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EQUIVARIANT FIXED POINT INDEX 
AND THE PERIOD-DOUBLING CASCADES 

L. H. ERBE, K. GÇBA AND W. KRAWCEWICZ 

0. Introduction. Properties of fixed points of equivariant maps have been studied 
by several authors including A. Dold (cf. [2], 1982), H. Ulrich (cf. [9], 1988), A. Marzan-
towicz (cf. [7], 1975) and others. Closely related is the work of R. Rubinsztein (cf. [8], 
1976) in which he investigated homotopy classes of equivariant maps between spheres. 
There have been many attempts to introduce and effectively apply these concepts to non­
linear problems. In particular we mention the work of E. Dancer (cf. [1], 1982) in which 
some applications to nonlinear problems are given. 

Recendy K. Komiya (cf. [6], 1988) defined for an equivariant map/: I - ^ X a family 
of integers { an(f)}. We believe that, taking into account certain natural properties of the 
family { aH(f)}, it is appropriate to label this family of integers as the equivariant fixed 
point index at/ . We also note that using the approach taken in ([5], 1989) one can define 
this fixed point index by means of elementary homotopy theory. 

In this paper we present a simple geometric interpretation of the equivariant fixed 
point index for generic Z„-equivariant maps. We combine those results with the method 
of A. Dold (cf. [3], 1983) based on the fact that n-periodic orbits of the map/ correspond 
to fixed points of the Zn-equivariant map defined by fn(x\,... ,xn) = 
(f(xn),f(xi),... ,/(x„_i)). Consequently we obtain a simple proof of a theorem origi­
nally proved by J. Franks (cf. [4], 1985), which describes the period-doubling cascades 
of/: U1 - • Int(Dn). 

The proof given by J. Franks uses homology theory and nontrivial properties of the 
Lefschetz zeta function. We believe that our approach is somewhat simpler and provides 
a geometrical interpretation of the phenomena. We also remark that the recent paper of 
Matsuoka (cf. [10], 1989) is closely related to this subject. 

1. Equivariant fixed point index. Let G be a finite abelian group and assume that 
V is a linear finite dimensional representation of G, i.e., we assume that there is given 
a homomorphism (p:G —* GL(V), where GL(V) denotes the general linear group of V. 
We put gx := (<p(gj)(x), x E V, g <E G. 
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EQUIVARIANT FIXED POINT INDEX 739 

Given x G V, Gx := {g G G : gx = x} denotes the isotropy group of x and 
Gx := { v G V : y = gx for some g G G} denotes the arfoY of JC. For a subgroup H of 
G we put VH := {x £ V : gx = x for all g e H} and for a subset X c V w e denote 
XH := XH VH. Let H := H(G) denote the family of subgroups of G. 

Let Q. be an open bounded invariant subset of V and suppose that / : Ù —> V is a 
continuous equivariant map such that /(JC) ^ JC for all JC G 3Gt. Then there is defined 
a sequence of integers {/#}, H G Oi(C}\ called the equivariant fixed point index G-
ind(/*, £2) = {in} off with respect to £1. The numbers /# will also be denoted by G-
indH(f,Q). 

The equivariant fixed point index has the following properties. 

(1) (Existence of Fixed Points) 

If G-indff(/\ Q) ^ 0 then there exists JC = f(x) G £2 such that H C Gx. 

(2) (Excision) 

If Qi C Q is an invariant open subset such that/(jc) ^ JC for all x G Q\ Qi then 
G-ind(/", ft) = G-ind(/, fti). 

(3) (Homotopy) 
If /i: ft x [0,1] —• V is a continuous map such that 

(i) h(-,t) is equivariant for each t G [0,1], 
(ii) /I(JC, 0 ^ JC for all JC G 3ft and f G [0,1], then 

G-ind(/î(-,0),ft) = G-ind(/i(-,l),ft). 

(4) (Additivity) 

If Qi, Q2 arc two disjoint bounded open subsets such that/(x) ^ x for* G dfti U 
3ft2 then 

G-ind(/*,ft! U Q2) = G-ind^ftO + G-ind(f, ft2). 

(5) (Product Formula) 

Suppose that V — Vo 0 V\ and ft0 C Vb» fti C V\ are invariant bounded and 
open subsets. Suppose further that/o- fto —* Vb is an equivariant map such that 
/O(JC) / JC for JC G 3ft0. Define/: ft0 x fti -> V by f(x,y) = (/bW, 0), JC G ft0, 
y G fti. Then/(jc,y) ^ (x,y) for (JC, v) G 3(ft0 x fti) and 

G-ind^fto x Qi) = G-ind(/b, ft0). 
(6) (Normalization) 

If// G # ( G ) and G* = / / for ail JC G ft then 

G - m d ^ , Q ) = ( w i n d ^ ^ i f * = " V [0 ifK^H 

where ind(/", ft) denotes the classical fixed point index. 
For a more detailed description and other properties of the equivariant fixed point 

index we refer to K. Komiya [6]. 
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2. Orthogonal representations of the cyclic group G 
dimensional linear space over R. For a linear map A: V —• 
spectrum of A. 

Assume that X C C is a subset satisfying the condition 

= Zn. Let V be a finite 
V we denote by a (A) the 

(*) if A EXthenÂ eX. 

Then we denote by A(A, X) the linear subspace of V determined by a (A) D X, i.e. A(A, X) 
is the linear subspace of V generated by all generalized eigenspaces corresponding to 
eigenvalues in X. Let A (A, X) denote the dimension of the subspace A(A, X). 

We introduce the following notation 

d(A) 

J(A) : 

k(A): 

. = (_i)A(A'<-°°'°>). 

_ 1 , A ( A , ( 1 , O O ) ) . 

(-D 
= c - i y ^ - 0 0 ' - 1 ) ) 

Note that d(I — A) = y(A), where /: V —» V denotes the identity. 

LEMMA 2.1. Let Ai,A2,...,Afc be a sequence of n x n matrices such that 1 ^ 
a (At), j = 1,2,..., A: <z/zd to 

M = 

0 Ai 0 . .. 0 
0 0 A2 . 0 

0 0 0 . •. Afc-i 
A* 0 0 . 0 

Thenj(M) = j(AxA2 ...Ak) and k(M) = k(AxA2 . 

PROOF. Let us remark that 

• A,). 

Mn 

AiA2 • • 
0 

0 

•Ak 0 
A2 • • -AkAi 

0 

0 
0 

A*Ai -"Ak. l J 

therefore cr(AiA2 • • -A*) = {/x* : /x £ a(M)}. Let /i bea solution of the equation 
/x* = A, where /x G <J(M). Put a — cos ( | ) + / s i n ( | ) . Then the numbers/x7 = otjn\ 
j = 0 , . . . , k — 1 are exactly the k roots /xo, • • •, Mfc-i of that equation. Now, let x :— 
[x\,... ,Xk\ E Vk, be an eigenvector associated with /x. Then [JCI, ayje2,..., a 7 ^ - 1 ^ ] 
is the eigenvector associated with /x, = a;/x. Indeed, MJC = [AIJC2,A2JC3, . . . ,Akx\\ = 
jLt[xi,x2,... ,*&], thus M[jci,ayjc2,... ,a ; (Â:_1)^] = [Aia7;c2,A2a2jjt3,... ,A&JCI] = 
[a-'/xxi, a2;/xx2 , . . . , /XJCI] = a7/x[JCI , a7x2 , . . . , a - 7 ^ - 1 ^] - We can assume without loss 
of generality that M has no multiple eigenvalues. Therefore the number of real eigenval­
ues of ±M greater than 1 is equal to the number of real eigenvalues of zbAi, A2 • • • A* 
greater than 1. That means j (M) = y(AiA2 • • -A*) and k(M) — &(AiA2 • • -Ak). m 
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We put ln = {7 EC : 7" = 1}, n = 2,3, . . . , and let ln E Tn denote the generator 
2*7 

In = e~. 
Let ip: Zn —• O(V) C GL(V) be an orthogonal representation of Z„. We put Tn: = 

<p(7«): V —• V and we denote 7 v := <p(7)(v) for 7 E Z „ , v G V . 
Let / := {j G N : j divides n}. For every j G 7 we put 11/ := { À E C : A;' = 1 and 

Ar j£ 1 for 0 < r < j} and we define 
V,:=A(7;,n7). 

As an immediate consequence of the above definition we obtain 

PROPOSITION 2.2. We have 
(i) V=® Vj; 

(ii) If A: V —• V is an equivariant linear map then A(Vj) C Vjfor all) E /. 
(Hi) If A: V —• V is an equivariant isomorphism then A(V}) = Vjfor allj G/. • 

Let GLG( V) denote the group of all linear equivariant automorphisms of V. 

PROPOSITION 2.3. Two equivariant automorphisms Ao,A\ E GLG(V}), for j E 7, 
are in the same connected component ofGLcÇVj) if and only ifd(Ao) — d(A\). More­
over GLG(V}) has two connected components only ifj — 1 or 2, otherwise GLG(V/) is 
connected. 

PROOF. For j — 1 the action of G on V} is trivial, i.e. lx — Tnx — x for all x E V\. 
Therefore GLG( VI) = GL(dim V\, R ) and our claim follows immediately from the well-
known properties of GL(p, R ),/? = dim V\. In the case y = 2, Tnx — —x for x E V2» thus 
any linear automorphism A: V2 —+ V2 commutes with Tn, and consequently we obtain 
again GLG(V2) = GL(dim V2, R). 

Suppose now j > 2. For an equivariant linear map A: V} —+ V, let 

L_ = A(A,(-oo,0)), 

L+ = A(A,C\(-oo,0)). 

Since A commutes with Tn, both L_ and L+ are invariant subspaces of V} and V} = 

L_ 0 L+. Let t E [0,1], we define 
f (1 - OA(JC) - tx if JC E L_; 

r W 1 ( 1 - t)A(x) + tx if x E L+, 
and extend Ht to a linear map Ht\ V} —• V,. Now, we put 770) = //,. It follows from 
the definition that 77: [0,1] —» GLG(V/) is a path in GLG(V/) such that 77(C)) = A and 
77(1) = H\. Next, we define 

r v (-(l-t)x + tTnx if JC E L_; 
' W ~ {(1 -t)x + rrrtjc if x E L+. 

Since neither 1 nor —1 is an eigenvalue of Tn, the mapping \i(t) := Gt defines a path in 
GLG(Vj) such that /i(0) = Hx and /x(l) = Tn. Finally o;(r) = (1 - t)Tn + f/ defines a path 
in GLG(V/) such that u(0) — Tn and UJ(\) = /. This completes the proof. • 

Let us denote by JG(V) the set of all linear equivariant maps A: V —-> V such that 
1 ^ cr(A). Clearly A E /G(V) if and only if / — A E GLG(V). AS a direct consequence of 
Proposition (2.3) we have 
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COROLLARY 2.4. Suppose Ao,A\ G JG(VJ)> j € J- Then Ao,A\ are in the same con­
nected component ofJc(Vj) if and only ifj(Ao) — j(A\). Moreover, JG(VJ) has two con­
nected components only ifj = 1 or 2, otherwise JG(VJ) is connected. 

3. Equivariant fixed point index of generic maps. Throughout this section we 
assume that V is an orthogonal representation of G = Zn, £1 C V is an open bounded 
invariant set and/: Ù —• V is a continuous equivariant map. We also assume that 

(1) Fix(0 = {* G ft :/(*) = x} C ft. 

Further, we assume that/ is generic, i.e. / is of class C1 and 1 ^ a(Df(x)) for every 
je G Fix(/*). Finally, we fix k G / , i.e. k divides n, and assume that Fix(/) = Gvo, where 
GVo = Zn k - r = n. Note that this implies that Fix(/) has precisely k points. 

Let us introduce 
JQ \— {j G / : j divides k}, 

/ : = { , e y : g c d ( ^ ) ^ 

r:={jeJ:gcd(r,")*r, 

Note that 7 = J0 U / U /". Roughly speaking / 0 denotes the set of j G 7 such that Z r 

acts trivially on V}, / is the set of/ G 7 such that Zr acts on V} like Z2 and /" is the set of 
j & J such that Zr acts on V} like Zm for some m > 2. Moreover we have the following 
direct sum decomposition 

V=Wk®Xk®Yk 

where 

jeJo jef j<EJ" 

Since the map/: ft —> V is equivariant, the derivative D/(vo): V —» V is an equivariant 
linear map with respect to the action of the isotropy group GVo = Zr. Note that H^ = 
A(7V, fil) and Xk — A(Tr, II2), therefore Df(yo) has the following matrix representation. 

Df(v0) = 
A 0 0 
0 5 0 
0 0 C 

:Wk®Xk®Yk->Wk®Xk® Yk. 

THEOREM 3.1. Let f: ft —• V be an equivariant generic map such that Fix(/) = 
Gvo C ft, GVo = Zr, vo G (1. Then, using the same notation as above, we have that 
G-ind(/, ft) = {/#} vv/iere 

/ff = G-incfcri/\Q): 

fy(A) forH=lr 

0 / o r H = Zj *//'(£) = 1 
-7(A) forH=zlifj(B) = -l 
0 for H ^ZnZt. 
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PROOF. Without loss of generality we may assume 
(a) there exists e > 0 such that 

« = Q ft,, ft7l H % = 0 for;'! ? j2 
7=0 

where ft, = 7£ft0, fto = B(y0, e) x Bx x BY, B(v0, e) = { w G Wk : | w - v0| < 
e},Ux = { J C G X : |JC| < 1} andBY = {y G Yk : \y\ < 1}; 

(b) f(w,x,y) = (A(W0 - v0),B(x), C(yj), where w G B(v0, <?),* G # x and y G £y. 
Let us remark that if ip: fto —> V is a continuous mapping such that tp(w,x,y) — 

((fi(w), <p2(x), <P3(y)), where <pi : £(v0, e) —• Wk, Vi '• Bx —> X* and <p3 : £ r —• 7* are 
continuous and </?2, ^3 commute with the action of Zr on X* and Y* respectively, then </? 
determines uniquely a Z„-equivariant map i/; : ft —> V such that the restriction of ip to 
fto equals <p. This implies that it is sufficient to construct an appropriate Zr-equivariant 
homotopy off restricted to ft0. 

From the definition of Yk and Corollary 2.4 it follows that there exists a continuous 
map 77: [0,1] —> Jzr(Yk) such that r/(0) = C and 7/(1) — 0. Therefore/ is homotopic to 
an equivariant map F\, such that 

Mw,x,y) = (A(w - vo),B(x),0), weWk,xeXk,ye Yk. 

By applying the Product Formula, we may assume that Yk = { 0} . Let us also remark that 
if we denote by 7r •= e^ the generator of Zr, then lrx = —x for all x G Xk. Therefore 
Jzr(Xk) has two connected components. Consequently it follows that it is sufficient to 
consider the following two cases 

(i) B = 0; 
(ii) B(x\,X2,...,xp) — (2*i,0,...,0), where we assume that dimX* = p and 

(xux2,...,xp) exk. 
In the case (i), it follows directly from Corollary 2.4 that 

G- ind/zi/, ft) = j(A) for H = Zr 

G- mdH(f, ft) = j(A) for H ^ Zr. 

In the case (ii), we replace the mapping/i(w>, x) = (A(w—VO), 2X\ , 0 , . . . , O) by/2(w, x) := 
(A(w - v0),g(*i),0,...,0), where g(x\) = x\ - x\(x\ + \){xx - \). The mapping 
h(w,x,t) = (1 — f)/i(w,jc) + (/*2(W,JC), t G [0,1], defines a Zr-equivariant homotopy 
between f\ and/2 such that h(w,xj) ^ (W,JC) for every (W,JC) G dfto. The set Fix(^) is 
the union of two orbits Gvo and Gv\, where vi = (vo, \, 0 , . . . , 0), GVl = Z1. Therefore 
in this case we obtain 

G- indtf (/*, ft) = 7(A) for / / = Zr; 

G- ind^tf, ft) - -j(A) for / / = Z r ; 

G-ind//(/",ft) = 0 f o r / / ^ Z r ,Z § . 

This completes the proof. • 
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4. Period-doubling cascades of periodic points. Let £1 C R n be an open bounded 
subset and le t / : Û —• Rn be a continuous map such thatfk(x) ^ x for all x G 3Q and 
all *: = 1,2,... . 

For A: G N we set 

Q* = Q x - x Q C R " x - x Rn = Rn* 

it-fold *-fold 

and 
fk:Ù

k —>R"* is given by 

fk(x\,x2, ...,**) = (f(xk),f(xi)9... ,/(**_ i)). 

We say that 8 = { a\, «2, . . . , a^}, <z/ € Q, is aperiodic orbit for/ if f(ai) = at+\, for 
i = 1,2,..., A: — 1 and/(a*) = ai. Note that 5 = { au ai, • •., #*} is a periodic orbit for 
/ if and only if (a\, a2,..., a*) G Q.k is a fixed point for/*. We say that the least period 
of 5 equals m if fm(a\) — a\ andfl(a\) ^ a\ for 0 < y < m. It is clear that in this case 
m divides k. 

Let us remark that/* is Z^-equivariant with respect to the action of Z^ defined on 
V= Rn x . . . x R"by 

Tk(x\ ,X2,...,Xk) = (xk,x\,..., Xk-i), Xi G R n, 

where 7* corresponds to the generator £* = exp( ̂  j G Z*. 

DEFINITION 4.1. Suppose that/: Û —• Rn is a continuous map such that/*0) ^ JC 

for all x G 3£2 and all k G N. Then for every k G N we define 

oind*(/\n) = ck := Z^indz, (/*;«*). 

We call c-ind(/, £2) := { QJ^eN the c-index off in £2. 
It follows directly from the definition and the homotopy invariance of the equivariant 

fixed point index that the c-index satisfies the following homotopy invariance property. 

PROPOSITION 4.2. Suppose that h: Ù x [0,1] —• Kn is a continuous map such that 
hk(x) ^ x for all x G dCl, k G N andt G [0,1]. Then 

c-ind(ho,Q) = c-ind(h\,Q). 

We say that a periodic orbit <5 = {ai,«2, •• • ,0*} with the least period k is a transverse 
periodic orbit if Dfk(a\) does not have 1 as an eigenvalue. 

Suppose now that 8 = { au #2, • • •, ak} is a transverse periodic orbit with the least 
period k. Let W denote the linear subspace of R n spanned by the generalized eigenspaces 
of Dfk(a\) corresponding to eigenvalues of absolute value greater than 1. Following the 
notation of J. Franks (cf. [4]) we put fi(8) = dimE". /z(<5) is called the Morse index of 
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6. We say that the orbit 8 is twisted if D^fiax): £" —• Eu reverses the orientation, and 
untwisted otherwise. We put 

(j:\ ._ M if^ is untwisted 
1—1 if 8 is twisted. 

The above definition yields 

(4.3) r(fi) = *(zy*(fll)), 

and 

(4.4) (-1)"<*> =j(Dfk(al))k(Df(al)). 

LEMMA 4.5. Suppose that 6 = { a\, a2, • • •, ajc} is a transverse periodic orbit with 
the least period k and Q o C Q is an open subset such that <$ Cl^o and there is no other 
periodic orbit in Qo with the least period smaller or equal to 2k. Then 

(i) c-mdk(f,Cl0) = (-ir(6)T(è); 

(ii) c-mà2k<f,Oo) = lï(-iy(6)(l -r(6j); 
(Hi) c-indr(f9 Q.) = 0 for all 0 < r< 2k such that r ^ k. 

PROOF. By the definition of the oindex we have that c-indk(f, Qo) = 
Zk-mdZl(fk^o)- Let b = (aua2,...,afc)G RjJ*. Then Gb = Tx and, by Theorem 3.1, 
Zfc-indz, (fk, QQ) = j{pfk(b)\ Put At — Df{ai), i = 1, . . . , k. By Lemma 2.1, we obtain 

jDfkib) = 7(Ai,A2 • • -Ak) = j(Dfk(ax)) 

= j(Dfk(al))'k(Dfk(al))'k(Df(al)) 

= T(6)-(-iy(6). 

This completes the proof of (i). 

Now we proceed to the proof of the statements (ii) and (iii). Let V = R 2 b \ we define 

W = {(xi,...9xk9xk+i9...,X2k) eV :xt = xi+k, i = 1,2,... ,/:}. 

We put c = (ai , . . . 9ak,a\,...9ak) G W and we consider the orthogonal decomposition 
V=W®W±. Then we have 

A 0 
0 £ 

:W®W±->W®W±. Df2k(c) = 

By the definition of oindex we have: 

c-ind2*(/\Oo) = Z2k-indZl(f2k,&lk). 
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Since Gc = Z2, by Theorem 3.1, we have 

Za - indz .^ jbOo*) = \j(Â)(j(B) - l ) 

= \j{A)m®B)j{A)-\] 

= ^[j(Â®B)-j(Â)} 

= 1-[j(Df2k(al))-j(Df(a,))} 

= | [ ( - iy ( S ) - ( - iy ( 4 ) -T( f i ) ] 

= I ( _ l ) ^ ) ( l _ T ( 5 ) ) . 

The proof is complete. • 

Following J. Franks (cf. [4]) we let PO(/\ d) denote the set of all periodic orbits of/ 

whose least period is 2kd for some k > 0. Let U1 denote the unit disc in Kn. 

THEOREM 4.6 (J. FRANKS, CF. THEOREM A [4]). Letf: U1 —• Int Dn be a smooth 

map with only transverse periodic points. Suppose d is odd and no orbits in PO(/\ d) 

have even Morse index. If 8 € PO(f,d) has least period p, then for each k > 0 there 

is a twisted periodic orbit off with the least period 2kp. The same conclusion is valid if 

d > 1 and no orbits in PO(/", d) have odd Morse index. 

PROOF. Suppose that no orbit in PO(f, d) has even Morse index and let p be an orbit 

with the least period r. Then {—\y^ = — 1 and the contribution of p to c-index is 

- r (p) forc- ind r ( /" ,D w ) 

and 

-^(l-r(p))fovc-md2r(f,D
n). 

Let u(f, r) (resp. t(f, r)) denote the number of untwisted (resp. twisted) periodic orbits of 

/ with the least period r. Using the fact that every mapping of D" into Int IT is homotopic 

to a constant map and the homotopy invariance of c-index (Proposition 4.2), we obtain 

that 
• J //• ri«\ M for 5 = 1 

and thus 

0 = c- ind2r(f, lT) = t(f, 2r) - u(f, 2r) - t(f, r) 

therefore 

(1) t(f,2r)=t(f,r) + u(f,2r) 

and hence 

(2) t(f,2r)>t(f,r). 
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Let q be the smallest positive integer such that there is a periodic orbit <$o G PO(/\ d) with 
the least period q and p = 2mq for some mo > 0. By the assumption such a number q 
exists and d ^ q ^ p. It follows from (1) that f(/", g) = w(/\ q) > 0, thus, by induction, 
(2) implies that f(f, 2mq) > 0 for every m > 0 and the first part of the theorem is proved. 

The proof of the second part is analogous. • 
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