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Counter-propagating and suitably polarized light (laser) beams can provide conditions
for pair production. Here, we consider in more detail the following two situations: (i)
in the homogeneity regions of anti-nodes of linearly polarized ultra-high intensity laser
beams, the Schwinger process is dynamically assisted by a second high-frequency
field, e.g. by an XFEL beam; and (ii) a high-energy probe photon beam colliding with
a superposition of co-propagating intense laser and XFEL beams gives rise to the laser-
assisted Breit–Wheeler process. The prospects of such bi-frequent field constellations
with respect to the feasibility of conversion of light into matter are discussed.

1. Introduction
The Schwinger effect (Sauter 1931; Schwinger 1951) refers to the instability

of a spatially homogeneous, purely electric field with respect to the decay into a
state with pairs, e.g. electrons (e−) and positrons (e+), and a screened electric field,
symbolically |E〉→ |E′e+e−〉 (cf. Gelis & Tanji (2016) for a recent review). The
pair creation rate w ∝ exp{−πEc/|E|} for fields attainable presently in mesoscopic
laboratory installations is exceedingly small since the Sauter–Schwinger (critical)
field strength Ec = m2/|e| = 1.3 × 1018 V m−1 is so large for electrons/positrons
with mass m and charge ±e (we employ here natural units with c = h̄ = 1). The
notion of the dynamical Schwinger process refers to a situation where the spatially
homogeneous electric field has a time dependence, E(t). The particular case of a
periodic field is dealt with in Brezin & Itzykson (1970) with the motivation that
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2 A. Otto and others

tightly focused laser beams can provide high field strengths, e.g. in the anti-nodes of
pair-wise counter propagating, linearly polarized beams. The superposition of many
laser beams, as considered, for instance, in Narozhny et al. (2004), can enlarge the
pair yield noticeably. A particular variant is the superposition of strong laser beams
and weaker but high-frequency beams which may be idealized as a common classical
background field E(t) = E1(ωt) + E2(Nωt). If the frequency of the second field,
Nω, is sufficiently large, the tunnelling path through the positron–electron gap is
shortened by the assistance of the multi-photon effect (Schützhold, Gies & Dunne
2008; Dunne, Gies & Schützhold 2009) and, as a consequence, the pair production is
enhanced. This dynamically assisted Schwinger process supposes a Keldysh parameter
γ1 = (Ec/E1)(ω/m) � 1 to stay in the tunnelling regime1. The combination γ1 < 1
and γ2 = (Ec/E2)(Nω/m) > 1 is dubbed the assisted dynamical Schwinger effect,
since the field ‘1’ with parameters E1, ω refers to the dynamical Schwinger effect
in the nomenclature of Brezin & Itzykson (1970), and the field ‘2’ with parameters
E2, Nω is assisting. Various pulse shapes for E1,2 have been studied with the goal
of finding the optimal combinations (Kohlfürst et al. 2013; Akal, Villalba-Chávez &
Müller 2014; Hebenstreit & Fillion-Gourdeau 2014). Current lasers reach intensities
of 2× 1022 W cm−2 (cf. Di Piazza et al. (2012) for an overview) corresponding to an
inverse Keldysh parameter of γ −1 = 10. Planned facilities are, for example, ELI-NP
(ELI 2015) and Apollon (Zou et al. 2015) (10 PW, 1022 W cm−2) or HiPER (HiPER
2015) (100 PW, 1026 W cm−2). (The Sauter–Schwinger field strength requires an
intensity of 4× 1029 W cm−2.)

All these investigations aim to verify the decay of the vacuum. Besides the
mentioned strong (but presently not strong enough) fields, the Coulomb fields
accompanying heavy and super-heavy atomic nuclei have also been considered as
an option to study the vacuum break down (Rafelski, Fulcher & Greiner 1971;
Müller et al. 1972; Müller, Rafelski & Greiner 1973; Rafelski, Müller & Greiner
1978; Bialynicki-Birula, Gornicki & Rafelski 1991). Previous experiments, however,
have not been conclusive (Heinz et al. 2000).

Another avenue for pair creation is the conversion of light into matter in the
collision of photon beams. The Breit–Wheeler process (Breit & Wheeler 1934) refers
to the reaction γ ′+ γ → e++ e− which is a crossing channel of the Compton process
or the time-reversed annihilation. The famous experiment E-144 at SLAC (Burke
et al. 1997) can be interpreted as a two-step process with Compton backscattering
of a laser beam and subsequent reaction of the Compton backscattered photons
with the laser beam in nonlinear Breit–Wheeler pair production (Burke et al. 1997;
Bamber et al. 1999). The nonlinear Breit–Wheeler process means that there is an
instantaneous reaction with multiple laser beam photons, i.e. γ ′ + nωL → e+ + e−.
Also here one can ask whether the laser-assisted nonlinear Breit–Wheeler process
γ ′ + ωXFEL + nωL → e+ + e− shows peculiarities due to the superposition of the
co-propagating XFEL and laser beams.

Other field combinations, such as the nuclear Coulomb field and XFEL/laser beams,
are also conceivable (Di Piazza et al. 2010; Augustin & Müller 2014) (cf. Di Piazza
et al. (2012) for a recent review and further references), but will not be addressed
here.

Our paper is organized as follows. In § 2 we consider the reasoning for forming
resonance-type structures in the phase space distribution of pairs created in the assisted
dynamical Schwinger process. The considered classical background field configuration

1Similar to ionization in atomic physics, one can also distinguish between a tunnelling (γ � 1) and a
multi-photon regime (γ � 1) for pair production, depending on the value of the Keldysh parameter γ .
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has been characterized above: the superposition of two spatially homogeneous fields
of different strengths and frequencies with a common envelope, as investigated in
Otto et al. (2015a,b), Panferov et al. (2015). Examples are given for clarification,
and some glimpses of the time evolution in simple pulses are provided too. Section 3
deals with the laser-assisted Breit–Wheeler process, where spectral caustics have been
identified already in Nousch et al. (2016). Specifically, we show here the sensitivity
of the spectral caustics to the laser beam intensity, which is important for multi-shot
experiments with intensity parameters that are not perfectly tuneable. Our approach
here utilizes the common XFEL + laser field again as a classical background field to
be dealt with in the Furry picture, while the probe photon γ ′ refers to a quantized
radiation field. We briefly summarize in § 4.

2. Assisted dynamical Schwinger process
In this section we consider pair production in the spirit of the Schwinger process,

i.e. the creation of e± pairs by a purely electric background field which is assumed
to be spatially homogeneous. In the following, we use the notation and formalism as
introduced in Otto et al. (2015a). The quantum kinetic equation (Schmidt et al. 1998)

ḟ (p, t)= λ(p, t)
2

∫ t

−∞
dt′λ(p, t′)(1− 2f (p, t′)) cos θ(p, t, t′) (2.1)

determines the time (t) evolution of the dimensionless phase space distribution
function per spin projection degree of freedom2 f (p, t) = dN(p, t)/d3p d3x, where N
refers to the particle number and d3p and d3x are the three-dimensional volume
elements in momentum (p) and configuration (x) spaces. We emphasize that
only f (p, t → +∞) can be considered as single particle distribution which may
represent the source term of a subsequent time evolution of the emerging e+e−
plasma. The initial condition for solving (2.1) is f (p, t→−∞) = 0. Screening and
back-reaction are not included by virtue of the small values of f in subcritical
fields (cf. Gelis & Tanji (2013) for recent work on that issue). The quantity
λ(p, t) = (eE(t) ε⊥(p⊥))/ε2(p, t) stands for the amplitude of the vacuum transition,
and θ(p, t, t′) = 2

∫ t
t′ dτ ε(p, τ ) stands for the dynamical phase, describing the

vacuum oscillations modulated by the external field; the quasi-energy ε, the
transverse energy ε⊥ and the longitudinal quasi-momentum P are defined as
ε(p, t) = √ε2

⊥(p⊥)+ P2(p‖, t) and ε⊥(p⊥) =
√

m2 + p2
⊥, P(p‖, t) = p‖ − eA(t),

where p⊥= |p⊥| is the modulus of the kinetic momentum ( p) component of positrons
(electrons) perpendicular to the electric field and p‖ denotes the E-parallel kinetic
momentum component. The electric field follows from the potential

A=K(ωt)
(

E1

ω
cos(ωt)+ E2

Nω
cos(Nωt)

)
(2.2)

by E =−Ȧ in the Hamilton gauge. Equation (2.2) describes a bi-frequent field with
frequency ratio N (integer) and field strengths E1 (the strong field ‘1’) and E2 (the
weak field ‘2’). The quantity K is the common envelope function with the properties
(i) absolutely flat in the flat-top time interval −tf .t./2< t<+tf .t./2; (ii) absolutely zero
for t<−tf .t./2− tramp and t> tf .t./2+ tramp; and (iii) absolutely smooth everywhere, i.e.
K belongs to the C∞ class; tramp is the ramping duration characterizing the switching
on/off time intervals.

2In Otto et al. (2015a,b) we employ a different convention with a sum over spin degrees of freedom, i.e.
f →∑

s f , which removes factors 2 in front of f .

https://doi.org/10.1017/S0022377816000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000428


4 A. Otto and others

(a) (b) (c)

(d ) ( f )(e)

FIGURE 1. (a–c) Asymptotic transverse momentum (p⊥) spectrum at p‖ = 0 for the bi-
frequent field (2.2) (b) and the field components ‘1’ (a), (E1 = 0.1Ec, ω = 0.02m) and
‘2’ (c), (E2 = 0.05Ec, N = 25) alone. (d–f ): Fourier zero-modes 2Ω(p⊥, p‖ = 0) scaled by
ω (d,e) and Nω ( f ) for the fields in (a–c) with resonance conditions (horizontal dashed
lines for `= 341 and 343 (a,d; higher-` resonances are not depicted since the peaks are
underneath the scale displayed in (a)), ` = 341, . . . , 373 (b,e) and ` = 5 (c, f ); vertical
dashed lines are for the resonance positions; peaks for even ` appear only for p‖ 6= 0 but
get a zero amplitude at p‖ = 0, and thus their positions are not depicted).

Figure 1(a) exhibits three examples for the transverse phase space distribution
f (p⊥, p‖ = 0, t→∞) for E1 = 0.1Ec, E2 = 0.05Ec, ω = 0.02m, N = 25, tramp = 5ω−1

and tf .t. = 25ω−1 obtained by numerically solving (2.1). The chosen parameters are
still far from reach at present or near-future facilities. Due to the periodicity of
the involved fields and their finite duration a pronounced peak structure emerges
(the peaks become sharp, elliptically bent ridges with deep notches when continuing
the spectrum to finite values of p‖). The peak heights scale with t2

f .t. where the
pulse duration is not too long. The peak positions are determined by the resonance
condition (Otto et al. 2015a)

2Ω(p⊥, p‖)− `ω= 0, (2.3)

where

Ω = m
2π

∫ 2π

0
dx
√

1+ (p⊥/m)2 + [(p‖/m)− γ −1
1 cos x− γ −1

2 cos Nx]2 (2.4)

is the Fourier zero-mode of ε. The values of ` (integer) where the resonance condition
(2.3) is fulfilled can be used to label the peaks. The quantity Ω(p⊥= p‖= 0) may be
interpreted as effective mass m∗ (Kohlfürst, Gies & Alkofer 2014) which determines
`min = int(1 + 2m∗/ω). The Fourier zero-modes as functions of p⊥ at p‖ = 0 are
displayed in the bottom row in figure 1 together with the resonance positions. For
the field ‘1’ alone (d) one has to take the limit γ2→∞ in the Fourier zero-mode,
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(a) (b)

FIGURE 2. Time evolution of f (p⊥= p‖= 0, t) in the adiabatic basis for the Sauter pulse
(2.5) for τ = 1 m−1 (blue), τ = 2 m−1 (green), τ = 5 m−1 (red), τ = 10 m−1 (cyan), τ =
20 m−1 (purple) and τ = 50 m−1 (yellow), where E0= 0.2Ec (a) and E0= 0.15Ec (b). The
dashed black curves depict the Schwinger case as the limit of large values of τ . Note the
vast drop of the residual phase space occupancy for larger values of τ when changing E0
from 0.2Ec to 0.15Ec.

while field ‘2’ alone ( f ) corresponds to γ1 →∞ and the replacement ω→ Nω in
(2.3).

The striking feature in figure 1 (cf. Otto et al. (2015a,b) for other examples with
different parameters, in particular tf .t., and Hähnel (2015) for a wider range of field
strengths) is the lifting of the spectrum related to field ‘1’ by the assistance of field ‘2’.
While the amplification of the created pair distribution by the assistance field can
be huge, for sub-critical fields the frequency Nω must be O(m) to overcome the
exponential suppression. This implies that the intensities envisaged in ELI pillar IV
(ELI 2015) must be at our disposal in conjunction with much higher frequencies to
arrive at measurable pair numbers enhanced further by an assistant field (Otto et al.
2015b).

Even with low pair creation probability, a once produced pair may seed a further
avalanche evolution (Bell & Kirk 2008; Elkina et al. 2011; King, Elkina & Ruhl 2013)
toward an electron–positron plasma. In this respect one may ask for the time scales to
approach the asymptotic out-state. A unique answer seems not to be achievable within
the present framework due to the unavoidable ambiguity of the particle definition (see
e.g. Dabrowski & Dunne (2014) for examples of changing the time evolution of f
at intermediate times when changing the basis). Having this disclaimer in mind one
can nevertheless inspect graphs of f (t). Figure 2 exhibits the time evolution in the
adiabatic basis for the Sauter pulse

E(t)= E0

cosh2(t/τ)
(2.5)

which is fairly different from (2.2). The analytical solution (Narozhny & Nikishov
1970; Hebenstreit 2011) of (2.1) is useful for checking numerical codes which are
challenged by dealing with rapidly changing functions over many orders of magnitude.
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FIGURE 3. Time evolution of the components defined in (2.7) of the analytical solution
(2.6) of the Schwinger case depicted for E0= 0.2Ec. Cyan dashed curve: |X|2, green curve:
|Y|2, blue curve: interference term XY∗ + X∗Y , red curve: |X + Y|2.

For large values of the pulse duration parameter τ the Schwinger case is recovered,
see Hebenstreit (2011):

f = 1
8

(
1+ u√

2η̂+ u2

)
e−(πη̂)/4|X + Y|2, (2.6)

with

X =
(√

2η̂+ u2 − u
)

D−1+(iη̂)/2(−ue−(iπ)/4), Y =−2e(iπ)/4D(iη̂)/2(−ue−(iπ)/4),

(2.7a,b)

where D is the parabolic cylinder function,

u=
√

2
|e|E0

(p‖ + eE0t) and η̂= m2 + p2
⊥

|e|E0
. (2.8a,b)

While for E = 0.2Ec the net function ∝ |X + Y|2 has already reached its asymptotic
value at tm≈ 20 (see figure 3), the individual components |X|2, |Y|2 and XY∗ + X∗Y
display a violent time dependence on much longer times. Note also the subtle
cancellations.

In the case of the Sauter pulse, see figure 2, the asymptotic values of f are reached
at shorter times with decreasing values of τ . The relatively large values of f (t ≈ 0)
have sometimes tempted researchers to relate them to particular effects caused by
the transient state. Clearly, only observables, e.g. those provided by probe beams, at
asymptotic times are reliable. It is questionable, however, whether such probes can
disentangle transient state contributions and asymptotic state contributions in a unique
manner.
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3. Laser-assisted Breit–Wheeler process
The laser-assisted, nonlinear Breit–Wheeler process (cf. Jansen & Müller 2013,

2016; Krajewska & Kaminski 2014; Wu & Xue 2014; Meuren et al. 2015) is dealt
with within the strong-field QED (Furry picture) as reaction γ ′→ e+A + e−A where e±A
denote dressed electron/positron states as Volkov solutions of the Dirac equation in a
plane wave model with vector potential of the common classical background field

Aµ(φ)= γ −1
X fX(φ)ε

µ
X cos φ + γ −1

L fL(ηφ)ε
µ
L cos ηφ, (3.1)

where the polarization four-vectors are εµX,L and the above-defined Keldysh parameters
γ1,2 have been transposed to γX,L; γ ′ denotes the high-energy probe photon traversing
the field (3.1). The XFEL (frequency ω) and laser (frequency ηω, we assume in
the following η� 1) beams are co-propagating and their linear polarizations are set
perpendicular to each other to simplify the cumbersome numerical evaluation. Both
are pulsed as described, for the sake of computational convenience, by the envelope
functions fX = exp{−φ2/(2τ 2

X)} and fL = cos2(πφ/(2τL)) for −τL 6 φ 6+τL and zero
elsewhere for the latter pulse shape. In contrast to (2.2) we treat here a somewhat
more realistic case with different pulse durations τX and τL. The invariant phase is
φ = k · x with the dot indicating the scalar product of the four-wave vector k and
the space–time coordinate x. It is convenient to parameterize the produced positron’s
phase space by the following three variables: (i) the momentum exchange parameter
`, (ii) the azimuthal angle ϕ with respect to the polarization direction of the assisting
laser field; and (iii) the shifted rapidity z = log(p++/p

−
+)/2 + log((1 + η`)ωX/ωX′)/2.

The energy-momentum balance for laser-assisted pair production can be put into
the form kµX′ + kµX + `kµL = pµ+ + pµ− (µ is a Lorentz index, as above), where `
represents here a hitherto unspecified momentum exchange between the assisting laser
field L and the produced pair. We define light-front coordinates, e.g. x± = x0 ± x3

and x⊥ = (x1, x2) and analogously the light front components of four-momenta
of the probe photon X′, the XFEL photon X, the laser beam photons L and the
positron (subscript +) and electron (subscript −). They become handy because the
laser four-momentum vectors only have one non-vanishing light-front component
k−X,L = 2ωX,L. In particular, the energy-momentum balance contains the three
conservation equations in light-front coordinates k+X′ = p++ + p+− and p⊥+ = −p⊥−.
Moreover, the knowledge of all particle momenta makes it possible to calculate
` via the fourth equation ` = ((p−+ + p−− − k−X′)/(k

−
X − 1)/η). Treating (`, z, ϕ) as

independent variables the positron’s four-momenta are completely determined by the
above energy-momentum balance equations (see Nousch et al. (2016) for details, in
particular for expressing the positron and electron momenta p± by (`, z, ϕ)).

The theoretical basis for formulating and evaluating the cross-section is outlined in
Nousch et al. (2016). An example is displayed in figure 4(a) for η= 1/600, γX = 105,
τX = 7τ/(4πη), γL = 2 and τL = 8π (examples for other parameters are exhibited
in Nousch et al. (2016)) for kinematical conditions, where the linear Breit–Wheeler
effect for X′ + X is just above the threshold. The involved spectral distribution
(note that without the laser assistance only the Breit–Wheeler peak centred at `= 0
corresponding to p⊥ = 0.62 m would appear with a finite width as a consequence of
the finite x-ray pulse duration; cf. Titov et al. (2012, 2013) and Nousch et al. (2012)
for an enhancement of pair production in short laser pulses). The spectrum can be
smoothed by a window function with a resolution scale of δ = 1.3 (which is an ad
hoc choice to better show the strength distribution and which may be considered as a
simple account for finite energy resolution respective p⊥ distribution) resulting in the

https://doi.org/10.1017/S0022377816000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000428


8 A. Otto and others

(a)

(b)

(c)

FIGURE 4. Spectra for the laser-assisted Breit–Wheeler process for a probe photon
of energy 60 MeV colliding head-on with an XFEL photon (energy 6 keV) and a
co-propagating laser beam (frequency 10 eV). Further parameters are η= 1/600, γX = 105,
τX = 7τ/(4πη), γL = 2 and τL = 8π in the field (3.1). These parameters translate into
intensities of 6.2 × 1015 W cm−2 and 4.3 × 1019 W cm−2 for the XFEL and the laser,
respectively. (a) Values of dσ/d` dz dϕ at z= 0 and ϕ=π as a function of ` (lower axis;
the corresponding values of p⊥ are given on the upper axis). The calculated spectrum is
smoothed by a Gaussian window function with width δ = 1.3 to get the red curve. (b)
Smoothed spectrum separately. (c) Phase φ as a function of ` (see Nousch et al. (2016)
for details). The vertical dotted lines depict the positions of diverging dφ/d`, where two
branches of φ(`) merge.

red curve which is exhibited separately in (b). In line with the interpretation in Seipt
et al. (2016) and Nousch et al. (2016) the prominent peaks are caustics related to
stationary phase points determined by the turning points of the invariant phase φ as
a function of the variable `, see figure 4(c). This interpretation implies that the total
cross-section may be approximately factorized into a plain Breit–Wheeler production
part and a final-state interaction part, where the latter means the redistribution of
the produced particles by the impact of the laser field. An analogue interpretation of
particle production in constant cross-field approximation in very strong fields has been
put forward in Meuren, Keitel & Di Piazza (2016). Figure 5 demonstrates the strong
impact of the laser field intensity. For smaller values of γL, the transverse momentum
spectrum becomes more stretched and its shape is changed. This challenges the
observability of the peaks related to caustics in multi-shot experiments with fluctuating
laser intensities. In fact, for the unfavourable case of equally weighted deviations, a
window of less than 20 % is required to keep the peak structures, see figure 6. A
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(a)

(b)

FIGURE 5. As in figure 4(b) but for γL = 10, laser intensity 1.7× 1018 W cm−2 (a) and
γL = 1, laser intensity 1.7× 1020 W cm−2 (b).

truncated Gaussian distribution with 1σ width in the same interval is, of course, much
more favourable for keeping the peaks, in particular for larger p⊥. We consider here
only one particular case of the laser-assisted, linear Breit–Wheeler process which turns
into the textbook Breit–Wheeler process upon switching off the laser. Nonlinearities
with reference to the XFEL beam, subthreshold (with reference to the X′ + XFEL
kinematics) effects combined with larger laser intensities, carrier envelope phase
effects and a wider range of kinematical parameters (e.g. ωL = O(1 eV)) need to be
explored as well to arrive at a complete picture. Among the yet to be analysed issues
in terms of an experimental proposal are non-monochromaticity and misalignment
disturbances.

4. Summary
In summary we have supplied further important details of (i) the amplification effect

of the assisted dynamical Schwinger effect, and (ii) the phase space redistribution in
the laser-assisted Breit–Wheeler process. Both topics are motivated by the availability
of x-rays by XFELs and upcoming ultra-high intensity laser beams. We consider the
perspectives offered by the combination of both beam types resulting in bi-frequent
fields. Concerning the Schwinger-related investigations we find that significant pair
production by the dynamical assistance requires much higher frequencies than those
provided by XFEL beams in conjunction with future ELI-IV field intensities. The
crucial challenge for the laser-assisted Breit–Wheeler process and an access to the
predicted caustic structures is the high-energy probe photon beam in combination
with dedicated phase space selective detector set-ups. The bi-frequent fields are dealt
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(a)

(b)

(c)

FIGURE 6. As in figure 4(b) but variation of γL around γL=2. (a) γL=2.22, (b) γL=1.82,
(c) superposition of smoothed spectra for γL = 1.88 . . . 2.12 corresponding to the laser
intensity parameter a0 = γ −1

L = 0.5± 0.03.

with as a classical background. An avenue for further work is the proper account of
quantum fluctuations and a unifying description of counter- and co-propagating fields.
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