquenceof (6), (7) and (8). However,
we would like to give an independent proof. If f is not normal then, by a theorem of
Lohwater and Pommerenke [10], there exists a sequence {z,} C D and a sequence of
positive numbers { pn} suchthat pn = 0(1 — |2,|2) and gn(2) = (2, + pnZ) cOnvergesto a
non-constant meromorphic function g(z), spherically and locally uniformly in C. Since
g assumes every complex value with two possible exceptions, it is clear that there exists
a positive number R’ such that g,(Dr) N Ks has a spherical area, without consideration
of multiplicity, greater than (1 — cosé) /4 for sufficiently large n. Set ¢n(2) = z, + pnz
and A, = ¢n(Dr). Then f(An) N K; has aspherical area A, > w(1 — cosd) /4. For any
n, let E, C A, be a measurable set such that f(2) € K; for z € Ep, no pointsin E, are
equivalent and, for every point zin A, with f(2) € K;, thereisapoint € E, equivalent
to z. Since f isautomorphic,

B NKs =F(En), [ {*@} dxdy = Av > (1 — cose) /4.
Let E;, C F beameasurable set equivalent to E,. Then E;, C Fs and
L (L= |22 (@)} dxly = [ L e MCHEY
sincef is automorphic. Now, we have
[ @ ZPP2(r@ P axy
> //I;’ a- |z|2)p—2{f#(z)}p dxdy = //E (1- |Z|2)p_2{f#(z)}p dxdy
> ([ a1z axay) " (/] {FQ)? dxay)””
> §5P/2(7(1 — coso) /8yP/2,
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where 6y, is the non-Euclidian area of A, which tends to zero since p, = o(1 — |zy|?).
This contradicts the assumption (5), since 6%“’/ 2 _, 50. The normal ity of f isproved.
Now, we proceed to prove the second half of Theorem 1. To prove (6), choose a point

7y € F; arbitrarily. We want to provethat if & > 7 /2, then
(1 — |20|2)f#(20) < max(231+/P, 71%/(P=2),

Without loss of generality we may, by replacing f (2) by f ((z+ 7)/(1+ 202)) , assumethat
Zp = 0. Then, the above inequality becomes

© #(0) < max(231%/P, 71%/(P-2),
Let o > 0 bethe solution of the equation

dr TP 2
(10 () =gm

and let o« = max(c/,2). Let E C Dy, be ameasurable set such that (i) f(2) € K; for
z € E, (ii) no pointsin E are equivalent, and (iii) for every pointzin Dy, with f(2) € K5,
thereisapoint( € E equivalentto z. Thereisameasurableset E' C F whichisequivalent
to E. Then, f(Dy/,) NK; = f(E), E' C Fs and

JLa—122P 2@ axdy = [ (1~ [22°*{T*@)}P dxay,

sincef is automorphic.
There are two different caseso’ > 2 and o < 2 to be discussed separately. Note that
o > 2if andonlyif | > (6/5)P/?n/3.1f o > 2, then

o E)p/Z(p_Z) (ﬂ)l/Z V-2
(12) a=d = ( o 3 I .
By Holder's inequality for non-Euclidean area measure, noting (11) and (10), we have

[ @y axay
/
< (_[/E(l — PP {f*(2)}P dxdy)2 p(//E(l O dxdy)
2/p
< (/ L (- 12?)P2{t*(2)}° dxdy) (//Dl/a(l — )2 dxdy)

-2 -2
<ol AT TP g Ar TP 2
- 302 32 5

1-2/p

1-2/p

However,
f(D1/a) C (€ \ Ks) U (f(Dy1/0) NKs) = (C\ Ks) UF(E),
so the spherical area, without consideration of multiplicity, of f(D, ) isnot greater than

T 2 9

T #2)12 Tiir=2
5+ [ [AF@Y dxdy < S+ 2= oo
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since§ > w/2. Thus, it follows from Lemma4 and (11) that

9/10 Y2
f#(O) S Oé(l_—g/lo) = 3«

p/2(p—2) 1/2
_ 3(3) / (41) ey
2 3

If o/ < 2,then o = 2 and, since the equation (10) has asolution o < 2, the left side
of (10) will belessthan 27 /5 when o is replaced by 2. Thus, in this case,

//E{f#(z)}z dxdy < (/3)%PI12/P < 27 /5.
Conseguently, by Lemma 4 and the definition of E, we have

(r/3):2/P12/P 4 /2 Y2
7 — (r/3)-2/P12/P — 7r/2)
1/2

< 2(10/m)Y2((m/3)2/P12/P + 1/ 2) 7"

(12)

#
(13) ro < 2(

The estimate (13) is not good for small I, since the upper bound for #(0) tends to a
constant 2 - 5/2 as| — 0. To get a better bound for f#(0), we assume that f#(0) < 6.
By arotation of the w-sphere which carriesw = f(0) to w = 0, we may assume that
f(0) = 0. Of course, the spherical disk K; is also carried to another one which is till
denoted by K; and which now contains 0. Now, we have f(0) = 0 and |f/(0)] < 6.
Set g(2) = f(z/2) for z € D. Let G denote the set of all positive numbersr < 1 such
that the circle {w € D : |w| = r} is contained in g(D) = f(Dy/,) completely. Let
H = {weD:|w| € G} and let A be the Euclidean area of H. Then, applying Lemma 6
to the function g(z), we know that

9O )2 _ ( f(0)] )2
4+|g(0)| 8+f"(0) )
The spherical areaof H isnot lessthan A/4. SinceH C D consists of annuli with center
w=0,0¢€ Ksandé > /2, itisclear that H N K has a spherical area not less than
A/8. DefineE and E' in Dy, just as above. SinceH N K; C f(Dy/,) NKs = f(E), the
spherical areaof f(E) is not lessthan A/8. Thus,

A_xf O \V_ =
#1212 > > = > "(0)%.
[ @y axay > 5 > 8(8+|f’(0)|) = Toes" O
From the preceding paragraph, we have
//E{f#(z)}z dxdy < (r/3)1-/P12/P,
Therefore, for | < (6/5)P/r/3 and f#(0) < 6,

, o 1568 4o 1568 7\ 1-2/P 5/, 22/
14 [FOP < == [[{Ff@yddy < ==(5) " 17/° < 5233/ m?/PI7",

74(0) = [f'(0)] < 23(3/ m)M/PI*/P.

A:27T/Grdr27r(
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Let us return to the estimates for f#(0) we have obtained earlier. If | > (6/5)P/%7/3,
then, by (12), we have

/2(p—2) 1/2
f#(0) < 3(3)p i (ﬁ) 12 < 711/(-2),
- \2r 3
If | < (6/5)P/2r/3, then (13) is valid. However, the right side of (13) is less than 6 as
| < (6/5)P/?r/3. By (14), we have
f#(0) < 23(3/m)M/PIYP < 231YP for | < (6/5)/?x /3.

Hence, (9) and, consequently, (6) is proved.

To prove (7) and (8), we may assumethat Ks = {w € C : |w| < R=tan(§/2)}. For
an arbitrary § < /2, set g(2) = R (2). Then, |g(2)| < 1for z € F5 and |g(2)| > 1 for
ze F\ F;. Thus, we have

RYM@I_ RYM@)

g @ = T QPR = T+ 1P =R ¥*2),
__Rg@| , 2Rd(2| _
*(2) = T+ RG] <RJ@| < T+g0f - 2Rg*(2)

for z € Fs, and consequently,

sup(1 — |z29)f*(2) < 2Rsup(1 — |ZA)g*(2),

zeFs zeFs

I/ = / /F (1 — |2?)P2g* (2P dxdy < R°I.
1}

Applying theresult we have provedfor § > 7/2to g(z) and noting the aboveinequalities,

we obtain
sup(1— |27 (2) < 2Rsup(1 — |2°)g*(2)
zeFy zeFy
< max(46R(I')"/P, 14R(")Y/®~2)
< max(461'/P, 14R"2/(-21/6-2),
This proves (7).

Let z € D besuch that [f(2] < Rand{ € F be the point equivalent to z, then
[f(¢)| < R ¢ € Fs, and consequently,

1L— 2@ = @ - [P <M, 1—- 2P| <ML +R).
By continuity, for [f(2)] <R,
(1= 12PIf"@)] < M1 +F).
Thus, from Lemma 3,

@— 1292 <M+M/RR+1/R)f(2)?
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forze Dwith |f(2)| > R, and
11232 <M@+1/R?)+1/RforzeD.

This proves (8), and the proof of Theorem 1 is complete.

In the conclusion of Theorem 1, there is afactor R-2/(~2 preceding 1*/®"~2 which
tends to co as§ — 0 for afixed p. We show that the power —2/(p — 2) is best by the
following example.

ExampLELl. Letfy(2) = nzforze Dandn=1,2,---,andletKs = {we C: |w| <
= tan(6/2)}. Then, F = D and F; = Dg/,, for fa(2). We have

M = sup(1 — [Z?)f*(2) = f%(0) = n

zeFs

and, for fixed p,
=[] @~ 122 ()P dxdy

o R/n (1 — r2)p—2np [ R/n nP

_/ / C(@+n2r2p rdgN./o ./o (1+n2r2)Prdrd9
_ nP—2 ( _ 1
p-1 (1+R2)p-1

) ~ RnP~2, asR— 0,n — oo.

Thus,
M /1Y (P2 ny gL/ (P-2R-2/(P-2),

4. Holomor phic functionswithout zeros. In the theorem formulated in the intro-
duction, the estimate (4) isvalid only for p > 2. Setfy(z2) = nz(n = 1,2, - - -). We have,
forp = 2,

In = [/D{f,f‘(z)}zdxdy <,

but f#(0) — oo. This showsthat it is, in general, impossible to bound (1 — |Z]?)f#(2) in
terms of the integral | for p = 2. Note that the functions f,(z) do not assume oco. The
following example indicates that there need not be such an estimate for p = 2 even
for functions which are automorphic with respect to a fixed group and omit two fixed
complex values.

EXAMPLE 2. We consider the functionsf,(z2) = ne* (n = 1,2,-- ) in the left half-
planeL = {z € C : Rz < 0}. They do not assume 0 and oo, and are automorphic
with respect to the group generated by the mapping v(z) = z+ 2xi, which has the strip
F={zeC:Rz<0,0<3z< 2r} asits fundamental region. Recall that the Poincaré
metric on L is —(2R2)~1|dz|. It is obviousthat

//F{f;:‘(z)}2 dxdy <, forn=1,2,--
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However, letting z, = —logn € Fforn= 2,3, - - -, we have
fi(z) = nle?| /(1 +n?|ev|?) = 1/2,
(—2R2zy)f*(zy) = logn — oo.

Nevertheless, for all meromorphic functions which omit two fixed complex values,
we do have an estimate like (4), in which the integral | istaken over the whole unit disk
D

THEOREM 2. Letf bea function holomorphicin D without zeros, and let

M = sup(1 — |z2)f*(2),
zeD

| = ./‘/D{f#(z)}zdxdy.
If I < oo, thenf isnormal and
(15) M < Cmax(1*/?,1),
where, C isan absolute constant.

PrROCOF. By theresult of Pommerenke [12], we know that f isnormal, i.e., M < oo.
Letzo € D beapoint suchthat (1 — |2|?)f#(zo) > 14M/15. We may assumethat zo = 0
and |f(0)| < 1. Then, |f’(0)] > 14M/15. We have

sup (1—[z?)If'(7)] < 2™

[f@I=1
and, by Lemma 2,
(16) (1— 2P| @) < 2/f(2)|(|logf@)|| + M) for z € D.
Thus, for every 6, since {r € [0,1—6) : |f(ré’)| = 1} consists of finitely many points
and segments,
0 N 0 2
_ < =
3 log(log™ |f (re”)| + M) < -
for al r € [0, 1) with a countable number of exceptional valuesr, and consequently
+ 2m|7
< .
log" |f ()| < - forze D

To prove (15), first assumethat M > 2. Set g(2) = {f(2}?*/M. Sincef(2) # 0,00, 9(2) is
asingle-valued function. Then, if z e D isapoint such that |f(z)| < 1/3, we have, from
(16),

(1= 2Py < AL@LoI(f@I ) +2MIT)|

1+1[f(2)?
I 14+ M 14
gsupZ'—XOgX > X<—M.
[01/3) 1+x 15
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Therefore, we concludethat 1/3 < [f(0)| < 1, and
32 < (g0 <1, [§(O)] = HOPM 'O > 2015,

and
. 2, 4/
= — < — .
log” |g(2)| o log” |f(2)| < 1-17 <4forze Dy,
It is well-known that g(D, ) containsadisk &y = {w € C : |w — g(0)| < C1}, where
Cil=ql+e").SetA = {weh:3M<|w <1}.Then, 1/3 < [f(?)| < 1and
372/M < |g(2)| < 1forze g }(&). Thearea A of A tendsto zero asM — oo, since &Y
is thinner and thinner when M — oo. However, it is clear that there exists an absolute
constant C’ such that A > (C’'M)~. Now, we have

1
# 2 - ’ 2
I 2.//971(A/){f (2)}° dxdy > 4//qlm/) |f’(2)|* dxdy

M? -
~ 16 //gflm,)lg(Z)lM 2lg/(2)[? dxdy

M2
> /(5)|2
> 122 ) sy 19 @ iy
AM? M
> >
T 144 T 144C
M < (144C)).

If M < 2, thenwehave, for z€ Dy 5,

4l
1-17

log* [f(2)] < <4, |f@)| <€

Thus,
1> [[ {*@} dxay
. 1/2

>1+e)? [ /DM @[ dxdy > Z(1+€") 2O

14 / 2 8y1/2
EM S IFO < 5+ N2,
15

M <

<= l/2(1+e8)|1/2 < 60401%/2,
s

This compl etes the proof of Theorem 2.

The conclusion (15) of Theorem 2 states that M < CI for | > 1. One may expect
that Cl can be replaced by CI/2. However, this is impossible as the following example
shows.
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ExamMPLE3. Setf,(2) = nZ'forze U = {ze C : 3z > 0}. Recall that the Poincaré
metric of U is (232)1| dz|. Then,

#1112 _ hm

J[, @y dxay = =

On the other hand, we have

n—1Cx n
2n|Z Sz _ 2n|Z

e\ f# _
(Z‘SZ)fn (Z) - 1+ |Z|2n — 1+ |Z|2n =1Ih

and
(232f#(2) = nforz=1.

Thus,
sup(232)f#(2) = n.

zeU

Theorem 2 may be generalized so that 0 and co are replaced by any two distinct
complex values. We can also consider the situation where the integral | is taken over a
subset of D, not the whole disk.

5. Harmonicfunctions. The following theorems on harmonic functions are direct
consequencesof Theorems 1 and 2.

THEOREM 3. Let h be a real-valued function harmonicin D. If
| = //G(l — |z|2)p—2| grad h(Z)|p dxdy < oo,

where,p>2,G={ze D:a<h(2 < b},thenhisnormal.
PROOF. Setf(2) = exp(h(z) + iﬁ(z)), where ﬁ(z) is aharmonic function conjugate to
h(2). Then,
0adh@ 1 gradngy),
exp(—h(2)) +exp(h(2))
/ /G (1 — |22 2{f*@)}P dxdy < 2Pl < 0.

f#(2) =

Sincez € Gif and only if € < [f(2)| < €, it follows from Theorem 1 that f is normal.
Consequently, h is aso normal by Lemma 1. This proves Theorem 3.

THEOREM 4. Let h be a real-valued function harmonicin D. If

a7) | //3 | grad h(2) |2 _ dxdly < oo,
(exp(—h@) +exp(h@) )

then h isnormal and

12 | grad h(2)| _ 1/2
fgg(l || )exp(_h(z)) + exp(h@) <M = Cmax(1¥/?,1),
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where C is the constant in Theorem 2.

Both Theorem 3 and 4 improve aresult of Aulaskari and Lappan [3], which asserts
the normality of a harmonic function having the property

// |gradh(z)]

(18)
(1+h2(@)°

5 dxdy < oo.

As consequencesof Lemma 2 and Theorem 1, we have the following results.
THEOREM 5. Letf be a holomorphic function in D without zeros. If
— @I <™
for z e D with |f(2)| = 1, then

tIQloglf@I[+M) M

A~ D < == rar— SAt3

for every z € D, where A is an absolute constant, and consequently f is normal.
THEOREM 6. Let h bea real-valued function harmonicin D. If
—|ZP)|gradh(z)| <M
for z € D with h(z) = a, then hisnormal and
— |z gredh(z)| < 2|h(2) —a/+ M

for everyz € D.

PrROOF. Setf(2) = exp(h(z)—a+iﬁ(z)), Whereﬁ(z) isaharmonic function conjugate
to h(2). Then,
L-ZA)IF'@| = @~ |2 gradh(@)| <M

forze Dwith |f(2)| = 1,i.e, h(z) = a. By Theorem 5 and Lemma 1, h is normal. By
Lemma 2, we have

1L— 2P @I < [f@I(Qlog[f@)| + M) for z€ D.

Thus,
— 23| gradh(z)| < 2|h(z) —a] +Mforze D

The theorem is proved.
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THEOREM 7. For areal-valued function h harmonic in D the following five condi-
tions (the constants M may be different) are equivalent:
(i) hisnormal;
(i) there existsa positive number M and a real value a such that

(1-|Z%|gradh(z)] <M

forze Dwithh(2) = g;
(iii) there existsa positive number M such that

(1—|zP)|gradh(z)| < M+ 2|h(2)| for z € D;
(iv) there existsa positive number M such that
(1— 2% gradh(z)| < M(1+h?*2)) forz e D;
(v) thereexistsa constant M such that

(1—|Z?)|gradh(z)| < M(exp(—h(z)) + exp(h(z))) forz e D.

PROOF. Itisobviousthat (iii) implies (iv), (iv) implies (v), and (v) implies (ii). The-
orem 6 assertsthat (ii) implies (iii). It isknown that (i) is equivalent to (iv). This proves
Theorem 7.

ExAMPLE 4. Consider the norma harmonic function h(z) = y in the upper half-
plane. We have | grad h(z)| = 1. Recall that the Poincaré metric of the upper half-plane
is

A@ldZ = (2y) dz.
Then,
M2 7Y gradh(z)| = 2h(2).

This shows that, for a normal harmonic function h(z), (iii) is the best upper bound for
A2~ gradh(z)| in terms of |h(2)|.

To conclude this paper, we give abound for (1 — |2%)| grad h(?)| / (1 +h?(2)) in terms
of theintegralsin (17) and (18).

THEOREM 8. Let h be a function harmonicin D and let

| grad h(2)|2
| = dx dy,
‘Aé(am(—ma)+@moma»2

. adh(?)| 2
A

| grad h(z)|
1+h(2)

M’ = sup(1 — |Z?)
zeD
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If I < oo, then
(19 M’ < max(Av, 2M),

where, M = Cmax(1%/2,1) with the absolute constant C defined in Theorem2,

gv+e ™ 2y +2M
1+x2, 1+X,

Au=M

and xy is the unique positive solution of the equation Mchx = x+ M. If I’ < oo, then
(20) M’ < max((2/m)Y/21"M2,  3cr),
where C is also the absol ute constant defined in Theorem 2.

ProoF. If | < 0o, by Theorem 4 we know that

| grad h(2)| _ 1/2
—h(z)) " exp(h(z)) <M = Cmax(I/4,1).

(21) sup(1 — [z)
2eD exp(
In particular,
(1— |z gradh()| < 2m
for z € D with h(2) = 0. Then, by Theorem 6,
(1— |z gradh(2)| < 2|h(z)| +2M
for every z € D. Consequently,

|gradh(z)| _ 2|h(z)| +2M
1+h(2 — 1+h2(2

for every z € D. From (21), we have

(22) @-12%

_ iyl ep(-h@) +exp(h@)
(3) =) e =M 1+
for every z € D.
Consider the functions
e+e ¥ 2X+2M
fm(x) =M - T gm(x) = 1.2

for x > 0. We have fy(0) = gw(0). The other point x such that fy;(X) = gu(X) is the
unique positive solution xy, of the equation

(249 Mchx = x+ M.

It is obvious that xy increaseswith 1/M and that xy — 0 asM — oo and Xy — oo as
M — 0. There exists an absolute constant x; such that fy(x) decreasesas0 < x < xg
and increases as X > Xz, while gy (X) increasesas 0 < x < x; and decreasesas x > X,
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wherex, = ((M+1)/2+ M)_1 < 1. We can show that x; ~ 1.5434, however the easier
estimate 1 < x; < 2issufficient for our purposes. From the abovefacts, xuy > X2, gu(X)
decreasesas x > xy, and

min(fu(x), gm(¥) = fm(3)

(29) < max(fy (%), 2M) = max(Ay, 2M), for 0 < x < Xy,

(26) min(fu(x), gu(¥)) = gm() < gmm) = Aw, for x > xu.
It follows from (22), (23), (25) and (26) that
gradh(2)|

sup(L— [22)] < max(Aw, 2M).
This proves (19).
Now, assumethat I’ < oo. It isobviousthat | < I’.If I’ < x/2, it follows from

Lemma7 that

| grad h(0) I/x \? J201/2
1+ 12(0) S(l_l,/ﬂ) < (@/mY2e,

Forany pointZ € D, lety € Aut(D) besuchthaty(0) = Z andlet ¢(2) = h(w(z)). Then,

ad¢(2)] ) ® adh(2)| | 2 ,
//D{%} dXdy=//D{|?r+7hz(zz)|} dxdy =1"<r/2.

Thus,
|gradh(Z)| _ | grad $(0)|

-1z 1+18Z) ~ 1+420)

< (2/71_)1/2|/1/2.

Thisprovesthat M’ < (2/m)Y/2I"Y/2 when 1’ < /2.
If I’ > /2, it follows from (22), since C is quite large and
M = Cmax(1/2,1) < Cmax(1’*2,1") = C’,
that
| grad h(z)| < 2/h(z)| +2M
1+h(2 — 1+h2(2
This proves (20) for I’ > 7 /2 and the proof of the theorem is complete.

Let usinvestigate estimate (19) in Theorem 8 further. Assume that Mg is a constant
such that

<1+2M <1+2Cl' < 3Cl'.

1-12?

Mo + g XM
1+x2
i.e, Ay, = fw,(Xm,) = 2Mo. Then, max(Ay,2M) = 2M for M Mo, and

>
max(Am, 2M) = Ay for M < Mp. A numerical calculation gives xy, &~ 2.9829 and
Mo = X! & 0.3352. Thus, for | > 1, M = Cl and

:2,

@27 M’ < 2M = 2Cl.
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Letting M — 0, we have

2Xm +2M
1+x3

2 1+M/xm _ 2

M= T owm 2

Let x = logM~1 in equation (24). Then the right side will be smaller than the left

side provided that M is sufficiently small. This shows xy > logM~ and Ay <

(2+0(1))(logM™)~* asM — 0. Thus, sinceM = CI¥/2 for | < 1, (19) becomes

(29) M’ < Ay < (4+0(1))(logl ™)™

for sufficiently small . We do not know if the coefficient 4+0(1) in (28) isbest. However,
the following exampleindicates that 4 + o(1) cannot be replaced by a constant k < 1.

XM — 00, Au= — 0,

EXAMPLES. Lethyn(z) = n(m+x)forz=x+iye D,0<m<landn=1,2,---.

We have | gredhon(2)|
r_ 2y 918 Nmnl(Z
Mo = 200~ 20 e @
nl—1z% n(1 — x?)

2D L+M(M+Xx)2 150 1+ n2(m+x)2’

Thefunction n(1—x?) /(1 +n?(m+x)?) attainsits maximum at Xmp € (—1, 1), where Xmn
isthe solution of the equation X+ n?(m+X)(mx + 1) = 0. It is obviousthat Xmp — —1/m
ash — oo. Thus, for agiven m,

1—x2 1—m? 1
29 M/ = AL — = y
(29) Minn = =25 (M+Xmn)2  (M—m1)2 m-1
1
M/~ o p&n— o
On the other hand,
rad hmn(2)|?
mn = //D |g m,n( )| 5 dXdy

(exp(—hm,n(z)) + eXp(hm,n(Z)))

n2
=/, (e + gxmgyz XY
2 ~—2n(m+x)
< / /D n-e dxdy

1
< on2e—2nm / ) e 2™ gy

< ne72n(rrk1).

For agiven m, we have
(loglmn) ™ < (logn™ +2n(m— 1))_1

(30) 1 1
< (m +o(1)) T asn— oo
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Combining (29) and (30), we seethat the coefficient 4 + o(1) in (28) cannot be replaced
by aconstant k < 1, since

11
m—1" 2(m-—1)

Theorem 8 asserts that

—lasm— 1.

| grad h(2)| <303 // I(Jlradh(z)l2

M’ = sup(1 — |Z?
Pt =129 e (1+1°@)

for largel’, where C is the absol ute constant defined in Theorem 2. The following exam-
ple shows that in the above estimate I cannot be replaced by I'® with o < 1.

EXAMPLE6. Lethp(2) = nxforze Dandn=1,2,---. Then,

n(1— |7P)
M’ = =
?;D 1+ n2x2
n? n? 2 deo nm
e ———— .
D (1 +n?x2)? 2 1+mco2f 1+

Thus, M’ ~ I’ /7 asn — oo.
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