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On the Commutators of Singular Integral
Operators with Rough Convolution Kernels

Xiaoli Guo and Guoen Hu

Abstract. Let Tq be the singular integral operator with kernel (Q(x))/|x|", where Q is homoge-
neous of degree zero, has mean value zero, and belongs to L1(S" 1) for some g € (1, co]. In this
paper, the authors establish the compactness on weighted L? spaces and the Morrey spaces, for the
commutator generated by CMO(RR") function and Tq,. The associated maximal operator and the
discrete maximal operator are also considered.

1 Introduction

In the last sixty years, considerable attention has been paid to the mapping properties
of singular integral operators with homogeneous kernels. Let ) be homogeneous
of degree zero in R", integrable, and have mean value zero on the unit sphere $".
Define the singular integral operator Tq by

) Tof() -pv. [, =D i)y

The maximal operator associated with T, is defined by

Tof(X)—sup\ﬁH|> = -3) f(y)dy\

€>0 |x }’|

These operators were introduced by Calderén and Zygmund [5] and were subse-
quently studied by many authors. Calderén and Zygmund [6] proved that if Q «
LInL(S"™"), then To and T are bounded on L?(R") for p € (I,00). Connett
[13], and Ricci and Weiss [24] improved the result of Calder6n and Zygmund and
showed that Q € H'(S"™!) guarantees the L? (R") boundedness on L? (R") for p €
(1, 00). Seeger [26] showed that Q € LIn L(S"™") is a sufficient condition for Tq to
be bounded from L!'(R") to L*(R"). Duoandikoetxea and Rubio de Francia [16],
Duoandikoetxea [15], and Watson [30] considered the weighted estimates for T, and
T when Q € L1(S"™") for some q € (1,00]. For other works on Tq and T, see
[14,18] and the references therein.

Let BMO(R") be the space of functions of bounded mean oscillation introduced
by John and Nirenberg, and let b € BMO(R"). Define the commutator of Tq and b
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by

Tapf(x) = b(x)Taf(x) - Ta(bf)(x)

initially for f € S(R"). As usual, the maximal operator associated with Tq, ;, is defined
as

(1.2) Tq,pf(x) =sup
>0

JERCORT) |( |y,,)f(y) ).

Coifman, Rochberg, and Weiss [11] proved that if Q € Lip, (§"™") (a € (0,1)), then
Tq,p is bounded on LP(R") (p € (1,00)) if and only if b € BMO(R"). For p «
[1,00), let A,(R") be the weight functions class of Muckenhoupt (see [17, Chap. 9]
for definitions and properties of A, (R")). Using the weighted estimates with A, (R")
weights of Tq, and the relation of A, weights and BMO(R") functions, Alvarez et
al. [2] proved that Q € L9(S™!) for some q € (1, 00] guarantees the boundedness
on LP(R",w) for T, when p € (¢, 00) and w € A, (R"), which, via duality,
shows that Tq j is bounded on L?(R", w) ifp € (Lgq) and w /P e A, (R,
where and in the following, for p € (1, o), p” denotes the dual exponent of p, that is,
p' = p/(p-1). Hu [19] showed that the maximal commutator T, , is also bounded on
LP(R", w) with bound C|b|gpmo(rn)> provided that p € (q', oo) and w € A/, (R")
orpe(1,q) and w /(P e A, (R"). Hu [20] proved that Q e L(InL)?($" ) is
a sufficient condition such that Tg j, and T , are bounded on L?(R") with bound
C|b|lsmo(rny for all p € (1, c0).

The compactness of Tq, ; on function spaces is of interest and has been considered
by many authors. Let CMO(R") be the closure of Cg°(R") in the BMO(R") topol-
ogy, which coincide with the space of functions of vanishing mean oscillation; see
[4,12]. For the case of Q € Lip, (S"™") (a € (0,1)), Uchiyama [29] proved that Tq
is compact on L?(R") if and only if » ¢ CMO(R"). Fairly recently, Chen and Hu
[8] considered the compactness on L? (R") for Tq , when Q satisfies a certain min-
imum size condition. Our first purpose in this paper is to consider the compactness
on weighted L? spaces for T j, and its discrete maximal operator (see (1.3)) when
Qe L9(S") for some g € (1, 00]. To formulate our result, we first recall some nota-
tion and definitions.

For a weight w, let L? (R", w) be the weighted L? (R") spaces with weight w, de-
fined by

LP(R",w) = {f : | flo(rrw) < o},
with

s nmy = (f, IrGPwix) )

Definition 1.1  Let X be a normed linear spaces and let X* be its dual space, {x; } ¢ X
and x € X. If for all f € X%,

lim | () = £()] = 0,

then {x } is said to converge to x weakly, or x; — x.
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Definition 1.2 Let X, Y be two Banach spaces and let S be a bounded operator from
XtoY.

(i) If for each bounded set § c X, SG = {Sx : x € G} is a strongly pre-compact set
in Y, then § is called a compact operator from X to Y.
(ii) Iffor {xx}cXandxeX,

xx =~ xin X = |Sx; — Sx|y > 0,

then S is said to be a completely continuous operator.

It is well known that if X is a reflexive space and S is completely continuous from
X toY, then S is also compact from X to Y. On the other hand, if S is a linear compact
operator from X to Y, then S is also a completely continuous operator. However, if
S is not linear, then S being compact operator does not imply that S is completely
continuous. For example, the operator Sx = | x| ;2 is compact from I* to R, but not
completely continuous.

Our first result can be stated as follows.

Theorem 1.3 Let Q be homogeneous of degree zero, O € L1(S"™") for some q € (1, o]
and have mean value zero on S"™'. Let p and w satisfy one of the following conditions:

(i) pe(q,o0)andweAy (R");
(i) pe(l,q)andw /(P ¢ Ay (R™).
Then for b € CMO(R"), Tq,, and the discrete maximal operator T(,", defined by

(1.3) T3 f(x) = sup
keZ

S (0 =800) T )0y
are completely continuous (and compact) on LP (R", w).

Remark 1.4 Let 3 > 1. The conclusions of Theorem 1.3 are still true for the discrete
maximal operator defined by

JERCOR e ?ﬂ)]
x=y[>p lx =yl

To prove Theorem 1.3, we will approximate the operators T and the maximal op-
erator

T57F f(x) = sup
keZ

T f(x) = sup
keZ

Ji Q=) ¢y)ay

x-yp>2k |x — y|"

by convolution operators whose kernels enjoy appropriate regularity. This idea was
developed by Watson [30] and was used to prove the compactness on L?(R") for
the commutators of rough operators by Chen and Hu [8]. We do not know if T{
can be approximated by convolution operators whose kernels are smooth, or if the
conclusion in Theorem 1.3 holds true for the maximal commutator T, , defined by
(1.2). As a substitution, we can prove the following theorem.
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Theorem 1.5  Let Q be homogeneous of degree zero and have mean value zero on S™.
Suppose that Q € L1(S" ™) for some q € (1, 00], p and w satisfy one of the conditions
in Theorem 1.3. Then for { fy.} ¢ LP(R",w) and f € LP(R",w),

fie = fl = 0in LP(R™ w) = [ T fic = To . f o @r,w) = O
Remark 1.6  Let b € BMO(R"). Define the operator Mq ; by

Q(x-y)

oy P b))

14 M X) =su f
9 asf(x)=sup | 2cf-ylcain

We can verify that

|| T(;,bfk - T(;,bf“ LP(]R",W) S || Mﬂ,b(|fk _f|)H EP(R",W) ka _szP(R",W)
+ || T(;Tb(fk _f) || Lo (R, w)
Under the hypothesis of Theorem 1.3, for b € C5°(R"), we can prove that

[fe = f1 =~ 0in LP(R", w) = [ Maq,s(|fx = f1) | 1o (rr) = 0;

see the proof of Theorem 1.5 for details. However,

fi— f—=0in LP(R",w) # [Maq,u(|fk = fI) Lo eny = O.

To see this, let g(x) = x0,17»(x) and g, (x) = exp(2mimx)g(x) for m € Z". Tt is easy
to verify that {g,, } mez» is an orthogonal system of L*(R"). Thus, in L*(R"), g,, — 0
(Im| = o00), but | Mq ,(|gm) | @) = [Ma,b€| 12 (rn)- So, our argument in the proof
of Theorem 1.5 does not lead to T , being completely continuous.

It should be pointed out that the estimates used in the proof of Theorem 1.3 also
lead to the compactness on weighted Morrey spaces for T, and T,

Definition 1.7 Let p € (0,00) and A € (0, n). The Morrey space L?* (R") is defined
as

LPAR") = { f € Ly (B") £ | flunaan) < o0}
with
1/ » 1/p
ARy = SU — x)fdx)
Wiy = swp (3 [, N dx)

where B(y, r) denotes the ball in R” centered at y and having radius r.

The space LP*(R") was introduced by Morrey [22]. It is well known that this
space is closely related to some problems in PDE (see [25, 27]), and has interest in
harmonic analysis (see [1] and the references therein). Chen et al. [9] considered the
compactness of Tg, ;, on Morrey spaces. They proved thatif A € (0,1), Q € LI(S"™")
for g € (n/(n - 1), oo] and satisfies the regularity condition that

! ds
(1.5) [0 wg(8)(1+1n8]) S < oo,
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then for b € CMO(R"), Tq, is bounded on L?*(R"). Here w, denotes the
Li-integral modulus of continuity of Q defined by

wy®) = swp [ 10(px) - a()prax) "

lpli<é

and sup is taken over all rotations on S, |[p| = sup_,g.1 |px’ — x’|. Applying the
estimates used in the proof of Theorem 1.2, we will show that to guarantee the com-
pactness of Tq ; on Morrey space, assumption (1.5) is superfluous. More precisely, we
will prove the following theorem.

Theorem 1.8 Let Q) be homogeneous of degree zero and have mean value zero on
S"~1. Suppose that Q € L1(S" ™) for some q € (1,00], p € (g, 00) and A € (0,n), or
pe(l,q' ] and A € (0,n/q"). Then for b e CMO(R"),

(i) the operators Tq , and Tj", are completely continuous and compact on LPA(R™);
(i) for {fi} c LP*(R") and f e LP*(R™),

. A n * *
Ifi = fl = 0in L2 (R™) = | T4, fi = Ty 6 f | Lo ey = O

Remark 1.9 We do not know if the conclusion in Theorem 1.8 holds true for the
weighted case.

In what follows, C always denotes a positive constant that is independent of the
main parameters involved but whose value may differ from line to line. We use the
symbol A < B to denote that there exists a positive constant C such that A < CB. For
aset E c R”, yg denotes its characteristic function. Let M be the Hardy-Littlewood
maximal operator. For r € (0,00), we use M, to denote the operator M, f(x) =

M) ().

2 Approximations
Let Q be the same as in Theorem 1.3. Set K(y) = (Q(»))/|y|". For each I € Z, let
Q(y)
Kqo(y) = WX{zlqy\sz'H}()’)-

By the vanishing moment of Q, it is easy to verify that if Q € L7(S"™"), then there
exists a constant « € (0,1) such that for £ e R"\{0},

@1 KR (O] s min{]2'¢, 12"}
Let ¢ € C°(R") be a nonnegative function such that
fRn $(x)dx =1, suppgc {x:|x| <1/4}.
For l € Z,let ¢;(y) = 27" ¢(27'y). We then have that for all y € (0,1) and & € R",
(22) 6:(8) =1 = [$(2"&) - 1] s min{1, [2'¢]"}.
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As in [30], for a positive integer j, let

eB K0)= ¥ Ko x i)

and Té be the convolution operator to be given by

(2.4 Thf(x) =pov. [ K= )f ().
As usual, the maximal operator corresponding to Tg) is given by

TE S =sw| [ K nfO)a)

>0

Lemma 2.1 Lets € (1,00], let Q be homogeneous of degree zero and integrable on
S"1, and let K/ be the function defined as in (2.3). Then for any y € R" and R > 0 with

R > 4]y,
2.5 > Y [ Kl p _K! o)
( ) le%mzz:l( )q ( 2m_1R<|X|52"‘R| Q*(pl ](X"’y) Q*(/)l ](-x)| x)

Sl Lacsmys

| Kb # ¢1-j(x + ) = Kby * ¢15(x)] " dx) 7

(2.6) Zi(z"‘R)?(f

1eZ m=1 2mR<|x|<2m+1R

$ 20D g 2

Proof Estimate (2.5) was proved in [30]. To prove (2.6), observing that

161-5C- + ) = b1 ()l @y $ 297D min{1, 277y},
we know that for all k € N,

@Ry (

Iz 2k R<|x|<2k+IR

SR Y K lw@n ¢ (- +y) - ¢ii(-)

1eZ:2!~2kR

’

4 1/
[Kf % 91-j(x +y) = Kby * ¢1-5(x)[ dx)

L (R")

,SZj"/S ; inﬂ.
min{ 2kR}

This in turn leads to

> SeR(

; ; S 1/s’
IeZ k 2kR<|x|<2k+1R |KQ * iy +y) = Ko « ¢l_j(x)‘ dx)
€Z k=1 =

s 2"y S (2FR) < 21'“/521'%',
k=1

which completes the proof of Lemma 2.1. ]
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Lemma 2.2 Let Q be homogeneous of degree zero, have mean value zero, let Q) €
L9(8") for some q € (1, 00], and let p and w be the same as in Theorem 1.3. Then the

operators T}, and T)™ are bounded on L (R", w) with bound Cj.

Proof Applying the estimate (2.1) and the fact that |¢; ()| $ 1, we can verify that for
jeNand & e R"\{0},
PIKLON15(8) s 1.

1eZ

It then follows from the Plancherel theorem that Té is bounded on L?(R") with
bounded C. This, along with (2.4) in Lemma 2.1 and the result of Kurtz and Wheeden

in [21], yields the desired conclusion for Tsjz-

To consider the operator T2*, we will use the ideas from [7]. Asin [7, Lemma 3],
by Lemma 2.1, we can verify that for bounded function f with compact support,

)" f(x) $ M(TLf)(x) + jMy (),

which, together with the weighted L? estimates for ng and M, shows that Té’ Tis
bounded on L?(R", w) with bound Cj provided that p > g’ and w € A/, (R"). Let
Mg, be the maximal operator defined by

Mo f(x) = sup Q0 = MIf ()l dy.
>0 Jy=x|<r
It was proved by Duoandikoetxea in [15] that, if Q € L1(S"™") for g € (1, 0], then
Mg is bounded on L?(R", w) with p and w as in Theorem 1.3(ii). Observe that for
each fixed R > 0,

[R<|x_y\32R |Kj(x - )’)f()/)| dys MQMf(x),

As in the proof of [7, Lemma 4], we can verify that if p € (1,g) and w1 ¢
Ay (R™), then TS is bounded from L?(R", w) to LP**(R",w) with bound Cj.
This, together with the inverse Holder inequality of A ,/,/(R"), leads to that T)" is
bounded on L?(R", w) with bound Cj. [ |

We now formulate the main theorem in this section.

Theorem 2.3  Let Q) be homogeneous of degree zero and have mean value zero, let
Tq and T(j2 be the operators defined by (1.1) and (2.4), respectively. Suppose that Q) €
L1(S" ™) for some q € (1,00], and let p and w be the same as in Theorem 1.3. Then
there exists a constant f3 € (0,1) such that

(2.7) | Taf = TS fllie@nwy $ Tﬁj”fHLP(R",w»
SE) < 9B )

(28) [sup ] 287 1]y y 5221 Ty
<) <9 Bi Y

(2.9) H Szlelg‘sl *f‘ ) 27P) fllpe () -
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Here and in the following, for | € Z and j € N, we set
S/(7) = Ka(») - Ko+ $1-,(»).  §(y) = [Ka ()| = Kol * 15 (»).
Proof Estimate (2.7) was established by Watson [30]. To prove (2.8), we will use an
idea from [16], with appropriate modifications. Let y € Cg° (R") such that
suppy c {x e R" : |x| <2}, w(x)=1, if|x| <L

For each integer k, let W) € S(R") such that ¥, (&) = y(2%&). For each fixed k € Z,
write

Nk

. . k-1
S{*f(x):\Ijk*(TQf_Téf)(x)_\yk*(l; Sf*f)(x)

k
INCRAREENE
=1 f(x) + 10 f(x) + L. £ (x),

with § the Dirac distribution. It is obvious that
|57 ()] s M(Taf - THf) (x),
and so for 81 € (0,1),

| p A1 gy S 1T f = Toflinery £ 27 ey

To give the desired estimate for sup, ., ’H{( f|, write

. o u-1 . 2, 1/2
sup I ()| 5 (2 [Wur X S/ f0)|)
keZ u=-o00 I=—o00
Noticing that for any & € R",

v § R -1)| slvero| § ey

|=—00 I=—00
s27|y(2"9)]12"¢),
we have, by the Plancherel theorem, that

X 2 0 u-1 X 2
Isop Wil < 2 ¥ Z 81 P

-2 ).

Uu=—o00

s [ i |y 5|2 &P | F(5)|” de.

5 K@@ -0 Jverorol

This, together with the fact that supp v c {x : |x| < 2}, implies

|| il:g|11;<f| || LZ(Rn) $ Z_ij”Lz(Rn)-
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As for the term sup,,, |IHj , Write

sup 11 ()] < Do sup (8- We) « S+ /()

I Mg I Mg

0 keZ
5( 5 Jo-wa<siestof) "

Uu=—o0o
An application of (2.1) and (2.2) tells us that

2

(5 J@-wsix )]

L2 (R")
- i [,,|1—W(Z"_15)|2‘E5(5)($(2”’jf)—1)|2|f(£)|2d5
f S -y eRR g g 7o) de

u=—00
$ 2727 fl e

where we have invoked the Fourier transform (2.2) with y = «/2. Combining the
estimates for sup, ., |ka| supy.z |1 / f] and supy., 111, ' f| leads to

(2.10) | sup| Z si+ 1| S 2P| £ 2y

L2(R")

with 3, a positive constant. On the other hand, applying Lemma 2.2, we then obtain
that for the same p and w as in Theorem 1.3,

@ | sup| 357+ 7] SITE” Flovnmy + [ Taf oo nm)
€Z 1=k

L? (R, w)
Sl lze e wy-

Recall that if p € (q',00) and w € A,/(R") (or p € (1,9) and w /(=) ¢
Aprjq(R™)), then there exists a constant 6 > 1, such that wl e Apjg(R") (orpe(l,q)
and w0/~ ¢ Ay g (R") ). The inequalities (2.10) and (2.11), via the interpolation
with change of measures (see [28]), yield (2.8).

It remains to prove (2.9). Note that

| ST+ f(x)| $ Maf(x) + MaMf(x).
Thus, it suffices to prove that for some « € (0,1) in (2.1),

(2.12) 17 fll2qny $ 27 f] 2 amy-

On the other hand, by the Plancherel theorem,

s = 2 Jo| IO RO a6

[suplS + Al
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Since K% (x) = |KY, (x)| also satisfies | @(EN S 217, we then get that

SO s D - g e PR

leZ leZ
— Z |zl£|—2a + Z |21—j£|2|215|—2a < 2—2«xj‘
1eZ:[21§|>20 leZ:]21 ¢<2]
This implies (2.12), which completes the proof of Theorem 2.3. ]

3 Proofs of Theorems 1.3 and 1.5

Let p € [1,0), let w be a weight, and let L? (1°°; R", w) be the space of sequences of
functions defined by

LP(I° R, w) = {{fk}keZ Uk e (oo smn ) < 00},
with

oo Ru.w) = || SU .
[FeHlramsmnm = | suplf] o

With usual addition and scalar multiplication, L? (1°°; R", w) is a Banach space.

Lemma 3.1 Letpe (1,00) andw € Ay(R"), G c LP(I°°; R",w). Suppose that G
satisfies the following four conditions:

(i) G is bounded, that is, there exists a constant C such that for all f ={fitrez €5
I fllze1o=; Rn ) < Cs
(ii) for each fixed € > 0, there exists a constant A > 0 such that for all { fy }rez € G,
H sup [felxg - say ()] Loy <6

(iii) for each fixed € > 0, there exists a constant p > 0 such that for all t € R" with
tl<pand f ={fi}rez €S,
LFC+8) = F()ogmmnm <&
(iv) for each fixed D > 0 and € > 0, there exists N € N such that for all { fy }rez € G,
|| sup |fk|XB(0,D)|| Lo () <€ and || sup |fx —f_N||| Lo () <€
k>N k<-N

Then § is a strongly pre-compact set in LP (1°°; R", w).

Proof We employ the argument used in the proof of [10, Theorem 5] with some
suitable modifications. We claim that for each fixed € > 0, there existsa § = 6, > 0
and a mapping @, on L?(1°; R", w) such that ®.(G) = {®c(f) : f € G} is a strong
pre-compact set in L? (I°; R", w), and for all f, g € G,

[Pe(f) = Pe(@)lr(1=inm) < 8= |f = Elir(imsmn,y < 9.

If we can prove this, then by [10, Lemma 6], we see that G is a strongly pre-compact
setin LP(1°; R", w).

Now let € > 0. We choose A > 1large enough as in assumption (ii), and p < 1small
enough as in assumption (iii). Let Q be the largest cube centered at the origin such that
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2Q c B(0,p),and let Qy, ..., Qy be J copies of Q such that they are non-overlapping
and B(0,A) c uﬁlej c B(0,2A). Let N € N such that for all { f; }xez € G,

fsupllxstoam o <l 392 1t =Sl ey <

Define the mapping ®.: L? (I°°;R",w) — L?(I1*°;R", w) by
- I J
(3.1 (DE(f)(x) = { ""Zin(f*N)XQi(x)""’Zin(f*N)XQi(x)’
i=1 i=1

] ]
Do, (fwven)xey(6)s- o Mma () xa, (x),0,0.... .

where, and in the following, mq,(f) denotes the mean value of f on Q;. Note that

1
Qi

1/p’

ma Gl < (7 - Ul wionas) (2 [ w0 () ax)

|Q |
For f = { fi }kez, we see that

LG z -, sup b (Ol W) < F1Fs 1o ey

Thus, @, is bounded on L? (I°°; R",w), and ®(G) = {®c(f) : f € G} is a strongly
pre-compact set in L? (1°°; R", w). Denote D = U/_, Q;. Write

| £ x> = Pe( 1o =smnm)

< H sup | fixo _Z]:in(fk)XQi”
|k|<N i=1

Lr(R",w)

Lr(R",w) Lr(R™,w)

]
+ H sup | fixo — Y mao, (f-n) X, + H sup | fi| x5(0,24)
k<-N i=1 k>N
=I+1I+IIL

A straightforward computation leads to

I"<Z Jo £ s 1) - Zmaxfk xa ()]} wx)dx

N ; Qi fQi ‘:E)\, fQi [fie(x) = ()P dy w(x)dx

/o1
2310 Jo o 25 (5) e O dhryis

<|il|1p 1FC) = G+ W) E ) 1oy
<p
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On the other hand, it follows from the Holder inequality that
|ma,(fi) = mao,(f-n)IF <
[ 1A~ faGPwods( [ wrtdr)
- — -1
Qi Q,-ka f-n(x)Pw(x)dx in x)dx)

which, via the fact that w € A,(R"), implies that
] ] »
1<) [ { sup |fu() = D ma (f)a, ()]} wix)d
i=1 i <-N 1=1

: i Jo s Ima () = ma (fl) w(e)ax

7 7 p
S sup [F(-) = FC + Wllsgmssomy + | sp i~ Soll g

|h|<p k<-N
The estimates for I, II, together with assumption (iv), prove that

”fXD - (D€(f) HLP(I"";R",W) <3¢,
which via assumption (ii) tells us that for all f €g,
If = @e(f) o (roe;me,w) < 4e.
Note that
If = &l nwy < 1 = Pe(F)oimsmny + [Pe(f) = e(@) | 1o (ros rr,)
+ 18 = Pe(@)ll Lo 1=; )

Our claim then follows directly. This completes the proof of Lemma 3.1. ]

For b e BMO(R"), let Té’h be the commutator of T(j), and let
% ik
Toy f=sup | Té)bf(x)|
keZ
with
.k
A1) =% [ ()= b(3)) Kb * b1-5(x = 1) ().
1=k

Asin [3], let ¢ be a non-negative function in C*°(R") such that
suppp c {x e R" : x| >1} and ¢(x)=1

when |x| > 2. For 8 > 0, let K/"*(x) = K/(x)¢(57'x), Té’a be the convolution op-
erator with kernel K7°. For b € BMO(R"), let Té’i be the commutator of Tg)’a and

Tj,&,**

0., the maximal operator defined by

8, %% j» 0,
Toy f(x)= sup T f(x)),
with

Ty f(x) = Ii [, (60 = b)) Kb # 91-5(x = ) (87 (x = 1)) F(7)d.
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Lemma 3.2 Letbe C3°(R"), Qe L1(S"™) for some q € (1, 00], and let p and w be
the same as in Theorem 1.3. Then for j € N,

” T] S T(j),be LR w) T ” sup | T] 5 f T(j)),vhf| ’

Lo (") S Ol f e (rn,wy-

Proof Letb e Cg°(R"). For each fixed § > 0, it is easy to verify that

| TH0 () = T £+ sup| T3 £ () = T, ()|
$ 8] Vbl 1= an) z >y [

K!
_ilx - d
Too  lez J2FO<Ix- y|<2k+15 Ko * ¢1-j(x y)| lf(»)ldy
S 8HVb”L°°(R")MQMf( x).
Our desired conclusion now follows from the weighted estimates for M, and M im-
mediately. -

Lemma 3.3  Let Q be homogeneous of degree zero and have mean value zero, and let
p and w be the same as in Theorem 1.3. Suppose that Q € L1(S" ™) for some q € (1, oo].
Then for b € Cg°(R") and 8 € (0,1/2),

(i)  the operator TJ 0. is compact on LP(R", w);
(ii) the operator I 5 defined by

,0,v
(32) Liof (x) = { T55" F() bver
is compact from L (R",w) to LP (1°°; R", w).
Proof We only prove (ii). By Lemmas 3.2 and 2.2, it is obvious that T} 5 is bounded
from L?(R",w) to L?(I*°; R",w). Let p and w be as in Theorem 1.3. We choose

s € (1, p) such that p/s and w satisfies the condition as p and w. For each fixed § ¢
(0,1/2), we claim that if b € C5° (R") with supp b ¢ B(0, R), then

(i) forall x e R" with |x| > 4R,

(3.3) TE () 5 (MaM(Uf) ) R (a7
(ii) for each t € R" with |¢| < min{1, §/4},

j>0,v j»0,v |t| j(n+1)
Gay | sup [ Ta5 ) = Ty FGe ) S 52O I sy
(iii) for each fixed D > 0 and € > 0, there exists N € N such that
i,0,v
(3.5) I SUP TS flxso.n| Lr(®w) < €l fllzomrwy>
8, ,8,-N
(3.6) H sup. T - T | oy < I oo ):

If we can prove this, we then know from Lemma 3.1 that [ 5 is compact from
LP(R",w) to LP(I°°; R, w).
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We first prove (3.3). For x € R” with |x| > 4R, by applying the Holder inequality, we
deduce that

1/q
f|ZI<R [ Ko *91j(x - 2)|dz 5 ( /\;|<R Ko * ¢’—f(x_z)|qdz) R¥
in

1 q :
s ( [%‘S|ZI<2|xI |Kq * ¢1-i(2)] dz) Ri

S x| 7 RY .
Another application of the Holder inequality then gives

IT5 TN S blimn 3 [ 1K« 1= 2)] (a2
lez, Y 1#l<

$lblien 2 ( [

17 |x]/2<|x—z|<2]x|

1/s"
x ( [|z|<R |Kg * ¢1j(x —z)|dz)

s w  _n
S 0] oy ( MaM(IfFF) () R [,

which gives (3.3).

We turn our attention to (3.4). Let b € C§°(R"). Without loss of generality, we
may assume that b rn) + | Vb g (rny = 1. For each fixed t € R” with [¢| < §/4,
write

j, 0, j»0,v
sug | Té)hvf(x) - Té)b flx+ t)|
VE

|Kh % 91 - 2| If () dz)”

$[bCe+ 0 -b@|sup| 3 [ K+ g1s(x=)o(57 e ) 1))
wsup| [ Unaie(e s 0(0() - b+ 0) S ()]

=) + T f (x, 1),

with
Uy, ) = 32 (Kb 91y 0)g(67 ()
~ Kb xdrj(x+t-)g(87 (x4t =) ).

To estimate ]j , let

It =% [ K== p)e(87 (e~ )

leZ
— Kb % 91-5(x = ) Xiemylo20y (x = )| [f ()l

and

Haf (eat) =sup| 3 [ Kby 9155 = »)xtpeyiany (8= ) f )]
kez ' 1=k JR"
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A trivial computation gives us

sy [

o yens | K # B3 (= DI F Iy § MM ().
leZ xX=

On the other hand, we have
JLf(x,1) S /Rn ‘ S Kh * dij(x = y) = KT (x = y) Xqamypary (= )’)| lf(»)Idy
1=k

+| fR K7 (2 = ) Xl yomax(z0.20) (£ = ) f (DD
S MaMf(x) + T f ().
Combining the estimates for ]{1 and I{Z f(x, ) leads to
JF e t) SO t) + Fof (x,8)) S [H( MaMf(x) + TS f(x)).

To consider the term Jg f(x, 1), set

S =% [ K xgig(x =) = Kb x gisCe - =)l

1eZ

(x+t

Raf ()= 3 [ 1K= u el ) |IF)Idy.

It then follows that
Bf(xat) SThf(xt) + T, (x,1).

We know from (2.6) in Lemma 2.1 that for s € (1, o),

B ) s o, )

On the other hand, when [t| < §/4, it is obvious that (p( %) - 9(
|x — y| > §/2; we then deduce that

2f(xt ||Z[

lez, 2 8/2<|x~ y|<36

2 40 only if

Kb * 91y || £y s D amanas o),

Therefore,
; t t
Pf(x,t) S %2](”+1)Msf(x) + %‘MQMf(x).
The estimate (3.4) follows from the estimates for ]j , ]j , Lemma 2.2, and the weighted
estimate for Mq,.
We now verify claim (iii). Let D > 0 and N € N such that 2¥~2 > D. Thenfor [ > N

and x € R” with |x| < D,

LK % 1= I 0y = [ 1K = g1y =9I xqppeasy 4.
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Therefore, for v € Z with v > N,

TE IS S [ 1Ky * 1oy (x = ) ()ldy

I>N
S5 FOYRE e 1 1~
>N Iyls2
szn] 2—nlf d
DIER NGOl
$2nj - z—nl f L d >
| fllze (e, )1§r ( B(O’zm) T () )’)

Since w € A (R™), we can take a positive constant 6 such that

D no
fB(O,D) wly)dy < ( ?) fB(0,21+3) w(y)dy;

see [17, p. 305]. A straightforward computation now leads to

j»0,v P
(f o0 T P wax)
nj -nl —%1 ﬁ %
2 lureny S 2 S WD) (w0 dx)

I>N

nj D\
S2 \|f||LP(Rn,w)(27) .

This gives us (3.5) immediately. On the other hand, we have that for N € N and
v <-N,

| T35 F ()~ TS Nf(x)\
<[Vbli ey 2,0 [ =y Kh g1y = n[IF DIy

S |Vb] o gy 2 N MM f(x),

which obviously implies that

H Sup|TJ5v T]6 Nf|

<9~ N - .
Le(R",w) ™ 2 ”VbHL (R )HfHLP(R w)>

and in turn gives (3.6). [ |

Now let j € N and ] € Z. Define the operator Wé”vh by
Wh () =| [ 1G]« g1 = lb(x) = bOIRS ().

Lemma 3.4 Let Q be homogeneous of degree zero, let QO € L1(S"™") for some q €
(1, 00), and let p and w be the same as in Theorem 1.3. Then for b € C§°(R"), the
operator A; defined by

il
(3.7) Aif(x) = { WL f(2)} .,
is compact from LP (R",w) to L? (I°°; R", w).
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Proof For § € (0,1/2), let

WS =| [ 1Kl * 15 (e = 1)) - b()P(87(x = ) F ().
It is obvious that for b € Cg° (R"),
sup | WES F(x)] s MaMf(x),
3,

and so sup, |W(j)”b lf(x)| define a bounded operator on L? (R",w). On the other

hand, as in the proof of Lemma 3.3, we can verify that for § € (0,1/2), the operator
Aj 5 defined by

j,8,1
Ajof (x) = { W)y F(x)} .,
is compact from L? (R", w) to L? (1°°; R", w). Also, as in Lemma 3.2, we deduce that
A f = Ajsflieqorewy S O fllewnw)-
Thus, A; is compact from L? (R", w) to LP(I°°; R", w). [ |

Proof of Theorem 1.3 We only consider the compactness of T on L?(R",w),
since the argument for T ; is similar and simpler. Let p and w be the same as in
Theorem 1.3. For j € N, let T'; be the operator defined by

(3.8) Tif (x) = {T5 £ () bvezs
with
T3 f) =3 [ Kb ¢ui(x =) (b(x) - b)) F() dy.
I=v
Also, set
(3.9) Lf(x) = {Tapf(x) }rez,
with
Taaf (=3 [, Ka(r=n)(b() - () F() .
Lemma 3.2 now tells us that for b € Cg°(R"),

(3.10) ITif = TjoflLeiosrmwy S O f Lo nw)-

Thus, by Lemma 3.3, T; is compact from L? (R",w) to LP(I°°; R", w). On the other
hand, for b € C°(R"),

165G ~1f )] - s 5up| 35 [ (b)) $]x - N F (D]
keZ " 1=k

>

S Ibleqeysup| 3 1 f(x)] +sup| 8]+ (bf)(x)
keZ 1=k keZ * 1=k
which, via Theorem 2.3, yields

(3.11) H ij - Ff” Lp (13 R",w) S 27ﬁijHL°°(]R")

fHLP(]R",w)'
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Therefore, for b € C5°(R"), T is also compact (and completely continuous) from
LP(R",w) to LP(1*°; R", w). Observing that for functions fj and f,,

|Tan filx) = Top f2(x)] < sug ’ T pfi(x) = Tg p f2(x)
VE

>

we then know that (" is completely continuous on L?(R", w) when b € Cg°(R").
It is well known that the limit of a sequence of completely continuous operators is also
a completely continuous operator. Recalling that for b e BMO(R"), T*, is bounded
on LP(R", w) with bounded C||b||smo(rn)> we finally deduce that ¢, is completely
continuous on L? (R", w) when b € CMO(R"). [ |

Proof of Theorem 1.5 Let p and w be as in Theorem 1.5. Recall that T , is bounded
on LP(R",w) with bound C||b|gmo(rr). Thus, it suffices to prove that for b €
Cee(R™), f e LP(R",w) and { fi }kew € LP (R", w),

(3.12) [fi = f1=0in LP(R", w) = | Tq p fi = T f | 1o n,w) = O-
To prove (3.12), we observe that for { f;} and f,

(13) | Té4fi(x) - Tanf (0] < (Mas(Ufic - ()" (Malfi - ))(x))
+ Tau (fi = ) (%),
with Mq ; the operator defined by (1.4). Via the weighted estimate of Mg, this yields

414) [ Tip i~ TouF | ooy S [ Ma Ui = DI 5y gy I = F e
+ || Toy(fe = f) ” LP(R",w)"

In the proof of Theorem 1.3, we have shown that the operator I' is compact from
LP(R",w) to LP(1°°; R", w); thus, for f — f,

(315 T = Hlergm;rowy >0 and - lim [Tg% (fi = )l 12(en) = 0.
On the other hand, a trivial computation shows that

j,l
| Moo f (x) = sup W3, ()|
€

<sup| [ ](x=plb(x) - b(EF() ]

leZ
S b) 7y Sluglgf * f(x)] +Slu§|§{ * (|6 ) (x)]
€ €

bl ey sup |+ (£Reb) ()] + 5] = sup| 1 f1mb) )]
€ €
and so by (2.9) in Theorem 2.3,

<9 Bi .
L) 27P) fllpe () -

(3.16) lim H Mg, f —sup W' f
J=ee 1eZ ’
By Lemma 3.4 and the fact that A; is linear, we know that
hk — 0in LP(R”’ W) = HAjthLP(l‘x’;R”,w) — 0.
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Therefore,

[fi = f1 = 0in LP(R", w) = [Mo,p(|fk = 1) |ze Rr,w) = O-
This together with (3.14) and (3.15) leads to the conclusion of Theorem L.5. [ |

4 Proof of Theorem 1.8

For p € [1,00) and A € (0, ), let LP"*(1°°; R") be the Banach space of sequences of
functions defined by

L2 RY) = {{fidwez = {fi o aoesmny < 00},
with

LeA(RN)

Ik o 1=semy = | suplfi
keZ

Lemma 4.1 Letp € (1,00) and A € (0,n), § ¢ LP*(I1°; R™). Suppose that G
satisfies the following four conditions:

(i) G isa bounded set in LP*(1°°; R™);
(i) for each fixed € > 0, there exists a constant A > 0 such that for all { fy }rez € G,

H sup el -1y (O o any <&

(iii) for each fixed € > 0, there exists a constant p > 0 such that for all t € R" with
|t <pand f={fi}kez €5
1FC+1) - £( Nior o, mey <6
(iv) for each fixed D > 0 and € > 0, there exists N € N such that for all { fx }rez € G,

” i‘:}l\’l |fk|XB(0,D) || LpA (R <€, ks(u_}i] | f —f7N||| L) <e.

Then § is strongly pre-compact in LP**(1°°; R™).

Proof Asin the proofof Lemma 3.1, it suffices to prove that for each fixed € > 0, there
exists a § = &, > 0 and a mapping @, on LP*(1°; R") such that ®.(G) = {®.(f) :
f € G} is a strongly pre-compact set in L? (I°°;R"), and forany f, g€ G,

[Pe(f) = Pe(@) o1y < 8 = If = Zllupim=;mmy < 10e.

Now let € > 0. As in the proof of Lemma 3.1, we choose A > 1 large enough, as in
assumption (ii), and p small enough, as in assumption (iii). Let Q be the largest cube
centered at the origin such that 2Q c B(0,p),let Qy, ..., Q; and D be as in the proof
of Lemma 3.1, and let N € N be such that for all {fi }xez € G,

€
” iljlli)] |fk|XB(0,2A) ” LpA (R7,w) < 6/2’ ks<u—lil |fk _f*N||| LPA (R™,w) < 3

2]
Let @, be the operator defined by (3.1). Note that

ma, (fil S || sup [fil | o g [QiM P2
keZ (R")
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For f = { fx } ez and each ball B(y, r), we see that

R ]
[ @D dx=3 [ suplma (f)lf dx S Il e oy
B(y,r) izl i (1%5R)

NB(y:r) kez

since Qi 1 B(y» )| < QM B(y, )™, Thus, B(3) = {@.(f) : f € G} isa
strongly pre-compact set in LP**(1°°; R"™). For a ball B(y, 1),

oy F10(0) = 0PI
B(y,r)
< [B o S | fie(x) o () - qu (fi)xa,(x)]” dx

s | o) Zmo<fN>xo<x| dx

(9:1) k<-N

+ f { sup |fk(x)|XB(O,2A)(x)} dx
B(y,r) " k>N
=I1+1I+1II

A straightforward computation leads to

I<Z[nB(yr) sup | fie(x) - Zle(fk)XQl(x)|}

[k|<N
p
<Z|Q| OmB(yr>|k|<Nf 1fie(x) = fi(y)I” dy dx

<7’ Sup Hf( ) f( +h)HLpA(loo Rn
|hl<p

From the Hoélder inequality, we obtain that for k < —N,
p -
| mq; (fk) - mg, (f—N)|p S ” ksullj\l |fk - f—N‘ “ Lp,A(Rn)|Qi|A/n 1’
«

which implies that

i ifQ,nm s Lo - qu (oxa ()]} ax

+Z]:meB(N){ sup | mo, (fi) = ma,(fon )|}P x

Srtsup [£() = FC+ W) oy
|hl<p

P Qi N B(y, 1)
+ H Sup |fk _f*N|HLp,A(Rn Z l—}L/n
i=1 |Q|
srt sup 17C) = G+ gy
hl<p
The estimates for [, II, together with assumption (iv), prove that

IfxD = ®e(f) ”LP”‘(I"";]R",W) < 3,
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which, via assumption (ii), tells us that for all f €g,

If - ®e(f) lLor (1oes 0y < 4€.

This leads to our claim and completes the proof of Lemma 4.1. ]

Lemma 4.2 Let p,s € [1,00), and let {T;} ez be a sequence of sublinear operators
on LP(R"). Suppose that for all measurable sets E and all r € (s, 00),

H slug |T; f < D(r) HfHLP(R"»MrXE)’
€

with D(r) a constant depending only on p, n, and r. Then for A € (0,n/s), o € (1, 00)
such that n > Aso,

LP(R", xg)

| supi7if] S D(s0) | £l o cen)-
€

LPA(R™)

Proof This lemma was essentially proved in [9]. For the sake of self-containment,
we present the proof here. For fixed ball B and f € L**(R"), decompose f as

FO) = FOxas(r) + ?f()’))(zkﬂs\zks(y) - kifku)
It is obvious that
([ Csupinpe’a)” seo( [ 1rore)

N D(SU)TMPHJ(HLP»A(R")-

On the other hand, our assumption implies that for each k € N,

([ Csupltisin)’ay)” s Dso( [ 0P (Mxa(32) )

1/p

1/p

—kn 1/p
sDGa ([ 7))
k(A
< D(SO_)rA/Pz k(55 P)”fHLPJ(]R")’

where in the second inequality, we have invoked the fact that for y e 2¥*1B\2*B,
Myg(y) S 275" see [23] for details. Recall that n > Aso. Therefore,

(/B(SHPITzf(y )7d ) <i(/(§ggﬂfk(y))pdy)l/p

S D(sa)r'/? e G £1 oy

< D(so)r ””I\fl\m(w

This leads to our desired conclusion directly. ]
Lemma 4.3 Let Q be homogeneous of degree zero and have mean value zero, let

Q € LI(S"™) for some g € (1,00], p € (I,00) and A € (0,n) or p € (1,q'] and
A€ (0,n/q"). Then for § € (0,1/2) and b € C°(R"),
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(i)  the operator Té’i is compact on LP* (R™);
(ii) the operator I 5 defined by (3.2) is compact from LP*(R") to LP* (1°°;R™).

Proof We only prove conclusion (ii). From Lemmas 2.2 and 3.2, we know that

L0, %%
(4.1) [ T] Fleenwy S 1flLenwys

if pand w are the same as in Theorem 1.3. By repeating the argument used in the proof
of [21, Theorem 2], we see that (4.1) still holds if p € (1, 00) and wi e A,(R™). Note
that for all measurable set E and r € (1, 00), M, xg € A1(R") (see [17]). Therefore,

,0, %%
|| T] fHLP(]R" XE) ~ HfHLP(]R" Mxg)>

provided that p € (¢',00) and s € (1,00) or p € (1,00) and s € (g’, 00). Via Lemma
4.2, this shows that
,8, %%
HTJ Fleeaeny S 1fILeanys
provided p € (¢’,00) and A € (0,n),0r p € (1,q’'] and A € (0, n/q"). Similarly, we can
deduce from (3.3) and (3.4) that for any fixed €, we can choose A large enough such
that

i, 0, %%
| 5" Fxa-arl poncany S €lf i ceny
and ¢ small enough such that for t € R” with |#| < g,
106 C) =T FC 4 O sy S €l vy

Also, for fixed € > 0 and A > 0, by (3.5), (3.6), and Lemma 4.2, we can take N € N
such that

s,
H SuP|T(]),hvf|XB(0,A) || LoA(rry < GHfHLM(]R”)7

| sup (7557 F = 1o ™ 1] gy < €1 Niracey

LPA ()

Employing Lemma 4.1 then leads to the compactness from L4 (R") to LP** (1=°;R")
for T 5. u

Lemma 4.4 Let Q be homogeneous of degree zero and let Q € L1(S"™") for some
g€ (l,o0]. Let pe (1,00) and A € (0,n) or p € (1,q"] and A € (0,n/q"). Then for
b e Ce(R") and j € N, the operator A; defined by (3.7) is compact from LP* (R") to
Lp”l(l‘x’; R™).

Lemma 4.4 can be proved by the argument in the proof of Lemma 4.3, together
with the estimates in the proof of Lemma 3.4. We omit the details for brevity.
We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8 By Lemma 4.2 and the weighted norm inequalities for Tq
and T ,, we see that both Tq ; and T{ , are bounded on L?: Y(R™) with bound
C|b|smo(r»)> provided that p € (q', oo) and A € (0,n),or p € (1,q'] and A €
(0,n/q"). Thus, it suffices to prove the conclusions for the case b € Cg°(R"). For
simplicity, we only consider T{, , and T§}",.
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To consider the compactness of T(;", on LPM(R™), let p € (q' 00) and A € (0, 1)
orpe(lq']andAe (0,n/q"). For jeN, d € (0,1/2),let T 5 and T; be the operators
defined by (3.2) and (3.8), respectively. Let b € C5°(R"). Repeating the argument
used in the proof of [21, Theorem 2], we obtain from (3.10) that

ITif - Tjef f

provided that r € (q', 00) and w € A, (R"), or r € (1, 00) and w? € A,(R"). Thus,
by Lemma 4.2,

(e ke w) S 010 oo mmy | f I rn w)

ITif = Tjof Lo ioesmry S S1b] Low ny £l Lo -

This, via Lemma 4.3, shows that I; is compact from LP*(R") to L»* (1°°; R"). Sim-
ilarly, we get from (3.11) and Lemma 4.2 that for some constant : € (0,1),

I3 = DA o ooy $ 277102 @) [ f L ony-
Therefore, the operator T' defined by (3.9) is also compact from LP*(R") to
LPA(1°°; R") when b € C$°(R"), and so T4, is completely continuous on LPA(RM).
It remains to consider the operator T, . Let p € (1,00)and A € (0, 1) or p € (1, ¢']

and A € (0,n/q"). For { fi} ¢ LP*(R") and f € LP*(R") with |f; — f| — 0, we get
from (3.13) that

H T(*),bfk - Ta,bf” LP’A(R") s H Tajb(fk _f)H Lp,A(Rn)
1/2 1/2
Mo, (Ufic = D o oy e = FI o
The fact that T is completely continuous from L?(R") to LP**(1°°; R") implies that
klgjgo H T?th(fk - f) || LPA(R") =0.
On the other hand, the estimate (3.16), via Lemma 4.2, tells us that for b € C3°(R"),

11m HMQ bh—sup h’

agany S 2 Ihlsa .

We then deduce from Lemma 4.4 that

k]1_>n;10 H MQ,b( |fk _f‘) ” LPA(R?) 0.

This leads to
lim [T o fi = To,pf e ey = 0
and completes the proof of Theorem 1.8. ]
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